Precision QCD Calculations for Heavy Quark Decays

Yu-Ming Wang
Nankai University

HFCPV 2019, Huhhot
July 29, 2019

Why precision calculations?

- Understanding the general properties of power expansion in EFTs (HQET, SCET, NRQCD).
- Interesting to understand the strong interaction dynamics of heavy quark decays.
- Factorization properties of the subleading-power amplitudes.
- Renormalization and asymptotic properties of the higher-twist B-meson DAs.
- Interplay of different QCD techniques.
- Precision determinations of the CKM matrix elements $\left|V_{u b}\right|$ and $\left|V_{c b}\right|$. Power corrections, QED corrections, BSM physics.
- Crucial to understand the CP violation in B-meson decays. Strong phase of $\mathscr{A}\left(B \rightarrow M_{1} M_{2}\right) @ m_{b}$ scale in the leading power.
- Indispensable for understanding the flavour puzzles (see EPS-HEP 2019 for updates).
- P_{5}^{\prime} and $R_{K^{(*)}}$ anomalies in $B \rightarrow K^{(*)} \ell^{+} \ell^{-}$.
- $R_{D^{(*)}}$ anomalies in $B \rightarrow D^{(*)} \ell \bar{v}_{\ell}$.
- Color suppressed hadronic B-meson decays.
- Polarization fractions of penguin dominated $B_{(s)} \rightarrow V V$ decays.

Theory tools for precision flavor physics

New Physics: $\mathscr{L}_{N P}$
\downarrow
$$
\text { EW scale }\left(m_{W}\right): \quad \mathscr{L}_{S M}+\mathscr{L}_{D>4}
$$
$$
\downarrow
$$
Heavy-quark scale $\left(m_{b}\right): \quad \mathscr{L}_{\text {eff }}=-\frac{G_{F}}{\sqrt{2}} \sum_{i} C_{i} Q_{i}+\mathscr{L}_{\text {eff }, D>6}$
\downarrow
QCD scale $\left(\Lambda_{\mathrm{QCD}}\right)$

- Aim: $\langle f| Q_{i}|\bar{B}\rangle=$?
- QCD factorization [Diagrammatic approach].
- SCET factorization [Operator formalism].
- TMD factorization.
- (Light-cone) QCD sum rules.
- Lattice QCD.
- Key concepts: Factorization, Resummation, Evolution.

Factorization in Classical Physics

- Galileo's Leaning Tower of Pisa Experiment:

$$
\mathscr{L}_{\mathrm{eff}}=\frac{1}{2} m \dot{h}^{2}-m g h .
$$

Symmetry of the effective Lagrangian: $h \rightarrow h+a$.
Dynamical interpretation: The force acting on the ball, $F=m g$, independent of h.

- Newton's Gravity Theory:

$$
V_{\text {full }}(h)=G \frac{M m}{r}=G \frac{M m}{R+h} .
$$

- Power expansion of the full potential energy:

$$
V_{\mathrm{eff}}(h)=C_{1}(R) m(h / R)+C_{2}(R) m(h / R)^{2}+\ldots
$$

The general form of the effective potential can be written without knowing $V_{\text {full }}$.

- Matching the full theory and the effective theory:

$$
C_{1}(R)=-C_{2}(R)=\frac{G M}{R}, \quad V_{\mathrm{eff}}(h)=m g h-\frac{m g}{R} h^{2}+\ldots .
$$

- Symmetry of the effective Lagrangian broken in the full theory.

$$
g(r)=\frac{G M}{r^{2}}, \quad r \frac{\partial}{\partial r} g(r)=\gamma_{g} g(r)
$$

This differential equation is actually a renormalization group equation.

Factorization in Quantum Physics

- Wigner-Eckart theorem:

$$
\left\langle\tau^{\prime} j^{\prime} m^{\prime}\right| T_{q}^{k}|\tau j m\rangle=\left\langle j k j^{\prime} \mid m q m^{\prime}\right\rangle\left\langle\tau^{\prime} j^{\prime}\right|\left|T^{k} \| \tau j\right\rangle .
$$

Separation of geometry and dynamics.

- Generalized Wigner-Eckart theorem in Lie algebra.

An example from $\mathrm{SU}(3): u, v$ and W are all 8 s .

$$
\langle u| W|v\rangle=\lambda_{1} \operatorname{Tr}[\bar{u} W v]+\lambda_{2} \operatorname{Tr}[\bar{u} v W] .
$$

Notice that $8^{3}=512$ matrix elements expressed in terms of only two parameters.

- Factorization for strong interaction physics.

An example from $B \rightarrow \gamma \ell v_{\ell}$:

$$
F_{V, \mathrm{LP}}(n \cdot p)=\frac{Q_{u} m_{B}}{n \cdot p} \tilde{f}_{B}(\mu) C_{\perp}(n \cdot p, \mu) \int_{0}^{\infty} d \omega \frac{\phi_{B}^{+}(\omega, \mu)}{\omega} J_{\perp}(n \cdot p, \omega, \mu) .
$$

- Separation of hard, hard-collinear and soft fluctuations.
- Key input: B-meson light-cone distribution amplitude $\phi_{B}^{+}(\omega, \mu)$.

Story I: B-meson distribution amplitudes

- The light-ray HQET matrix element [Grozin, Neubert, 1997]:

$$
\langle 0| \bar{q}_{\beta}(z)[z, 0] h_{v \alpha}(0)|\bar{B}(v)\rangle=-\frac{i \tilde{i}_{B} m_{B}}{4}\left[\frac{1+\psi}{2}\left\{2 \tilde{\phi}_{B}^{+}(t, \mu)+\frac{\tilde{\phi}_{B}^{-}(t, \mu)-\tilde{\phi}_{B}^{+}(t, \mu)}{t} \not \approx\right\} \gamma_{5}\right]_{\alpha \beta} .
$$

- Evolution equation at one loop [Lange, Neubert, 2003]:

$$
\frac{d \phi_{B}^{+}(\omega, \mu)}{d \ln \mu}=-\left[\Gamma_{\mathrm{cusp}}\left(\alpha_{s}\right) \ln \frac{\mu}{\omega}+\gamma_{+}\left(\alpha_{s}\right)\right] \phi_{B}^{+}(\omega, \mu)-\omega \int_{0}^{\infty} d \eta \Gamma_{+}\left(\omega, \eta, \alpha_{s}\right) \phi_{B}^{+}(\eta, \mu) .
$$

This is an integral-differential equation!

- (Relatively) complicated solution [Lee, Neubert, 2005]:

$$
\begin{aligned}
\phi_{B}^{+}(\omega, \mu)= & e^{V-2 \gamma_{E} g} \frac{\Gamma(2-g)}{\Gamma(g)} \int_{0}^{\infty} \frac{d \eta}{\eta} \phi_{B}^{+}\left(\eta, \mu_{0}\right)\left(\frac{\max (\omega, \eta)}{\mu_{0}}\right)^{g} \\
& \times \frac{\min (\omega, \eta)}{\max (\omega, \eta)}{ }_{2} F_{1}\left(1-g, 2-g, 2, \frac{\min (\omega, \eta)}{\max (\omega, \eta)}\right) \\
g\left(\mu, \mu_{0}\right)= & \int_{\alpha_{s}\left(\mu_{0}\right)}^{\alpha_{s}(\mu)} d \alpha \frac{\Gamma_{\mathrm{cusp}}(\alpha)}{\beta(\alpha)} \approx \frac{2 C_{F}}{\beta_{0}} \ln \frac{\alpha_{s}\left(\mu_{0}\right)}{\alpha_{s}(\mu)}
\end{aligned}
$$

Making the QCD resummation complicated!

Story I: B-meson distribution amplitudes

- Renormalization of $\left[\bar{q}_{s}(t \bar{n}) \Gamma b_{v}(0)\right]$ does not commute with the short-distance expansion [Braun, Ivanov, Korchemsky, 2004].

$$
\left[\left(\bar{q}_{s} Y_{s}\right)(t \bar{n}) \ddot{h} \Gamma\left(Y_{s}^{\dagger} b_{v}\right)(0)\right]_{R} \neq \sum_{p=0} \frac{t^{p}}{\bar{p}!}\left[\bar{q}_{s}(0)(n \cdot \overleftarrow{D})^{p} \vec{\hbar} \Gamma b_{v}(0)\right]_{R}
$$

Many other examples in QCD physics (e.g., Light-cone projection and renormalization)!

- Integral transformation [Bell, Feldmann, Wang and Yip, 2013]:

$$
\begin{aligned}
\phi_{B}^{+}(\omega, \mu) & =\int_{0}^{\infty} \frac{d \omega^{\prime}}{\omega^{\prime}} \sqrt{\frac{\omega}{\omega^{\prime}}} J_{1}\left(2 \sqrt{\frac{\omega}{\omega^{\prime}}}\right) \rho_{B}^{+}\left(\omega^{\prime}, \mu\right) \\
\rho_{B}^{+}\left(\omega^{\prime}, \mu\right) & =\int_{0}^{\infty} \frac{d \omega}{\omega} \sqrt{\frac{\omega}{\omega^{\prime}}} J_{1}\left(2 \sqrt{\frac{\omega}{\omega^{\prime}}}\right) \phi_{B}^{+}(\omega, \mu)
\end{aligned}
$$

Eigenfunction of the Lange-Neubert kernel at one-loop is the Bessel function!

- Linear differential equation:

$$
\frac{d \rho_{B}^{+}\left(\omega^{\prime}, \mu\right)}{d \ln \mu}=-\left[\Gamma_{\mathrm{cusp}}\left(\alpha_{s}\right) \ln \frac{\mu}{\hat{\omega}^{\prime}}+\gamma_{+}\left(\alpha_{s}\right)\right] \rho_{B}^{+}\left(\omega^{\prime}, \mu\right)
$$

Local evolution in the dual space!

Story I: B-meson distribution amplitudes

- Solution to the RGE in dual space [Bell, Feldmann, Wang, Yip, 2013]:

$$
\rho_{B}^{+}\left(\omega^{\prime}, \mu\right)=e^{V}\left(\frac{\mu_{0}}{\omega^{\prime}}\right)^{-g} \rho_{B}^{+}\left(\omega^{\prime}, \mu_{0}\right)
$$

Very compact expression in a full analytical form!

- Solution to the RGE in momentum space:

$$
\phi_{B}^{+}(\omega, \mu)=e^{V} \int_{0}^{\infty} \frac{d \omega^{\prime}}{\omega^{\prime}} \sqrt{\frac{\omega}{\omega^{\prime}}} J_{1}\left(2 \sqrt{\frac{\omega}{\omega^{\prime}}}\right)\left(\frac{\mu_{0}}{\hat{\omega}^{\prime}}\right)^{-g} \rho_{B}^{+}\left(\omega^{\prime}, \mu_{0}\right) .
$$

Still a beautiful expression!

- Key difference between the Lange-Neubert and the Brodsy-Lepage evolutions: Continuous spectrum for the former, while discrete spectrum for the latter!
- Implication I: Asymptotic behaviour indicates the ill-defined positive moments.
- Implication II: All the logarithmic-inverse moments needed conceptually due to the non-trivial mixing under renormalization.
- For mathematicians: Spectrum for the Hamiltonian system with given boundary conditions.

Story I: B-meson distribution amplitudes

- Collinear conformal symmetry for the Lange-Neubert kernel [Braun, Manashov, 2014]:

$$
\left(\frac{d}{d \ln \mu}+\mathscr{H}_{\mathrm{LN}}\right) O_{+}(z, \mu)=0
$$

$\mathscr{H}_{\mathrm{LN}}$ is almost determined by the commutation relations completely [Knoedlseder, Offen, 2011]

$$
\left[S_{+}, \mathscr{H}_{\mathrm{LN}}\right]=0, \quad\left[S_{0}, \mathscr{H}_{\mathrm{LN}}\right]=1
$$

The beautiful solution in terms of S_{+}:

$$
\mathscr{H}_{\mathrm{LN}}=\ln \left(i \mu S^{+}\right)-\psi(1)-\frac{5}{4} .
$$

- Generators of the collinear conformal group:

$$
S_{+}=z^{2} \partial_{z}+2 j z, \quad S_{0}=z \partial_{z}+j, \quad S_{-}=-\partial_{z}
$$

Eigenfunctions of S_{+}[Braun, Manashov, 2014]:

$$
\begin{aligned}
i S_{+} Q_{s}(z) & =s Q_{s}(z), \quad Q_{s}(z)=-\frac{1}{z^{2}} e^{i s / z} \\
\left\langle e^{-i \omega z} \mid Q_{s}(z)\right\rangle & =\frac{1}{\sqrt{\omega s}} J_{1}(2 \sqrt{\omega s})
\end{aligned}
$$

Wide applications of the conformal symmetry in higher energy physics!

Story I: B-meson distribution amplitudes

- A 16-year dream: What is the two-loop Lange-Neubert kernel? [Braun, Ji, Manashov, 2019]

$$
\begin{array}{r}
\mathscr{H}_{\mathrm{LN}} O_{+}(z, \mu)=\Gamma_{\text {cusp }}(a)\left\{\ln (i \tilde{\mu} z) O_{+}(z, \mu)+\int_{0}^{1} d u \frac{\bar{u}}{u}[1+a h(u)]\right. \\
\left.\times\left[O_{+}(z, \mu)-O_{+}(\bar{u} z, \mu)\right]\right\}+\gamma_{+}(a) O_{+}(z, \mu) .
\end{array}
$$

The resulting two-loop kernels:

$$
\begin{aligned}
h(u)= & \ln \bar{u}\left[\beta_{0}+2 C_{F}\left(\ln \bar{u}-\frac{1+\bar{u}}{\bar{u}} \ln u-\frac{3}{2}\right)\right], \\
\gamma_{+}(a)= & -a C_{F}+a^{2} C_{F}\left\{4 C_{F}\left[\frac{8}{21}+\frac{\pi^{2}}{3}-6 \zeta_{3}\right]+C_{A}\left[\frac{83}{9}-\frac{2 \pi^{2}}{3}-6 \zeta_{3}\right]\right. \\
& \left.+\beta_{0}\left[\frac{35}{18}-\frac{\pi^{2}}{6}\right]\right\} .
\end{aligned}
$$

- An interesting question: What are the eigenfunctions for the two-loop Lange-Neubert kernel? Exact expression and the corresponding large β_{0} approximation for the coffee time!

Story I: B-meson distribution amplitudes at higher twist

- Three-particle B-meson distribution amplitudes [Kawamura, Kodaira, Qiao, Tanaka, 2000]:

$$
\begin{aligned}
& \left.\langle 0| \bar{u}_{\alpha}(x) G_{\lambda \rho}(u x) b_{v \beta}(0)\left|B^{-}(v)\right\rangle\right|_{x^{2}=0} \\
& =\frac{\tilde{f}_{B}(\mu) m_{B}}{4} \int_{0}^{\infty} d \omega \int_{0}^{\infty} d \xi e^{-i(\omega+u \xi) v \cdot x}\left[(1 + \psi) \left\{\left(v_{\lambda} \gamma_{\rho}-v_{\rho} \gamma_{\lambda}\right)\left[\Psi_{A}(\omega, \xi)-\Psi_{V}(\omega, \xi)\right]\right.\right. \\
& \left.\left.-i \sigma_{\lambda \rho} \Psi_{V}(\omega, \xi)-\frac{x_{\lambda} v_{\rho}-x_{\rho} v_{\lambda}}{v \cdot x} X_{A}(\omega, \xi)+\frac{x_{\lambda} \gamma_{\rho}-x_{\rho} \gamma_{\lambda}}{v \cdot x} Y_{A}(\omega, \xi)\right\} \gamma_{5}\right]_{\beta \alpha}
\end{aligned}
$$

Four independent distribution functions!

- QCD equations of motion at the classical level [Kawamura, Kodaira, Qiao and Tanaka, 2000]:

$$
\begin{aligned}
& \omega \phi_{B}^{-}(\omega)-m \phi_{B}^{+}(\omega)+\frac{D-2}{2} \int_{0}^{\omega} d \eta\left[\phi_{B}^{+}(\eta)-\phi_{B}^{-}(\eta)\right] \\
& =(D-2) \int_{0}^{\omega} d \eta \int_{\omega-\eta}^{\infty} \frac{d \xi}{\xi} \frac{\partial}{\partial \xi}\left[\Psi_{A}(\eta, \xi)-\Psi_{V}(\eta, \xi)\right],[\text { correction to the WW relation!] } \\
& (\omega+m) \phi_{B}^{-}(\omega)+(\omega-2 \bar{\Lambda}-m) \phi_{B}^{+}(\omega) \\
& \stackrel{?}{=}-2 \frac{d}{d \omega} \int_{0}^{\omega} d \eta \int_{\omega-\eta}^{\infty} \frac{d \xi}{\xi}\left[\Psi_{A}(\eta, \xi)+X_{A}(\eta, \xi)\right]-2(D-2) \int_{0}^{\omega} d \eta \int_{\omega-\eta}^{\infty} \frac{d \xi}{\xi} \frac{\partial \Psi_{V}(\eta, \xi)}{\partial \xi} .
\end{aligned}
$$

More discussions on the EOM constraints: [Huang, Wu, Zhou, 2005; Huang, Qiao, Wu, 2006].

Story I: B-meson distribution amplitudes at higher twist

- A complete decomposition [Braun, Ji, Manashov, 2017]:

$$
\begin{aligned}
& \langle 0| \bar{u}_{\alpha}\left(z_{1} \bar{n}\right) G_{\lambda \rho}\left(z_{2} \bar{n}\right) b_{v \beta}(0)\left|B^{-}(v)\right\rangle \mid \\
& =\frac{\tilde{f}_{B}(\mu) m_{B}}{4}\left[(1 + \psi) \left\{\left(v_{\mu} \gamma_{v}-v_{v} \gamma_{\mu}\right)\left[\Psi_{A}\left(z_{1}, z_{2}, \mu\right)-\Psi_{V}\left(z_{1}, z_{2}, \mu\right)\right]-i \sigma_{\mu v} \Psi_{V}\left(z_{1}, z_{2}, \mu\right)\right.\right. \\
& -\left(\bar{n}_{\mu} v_{v}-\bar{n}_{v} v_{\mu}\right) X_{A}\left(z_{1}, z_{2}, \mu\right)+\left(\bar{n}_{\mu} \gamma_{v}-\bar{n}_{v} \gamma_{\mu}\right)\left[W\left(z_{1}, z_{2}, \mu\right)+Y_{A}\left(z_{1}, z_{2}, \mu\right)\right] \\
& +i \varepsilon_{\mu v \alpha \beta} \bar{n}^{\alpha} v^{\beta} \gamma_{5} \tilde{X}_{A}\left(z_{1}, z_{2}, \mu\right)-i \varepsilon_{\mu v \alpha \beta} \bar{n}^{\alpha} \gamma^{\beta} \gamma_{5} \tilde{Y}_{A}\left(z_{1}, z_{2}, \mu\right) \\
& \left.\left.-\left(\bar{n}_{\mu} v_{v}-\bar{n}_{v} v_{\mu}\right) \not \vec{h} W\left(z_{1}, z_{2}, \mu\right)+\left(\bar{n}_{\mu} \gamma_{v}-\bar{n}_{v} \gamma_{\mu}\right) \not \hbar \bar{h} Z\left(z_{1}, z_{2}, \mu\right)\right\} \gamma_{5}\right]_{\beta \alpha}
\end{aligned}
$$

Eight independent distribution functions up to the twist-six accuracy!

- Classical equations of motion [Braun, Ji, Manashov, 2017; Lü, Shen, Wang, Wei, 2019]:

$$
\begin{aligned}
-2 \frac{d^{2}}{d \omega^{2}} g_{B}^{+}(\omega, \mu)= & {\left[\frac{3}{2}+(\omega-\bar{\Lambda}) \frac{d}{d \omega}\right] \phi_{B}^{+}(\omega, \mu)-\frac{1}{2} \phi_{B}^{-}(\omega, \mu)+\int_{0}^{\infty} \frac{d \omega_{2}}{\omega_{2}} \frac{d}{d \omega} \Psi_{4}\left(\omega, \omega_{2}, \mu\right) } \\
& -\int_{0}^{\infty} \frac{d \omega_{2}}{\omega_{2}^{2}} \Psi_{4}\left(\omega, \omega_{2}, \mu\right)+\int_{0}^{\omega} \frac{d \omega_{2}}{\omega_{2}^{2}} \Psi_{4}\left(\omega-\omega_{2}, \omega_{2}, \mu\right) \\
-2 \frac{d^{2}}{d \omega^{2}} g_{B}^{-}(\omega, \mu)= & {\left[\frac{3}{2}+(\omega-\bar{\Lambda}) \frac{d}{d \omega}\right] \phi_{B}^{-}(\omega, \mu)-\frac{1}{2} \phi_{B}^{+}(\omega, \mu)+\int_{0}^{\infty} \frac{d \omega_{2}}{\omega_{2}} \frac{d}{d \omega} \Psi_{5}\left(\omega, \omega_{2}, \mu\right) } \\
& -\int_{0}^{\infty} \frac{d \omega_{2}}{\omega_{2}^{2}} \Psi_{5}\left(\omega, \omega_{2}, \mu\right)+\int_{0}^{\omega} \frac{d \omega_{2}}{\omega_{2}^{2}} \Psi_{5}\left(\omega-\omega_{2}, \omega_{2}, \mu\right)
\end{aligned}
$$

Truncation at the twist-four accuracy already violates the classical EOM!

Story I: B-meson distribution amplitudes at higher twist

- One-loop renormalization of the three-particle DA $\tilde{\Psi}_{3}\left(z_{1}, z_{2}\right)$ [Braun, Manashov, Offen, 2015]:

$$
\begin{array}{r}
{\left[\mu \frac{\partial}{\partial \mu}+\beta\left(g_{s}\right) \frac{\partial}{\partial g_{s}}+\frac{\alpha_{s}}{2 \pi} \mathscr{H}\right] F_{\text {stat }}(\mu) \tilde{\Psi}_{3}\left(z_{1}, z_{2}, \mu\right)=0,} \\
\tilde{\Psi}_{3}\left(z_{1}, z_{2}\right) \equiv \Psi_{A}\left(z_{1}, z_{2}\right)-\Psi_{V}\left(z_{1}, z_{2}\right), \quad \mathscr{H}=N_{c} H_{0}+N_{c}^{-1} \delta H .
\end{array}
$$

An additional "hidden" symmetry for $H_{0}:\left[\hat{Q}_{1}, \hat{Q}_{2}\right]=\left[\hat{Q}_{1}, H_{0}\right]=\left[\hat{Q}_{2}, H_{0}\right]=0$.

- Eigenfunctions:

$$
\begin{aligned}
& \quad H_{0} Y_{s, x}\left(z_{1}, z_{2}\right)=E(s, x) Y_{s, x}\left(z_{1}, z_{2}\right), \quad Y_{s, i / 2}\left(z_{1}, z_{2}\right)=\frac{i s^{2}}{z_{1}^{2} z_{2}^{3}} \int_{0}^{1} d u u \bar{u} e^{i s\left(u / z_{1}+\bar{u} / z_{2}\right)}, \\
& \Delta E=\underbrace{E(s, 0)}-\underbrace{E(s, i / 2)}_{\text {ground state }}=2 \psi(3 / 2)-\psi(2)-\psi(1) .
\end{aligned}
$$

- Expansion, "asymptotics" and RGE of ϕ_{B}^{-}:

$$
\begin{aligned}
& \tilde{\Psi}_{3}\left(z_{1}, z_{2}, \mu\right)=\int_{0}^{\infty} d s[\underbrace{\eta_{0}(s, \mu) Y_{s, i / 2}\left(z_{1}, z_{2}\right)}_{\text {"asymptotical" behaviour }}+\frac{1}{2} \int_{-\infty}^{+\infty} d x \eta(s, x, \mu) Y_{s, x}\left(z_{1}, z_{2}\right)] . \\
& \Psi_{3}^{\text {asy }}\left(\omega_{1}, \omega_{2}, \mu\right)=\frac{\omega_{1} \omega_{2}}{\omega_{1}+\omega_{2}}\left[f_{1}\left(\omega_{1}+\omega_{2}\right)-f_{0}\left(\omega_{1}+\omega_{2}\right)\right]+\omega_{1}\left[f_{1}\left(\omega_{1}+\omega_{2}\right)-f_{1}\left(\omega_{1}\right)\right] . \\
& \phi_{B}^{-}(\omega, \mu)=\int_{0}^{\infty} d s[\hat{\phi}_{B}^{+}(s, \mu)+\underbrace{\eta_{0}(s, \mu)}] J_{0}(2 \sqrt{\omega s}) .
\end{aligned}
$$

continuous spectrum of $\tilde{\Psi}_{3}\left(z_{1}, z_{2}, \mu\right)$ irrelevant at large N_{c}

Story I: B-meson distribution amplitudes [OPE constraints]

- Perturbative constraints in momentum space [Lee, Neubert, 2005]:
- Step 1: Perturbative calculations of the regularized moments:

$$
M_{N}\left(\Lambda_{\mathrm{UV}}, \mu\right)=\int_{0}^{\Lambda_{\mathrm{UV}}} d \omega \omega^{N} \phi_{B}^{+}(\omega, \mu)
$$

- Step 2: The two-component ansatz:

$$
\phi_{B}^{+}(\omega, \mu)=N \frac{\omega}{\omega_{0}^{2}} e^{-\omega / \omega_{0}}+\theta\left(\omega-\omega_{t}\right) \frac{\alpha_{s} C_{F}}{\pi \omega}\left[\left(\frac{1}{2}-\ln \frac{\omega}{\mu}\right)+\frac{4 \bar{\Lambda}_{\mathrm{DA}}}{3 \omega}\left(2-\ln \frac{\omega}{\mu}\right)\right] .
$$

- Step 3: Fixing ω_{t} from the continuous condition, determining N and ω_{0} from perturbative constraints of M_{0} and M_{1}.
- Disadvantages:
- No explicit implementation of the RG evolution.
- Non-trivial resummation in momentum space due to the non-local renormalization kernels.

Story I: B-meson distribution amplitudes [OPE constraints]

- Perturbative constraints in dual space [Feldmann, Lange, Wang, 2014]:
- Step 1: Perturbative calculation of the dual function at large ω^{\prime} :

$$
\begin{aligned}
\rho_{B}^{+}\left(\omega^{\prime}\right)= & \frac{1}{\omega^{\prime}} \int_{0}^{\infty} \frac{d \Lambda_{\mathrm{UV}}}{\Lambda_{\mathrm{UV}}}\left\{\left.M_{0}\right|_{\bar{\Lambda} \rightarrow 0} J_{2}\left(2 \sqrt{\frac{\Lambda_{\mathrm{UV}}}{\omega^{\prime}}}\right)\right. \\
& \left.+\frac{\partial}{\partial \bar{\Lambda}}\left(2 M_{0}-\frac{3 M_{1}}{\Lambda_{\mathrm{UV}}}\right)_{\bar{\Lambda} \rightarrow 0} \bar{\Lambda}_{J_{4}}\left(2 \sqrt{\frac{\Lambda_{\mathrm{UV}}}{\omega^{\prime}}}\right)+\ldots\right\} .
\end{aligned}
$$

- Step 2: Improved construction for $\rho_{B}^{+}\left(\omega^{\prime}, \mu\right)$:

$$
\begin{aligned}
\rho_{B}^{+}\left(\omega^{\prime}, \mu\right)= & U_{\omega^{\prime}}\left(\mu, \mu_{\omega^{\prime}}\left(\mu_{0}\right)\right)\left[\rho^{\text {model }}\left(\omega^{\prime}\right)-\sum_{n=0}^{N} D_{n}^{\operatorname{model}} p_{n}\left(\omega^{\prime}\right)\right] \\
& +U_{\omega^{\prime}}\left(\mu, \mu_{\omega^{\prime}}(\mu)\right) \sum_{n=0}^{N} D_{n}^{\text {pert }}\left(\ln \frac{\mu_{\omega^{\prime}}(\mu)}{\hat{\omega}^{\prime}}, \mu_{\omega^{\prime}}(\mu)\right) p_{n}\left(\omega^{\prime}\right) .
\end{aligned}
$$

- Step 3: Choose the basis functions $p_{n}\left(\omega^{\prime}\right)$ to vanish quickly at small ω^{\prime} and to approach $1 /\left(\omega^{\prime}\right)^{n+1}$ at large ω^{\prime}.

Story I: B-meson distribution amplitudes: $B \rightarrow \gamma \ell v$

- Factorization properties at leading power [Korchemsky, Pirjol, Yan, 2000; Descotes-Genon, Sachrajda, 2002; Lunghi, Pirjol, Wyler, 2003; Bosch, Hill, Lange, Neubert, 2003].
- Leading power contributions at NLL and (partial)-subleading power corrections at tree level [Beneke, Rohrwild, 2011].
- Subleading power corrections from the dispersion technique:
- Soft two-particle correction at tree level [Braun, Khodjamirian, 2013].
- Soft two-particle correction at one loop [Wang, 2016].
- Three-particle B-meson DA's contribution at tree level [Wang, 2016; Beneke et al, 2018].
- Subleading effective current and twist-5 and 6 corrections at tree level. [Beneke et al, 2018].
- Subleading power corrections from the direct QCD approach:
- Hadronic photon corrections at tree level up to the twist-4 accuracy [Khodjamirian, Stoll, Wyler, 1995; Ali, Braun, 1995; Eilam, Halperin, Mendel, 1995].
- Hadronic photon corrections of twist-two at one loop and of higher-twist at tree level [Ball, Kou, 2003; Wang, Shen, 2018].

Story I: B-meson distribution amplitudes: $B \rightarrow \gamma \ell v$

- Schematic structure of the distinct mechanisms:

A: hard subgraph that includes both photon and W^{*} vertices

$$
\begin{aligned}
& \left(\frac{\Lambda}{m_{b}}\right)^{1 / 2}+\left(\frac{\Lambda}{m_{b}}\right)^{3 / 2}+\ldots \\
& \left(\frac{\Lambda}{m_{b}}\right)^{3 / 2}+\ldots \\
& \left(\frac{\Lambda}{m_{b}}\right)^{3 / 2}+\ldots
\end{aligned}
$$

- Operator definitions of different terms needed for an unambiguous classification.

Theory predictions for $B \rightarrow \gamma \ell v$

- Integrated decay rate $\Delta B R\left(E_{\mathrm{cut}}\right)$:

$$
\Delta B R\left(E_{\mathrm{cut}}\right)=\tau_{B} \int_{E_{\mathrm{cut}}}^{m_{B} / 2} d E_{\gamma} \frac{d \Gamma}{d E_{\gamma}}(B \rightarrow \gamma \ell v) .
$$

- $\lambda_{B}\left(\mu_{0}\right)$ dependence of $\Delta B R\left(E_{\text {cut }}\right)$ [Wang, Shen, 2018]:

- Belle 2015 data:

$$
\Delta B R(1 \mathrm{GeV})<3.5 \times 10^{-6}
$$

- Belle 2018 data
[arXiv:1810.12976]:
$\Delta B R(1 \mathrm{GeV})=$ $(1.4 \pm 1.0 \pm 0.4) \times 10^{-6}$.
- Expected statistical error for $\Delta B R(1 \mathrm{GeV})$ with $50 \mathrm{ab}^{-1}$ of Belle-II data: ${ }_{-0.17}^{+0.18} \times 10^{-6}$.
- The photon-energy cut not sufficiently large.
Power corrections numerically important for $E_{\gamma}<1.5 \mathrm{GeV}$.

Story II: QCD factorization approach

- Factorization formulae for semeleptonic B-meson decays [BBNS, BPRS, and many others].

$$
F_{i}^{B \rightarrow M}(E)=C_{i}^{(\mathrm{A} 0)}(E) \xi_{a}(E)+\int_{0}^{\infty} \frac{d \omega}{\omega} \int_{0}^{1} d v \underbrace{T_{i}(E ; \ln \omega, v)}_{C_{i}^{(\mathrm{B} 1)} * J_{i}} \phi_{B}^{+}(\omega) \phi_{M}(v) .
$$

Need the hadronic matrix elements of both the LP and NLP SCET currents!

- Diagrammatic factorization for heavy-to-light form factors at one loop [Beneke, Feldmann, 2001].
- Perturbative calculations of the hard matching coefficients $C_{i}^{(\mathrm{A} 0)}(E)$:
- One-loop SCET computations in [Bauer, Fleming, Pirjol, Stewart, 2001; Beneke, Kiyo, Yang, 2004].
- Two-loop SCET computations in [Bonciani, Ferroglia, 2008; Asatrian, Greub, Pecjak, 2008; Beneke, Huber, Li, 2009; Bell, 2009; Bell, Beneke, Huber, Li, 2011].
- Perturbative calculations of the hard matching coefficients $C_{i}^{(\mathrm{B1})}$:
- Infrared subtractions complicated by the appearance of evanescent operators and the D-dimensional Fierz transformation.
- One-loop SCET computations in [Becher, Hill, 2004; Hill, Becher, Lee, Neubert, 2004; Beneke, Yang, 2006].

Story II: QCD factorization approach

- Long-standing puzzles for 18 years [Bell, Beneke, Huber, Li, 2011]:

Discrepancies between the SCET predictions (blue solid) and the LCSR results (black dashed-dotted).

- Identify the dominant QCD mechanisms for such discrepancies in [Gao, Lü, Shen, Wang, Wei, 2019].

Story II: QCD factorization approach

- QCD factorization for charmless hadronic B-meson decays [BBNS, BPRS, Chay, Kim, and many others].

Heavy quark limit: $m_{b} \gg \Lambda_{\mathrm{QCD}}$
Large-energy limit: $E_{M} \approx m_{b} / 2 \gg \Lambda_{\mathrm{QCD}}$
Scales: $m_{b}, \sqrt{m_{b} \Lambda_{\mathrm{QCD}}}, \Lambda_{\mathrm{QCD}},\left(M_{\mathrm{EW}}, \Lambda_{\mathrm{NP}}\right)$

$$
\mu \approx m_{b}
$$

$$
\mu \approx 1 \mathrm{GeV}
$$

- Reduces $\left\langle M_{1} M_{2}\right| \mathcal{O}|B\rangle$ to simpler $\langle M| \mathcal{O}|B\rangle$ (form factors), $\langle 0| \mathcal{O}|B\rangle,\langle M| \mathcal{O}|0\rangle$ (decay constants and distribution amplitudes).
- Calculation from first principles, but limited accuracy by $\Lambda_{\mathrm{QCD}} / m_{b}$ corrections.

Status of NNLO QCD factorization calculations

$$
\begin{aligned}
& \left\langle M_{1} M_{2}\right| C_{i} O_{i}|\bar{B}\rangle_{\mathcal{L}_{\text {eff }}}=\sum_{\text {terms }} C\left(\mu_{h}\right) \times\{F_{B \rightarrow M_{1}} \times \underbrace{T^{\mathrm{I}}\left(\mu_{h}, \mu_{s}\right)}_{1+\alpha_{s}+\ldots} \star f_{M_{2}} \Phi_{M_{2}}\left(\mu_{s}\right) \\
& \quad+f_{B} \Phi_{B}\left(\mu_{s}\right) \star[\underbrace{T^{\mathrm{II}}\left(\mu_{h}, \mu_{I}\right)}_{1+\ldots} \star \underbrace{J^{\mathrm{II}}\left(\mu_{I}, \mu_{s}\right)}_{\alpha_{s}+\ldots}] \star f_{M_{1}} \Phi_{M_{1}}\left(\mu_{s}\right) \star f_{M_{2}} \Phi_{M_{2}}\left(\mu_{s}\right)\}
\end{aligned}
$$

	T^{\prime}, tree	T^{\prime}, penguin	$T^{\prime \prime}$, tree	$T^{\prime \prime}$, penguin
LO: $\mathcal{O}(1)$	V			
NLO: $\mathcal{O}\left(\alpha_{s}\right)$ BBNS '99-'04				
NNLO: $\mathcal{O}\left(\alpha_{s}^{2}\right)$	Beneke, Huber, Li '09		Beneke, Jager '05 Kivel '06, Pilipp '07	Beneke, Jager '06 Jain, Rothstein, Stewart '07

- Two-loop tree and penguin topologies for the insertions of Q_{3-6} and $Q_{8 g}$ are already computed by Bell, Beneke, Huber, Li. Comprehensive phenomenologies studies are in progress.
- More QCDF calculations for $B \rightarrow M_{1} M_{2}$ at NLO [Talk by Beneke @ the MITP-2019 Workshop].

Story II: Sketch of spectator-scattering $B \rightarrow \chi_{c J} K$

Sketch of spectator-scattering $B \rightarrow \chi_{c J} K_{\text {[MB, Vemaza, 2008] }}$

$$
\int_{0}^{1} d y \phi_{k(y)}\{ \}=e^{f(n n]} \int_{0}^{1} d y \frac{\phi_{k(y)}}{y}+B[n] \int_{0}^{1} d y \frac{\phi_{k}\left(n+\bar{y} \phi_{k}^{\prime}(n)\right.}{\bar{y}^{2}}+B[n] \phi_{k}^{\prime}(1) \ln \mu
$$

$$
-B[n] \phi_{k^{\prime}(1)}\left\{\ln \mu+\ln \frac{m_{b}^{2}(1-z)}{\gamma^{2}}-2 \pi-2 \ln (1+A)+1+\frac{2}{3} \frac{4+A}{(1+A)^{2}}\right\}
$$

$$
\text { "Parge } \log \text { " } \ln \frac{m_{b}^{2}}{m_{c}^{2} v^{2}} \text { : endposint log } \quad A=\sqrt{-\frac{4\left(E_{b}+\left(\tilde{c}^{(c)}\right.\right.}{\delta^{2} / m_{c}}}=\sigma(1)
$$

Large rescattering phase from endpoint contribution, none from hard scattering.

- The first field-theoretical treatment of rapidity divergences in the heavy-quark limit $m_{c} v^{2} \gg \Lambda_{\mathrm{QCD}}$.

Story II: Theory challenges for QCD factorization

- Precision determination of the inverse moment λ_{B} in high demand.
- Determine the NNLO correction to the NLP scalar penguin amplitude a_{6} to complete the short-distance prediction [Beneke, Jager, Wang, 2019+].
- General treatment of the rapidity divergences in exclusive B-meson decays.
- Systematic approach for the subleading power corrections (even for $B \rightarrow \gamma \ell v_{\ell}$).
- SCET factorization theorems for QED corrections to heavy hadron decays (even for $B_{s} \rightarrow \ell \ell$).
- Glauber gluons and factorization violations [Rothstein, Stewart, 2016].

Factorization Violation and Glauber Gluons

[^0]
Story II：PQCD factorization approach

－Pioneer works on the hard exclusive reactions：
－Hard scattering approach formulated in［Lepage，Brodsky，1979，1980］．
－The hadronic wave function in QCD［Brodsky，Lepage，Huang，1980］．
－Sudakov effects in hadron－hadron elastic（Landshoff）scattering［Botts，Sterman，1989］．
－Sudakov resummation for the pion electromagnetic form factor［Li，Sterman，1992］．
Key observation：Perturbative QCD formalism to hard exclusive processes applicable for $\sqrt{Q^{2}} \sim 20 \Lambda_{\mathrm{QCD}}$ ．
Saving us from the strong doubts raised in［Isgur，Llewellyn Smith，1988；Radyushkin，1984］．
－More references can be found in the Bible by John Collins．

Important pieces of work accomplished in China：
－Applicability of PQCD factorization for the pion electromagnetic form factor［Huang， Shen，1990］．
－Sudakov suppression for hard exclusive reactions［PhD thesis by Jun Cao］．
－Many other interesting papers to be discussed for the coffee time．

微扰量子色动力学应用到遍举过程中的几个问题

| | 曹 俊 | |
| ---: | :--- | :--- | :--- |
| 指导教师姓名 ： | 黄 涛 吴慧考 | |
| 职称 ： | 研究员 研究员 | |
| 单位 ： | 中国科学院高能物理所 | |

Story II: PQCD factorization approach

- Birth of the modern PQCD approach for charmless hadronic B-meson decays:
- Penguin enhancement for $B \rightarrow \pi K$ [Keum, Li, Sanda, 2001].
- Tree-dominated processes $B \rightarrow \pi \pi$ [Lü, Ukai, Yang, 2001].
- Hundreds of papers on the tree-level PQCD calculations [Groups led by Li, Lü, Xiao, etc].
- PQCD calculations at NLO complicated by the appearance of multi-scales:
- The pion-photon form factor at large momentum transfer [Nandi, Li, 2007].
- The pion electromagnetic form factor at large Q^{2} [Li, Shen, Wang, Zou, 2011].
- $B \rightarrow \pi$ form factors at large recoil [Li , Shen, Wang, 2012].
- Increasing complexities mainly due to the infrared subtractions!
- Intensive NLO PQCD calculations subsequently:
- NLO twist-3 correction to the pion electromagnetic form factor [Cheng, Fan, Xiao, 2014].
- NLO twist-3 correction to $B \rightarrow \pi$ form factors [Cheng, Fan, Yu, Lü, Xiao, 2014].
- NLO correction to $B \rightarrow \rho$ form factors [Hua, Zhang, Xiao, 2018].
- (Partial)-NLO correction to $B \rightarrow \pi \pi$ [Cheng, Xiao, Zhang, 2014].
- (Partial)-NLO correction to $B_{s} \rightarrow P P$ [Yan, Liu, Xiao, 2019].
- Many more papers on the NLO PQCD calculations.

Story II: PQCD factorization approach

- Formal developments of the PQCD approach:
- Rapidity resummation for the TMD B-meson wavefunction in Mellin space [Li, Shen, Wang, 2013].
- Joint resummation for the threshold and Sudakov logarithms for the pion-photon form factor [Li, Shen, Wang, 2014].
- Factorization-compatible definitions of the TMD pion wavefunction [Li, Wang, 2015]
- Naïve definition of the TMD pion wavefunction:

$$
\begin{array}{r}
\phi_{\pi}^{\text {naive }}\left(x, \vec{k}_{T}, \mu\right) \stackrel{?}{=} \int \frac{d z_{-}}{2 \pi} \int \frac{d^{2} z_{T}}{(2 \pi)^{2}} e^{i\left(x p_{+} z_{-}-\vec{k}_{T} \cdot \vec{z}_{T}\right)} \\
\times\langle 0| \bar{q}(0) W_{n_{-}}^{\dagger}(+\infty, 0) \not h_{-} \gamma_{5}[\text { tr. link }] W_{n_{-}}(+\infty, z) q(z)\left|\pi^{+}(p)\right\rangle
\end{array}
$$

- Rapidity divergence in the infrared subtraction:

$$
\begin{aligned}
\phi_{\pi}^{(1)} \otimes & H^{(0)} \supset \int[d l] \frac{1}{\left.\left[(k+l)^{2}+i 0\right)\right]\left[l_{+}+i 0\right]\left[l^{2}+i 0\right]} \\
& \times\left[H^{(0)}\left(x+l_{+} / p_{+}, \vec{k}_{T}+\vec{l}_{T}\right)-H^{(0)}\left(x, \vec{k}_{T}\right)\right]
\end{aligned}
$$

- Rapidity divergence due to the eikonal propagator.
- Key difference: both the longitudinal and transverse components of the partonic momentum changed in TMD factorization!

Light-cone singularity

- Regularization of the rapidity divergence [Collins, 2003].
- Rotating the gauge links away from the light-cone $\left(u=\left(u_{+}, u_{-}, \overrightarrow{0}_{T}\right)\right)$:

$$
\begin{array}{r}
\phi_{\pi}\left(x, \vec{k}_{T}, y_{u}, \mu\right) \stackrel{?}{=} \int \frac{d z_{-}}{2 \pi} \int \frac{d^{2} z_{T}}{(2 \pi)^{2}} e^{i\left(x p_{+} z_{-}-\vec{k}_{T} \cdot \vec{z}_{T}\right)} \\
\times\langle 0| \bar{q}(0) W_{u}^{\dagger}(+\infty, 0) \not h_{-} \gamma_{5}[\text { tr. link }] W_{u}(+\infty, z) q(z)\left|\pi^{+}(p)\right\rangle .
\end{array}
$$

- Introducing soft subtractions:

$$
\begin{array}{r}
\phi_{\pi}\left(x, \vec{k}_{T}, y_{u}, \mu\right) \stackrel{?}{=} \int \frac{d z_{-}}{2 \pi} \int \frac{d^{2} z_{T}}{(2 \pi)^{2}} e^{i\left(x p_{+} z_{-}-\vec{k}_{T} \cdot \vec{z}_{T}\right)} \\
\times \frac{\langle 0| \bar{q}(0) W_{n_{-}}^{\dagger}(+\infty, 0) \not h_{-} \gamma_{5}[\text { tr. link }] W_{n_{-}}(+\infty, z) q(z)\left|\pi^{+}(p)\right\rangle}{\langle 0| W_{n_{-}}^{\dagger}(+\infty, 0) W_{u}(+\infty, 0)[\text { tr. link }] W_{n_{-}}(+\infty, z) W_{u}^{\dagger}(+\infty, z)|0\rangle} .
\end{array}
$$

- Are these definitions compatible with the factorization theorems?
- Can employ multiple non-light-like Wilson lines at the price of introducing the soft function in the factorization formulae and using another parameter ρ beyond the scale parameters of CSS [Ji, Ma, Yuan, 2004].

Pinch singularity

- Singularity from Wilson-line self energies [Bacchetta, Boer, Diehl, Mulders, 2008].
- Pinch singularity only appears in a TMD parton density with $u^{2}<0$.
- Pinch singularity appears in the TMD wave functions for any off-light-cone u.

$$
\begin{aligned}
& \phi_{\pi} \supset \int[d l] \frac{u^{2}}{[l+i 0)][u \cdot l+i 0][u \cdot l-i 0]} \\
& \times \delta\left(x^{\prime}-x+l_{+} / p_{+}\right) \boldsymbol{\delta}^{(2)}\left(\vec{k}_{T}^{\prime}-\vec{k}_{T}+\vec{l}_{T}\right)
\end{aligned}
$$

- Pinch singularity corresponds to the linear divergence in the length of the Wilson line in the coordinate space.
- Off-light-cone Wilson lines regularize rapidity divergence, at the price of introducing unwanted pinch singularity.
- How to achieve factorization-compatible definitions of TMD wavefunctions?

Collins modification

- New definition without pinch singularity [Collins, 2011]:

$$
\begin{aligned}
\phi_{\pi}^{\mathrm{C}}\left(x, \vec{k}_{T}, y_{2}, \mu\right)= & \lim _{\substack{y_{1} \rightarrow+\infty \\
y_{u} \rightarrow-\infty}} \int \frac{d z_{-}}{2 \pi} \int \frac{d^{2} z_{T}}{(2 \pi)^{2}} e^{i\left(x p_{+} z_{-}-\vec{k}_{T} \cdot \vec{z}_{T}\right)} \\
& \times\langle 0| \bar{q}(0) W_{u}^{\dagger}(+\infty, 0) \not h_{-} \gamma_{5}[\text { tr. link }] W_{u}(+\infty, z) q(z)\left|\pi^{+}(p)\right\rangle \\
& \times \sqrt{\frac{S\left(z_{T} ; y_{1}, y_{2}\right)}{S\left(z_{T} ; y_{1}, y_{u}\right) S\left(z_{T} ; y_{2}, y_{u}\right)}} . \\
& \uparrow \\
& \text { rapidity of the gauge vector } n_{2}=\left(e^{y_{2}}, e^{-y_{2}}, \overrightarrow{0}_{T}\right)
\end{aligned}
$$

- Soft function:

$$
S\left(z_{T} ; y_{A}, y_{B}\right)=\frac{1}{N_{c}}\langle 0| W_{n_{B}}^{\dagger}\left(\infty, \vec{z}_{T}\right)_{c a} W_{n_{A}}\left(\infty, \vec{z}_{T}\right)_{a d} W_{n_{B}}(\infty, 0)_{b c} W_{n_{A}}^{\dagger}(\infty, 0)_{d b}|0\rangle .
$$

- General properties of the new definition:
- The unsubtracted wave function only involves light-cone Wilson lines.
- Each soft factor has at most one off-light-cone Wilson line.
- No rapidity divergences and no pinch singularities.
- A detailed comparison with many other definitions [Collins, arXiv:1409.5408].

Why the new definition works?

- Cancellation mechanism $\left(y_{1} \rightarrow+\infty, y_{u} \rightarrow-\infty\right)$:

Simplified definitions of TMDs possible?

- Treatment of rapidity and pinch singularities:

Light-cone Wilson lines
\downarrow TMD hard function
Rapidity divergence
\downarrow
Off-light-cone Wilson lines
\downarrow Dipolar structure
Pinch singularity

Nontrivial soft subtraction
Non-dipolar Wilson lines
\downarrow
Simper soft subtraction

TMDs with non-dipolar Wilson lines

- Orthogonal Wilson lines $\left(n_{2} \cdot v=0\right)$ [Li, Wang, 2015]:

$$
\begin{aligned}
\phi_{\pi}^{\mathrm{I}}\left(x, \vec{k}_{T}, y_{2}, \mu\right)= & \int \frac{d z_{-}}{2 \pi} \int \frac{d^{2} z_{T}}{(2 \pi)^{2}} e^{i\left(x p_{+} z_{-}-\vec{k}_{T} \cdot \vec{z}_{T}\right)} \\
& \times\langle 0| \bar{q}(0) W_{n_{2}}^{\dagger}(+\infty, 0) h_{-} \gamma_{5}[\text { links@ } \infty] W_{v}(+\infty, z) q(z)\left|\pi^{+}(p)\right\rangle . \\
& \uparrow \quad \uparrow
\end{aligned}
$$

- Wilson-line self energies vanish in Feynman gauge.
\Rightarrow Soft subtraction not needed.
- $\phi_{\pi}^{\mathrm{I}} \otimes H^{(0)}$ reproduces the collinear logarithm of QCD diagrams:

$$
\phi_{\pi}^{\mathrm{I}} \otimes H^{(0)}=-\frac{\alpha_{s} C_{F}}{4 \pi}[2 \ln x+3] \ln \left(\frac{k_{T}^{2}}{Q^{2}}\right) H^{(0)}\left(x, k_{T}\right)+\cdots
$$

- Antiparallel Wilson lines [Li, Wang, 2015]:

$$
\begin{aligned}
\phi_{\pi}^{\mathrm{II}}\left(x, \vec{k}_{T}, y_{2}, \mu\right)= & \int \frac{d z_{-}}{2 \pi} \int \frac{d^{2} z_{T}}{(2 \pi)^{2}} e^{i\left(x p_{+} z_{-}-\vec{k}_{T} \cdot \vec{z}_{T}\right)} \\
& \times \frac{\langle 0| \bar{q}(0) W_{n_{2}}^{\dagger}(+\infty, 0) \not h_{-} \gamma_{5}[\text { links @ } \infty] W_{n_{2}}(-\infty, z) q(z)\left|\pi^{+}(p)\right\rangle}{[\text { color }]\langle 0| W_{n_{2}}^{\dagger}(+\infty, 0)[\text { links } @ \infty] W_{n_{2}}(-\infty, 0)|0\rangle} .
\end{aligned}
$$

Story II: Theory challenges for PQCD factorization

- Rigorous definitions of TMD B-meson wavefunctions in HQET.
- Systematic NLO PQCD calculations for the higher-twist contributions beyond the leading-Fock-state approximation.
- A complete NLL resummation for heavy-ro-light form factors with TMD factorization.
- A complete NLO PQCD calculation for the radiative and electroweak penguin B-meson decays. Improving PQCD calculation for $B_{(s)} \rightarrow V \gamma$ and $B_{(s)} \rightarrow A \gamma$ presented in [Wei Wang, Li, 2007].
- A complete NLO PQCD calculation for charmless hadronic B-meson decays. Technically demanding and conceptually challenging!
- Systematic power counting scheme, including k_{T}, in the presence of the Sudakov mechanism.
- Subleading power corrections to exclusive B-meson decays with TMD factorization. SCET formulation for the diagrammatic PQCD formalism.

Story II: Light-cone sum rules in QCD/SCET

- LCSR for $B \rightarrow P$ form factors [Balitsky, Braun, Kolesnichenko, 1989; Chernyak, Zhitnitsky, 1990]:

$$
\left\langle P\left(p^{\prime}\right)\right| \bar{q} \gamma^{\mu} b|\bar{B}(p)\rangle=f_{+}\left(q^{2}\right)\left[p^{\mu}+p^{\prime \mu}-\frac{M^{2}-m_{P}^{2}}{q^{2}} q^{\mu}\right]+f_{0}\left(q^{2}\right) \frac{M^{2}-m_{P}^{2}}{q^{2}} q^{\mu} .
$$

- General procedure for the sum-rule construction:

Story II: Different versions of light-cone sum rules

- Light-cone QCD sum rules with the light-meson distributions [Ball, Braun, Khodjamirian, etc]:
- Interpolating the heavy B-meson by a local QCD current.
- Diagrammatical factorization for the vacuum-to-light-meson correction functions.
- Disadvantage: different non-perturbative inputs for different decay observables.
- Light-cone QCD sum rules with the B-meson distributions [Khodjamirian, Lü, Shen, Wang, etc]:
- Interpolating the light energetic meson by a local QCD current.
- Diagrammatical factorization for the vacuum-to- B-meson correction functions.
- Advantage: universal non-perturbative inputs for different decay observables.
- Light-cone SCET sum rules with the B-meson distributions [Feldmann, Lü, Shen, Wang, etc]:
- Interpolating the light energetic meson by a local SCET current.
- SCET factorization for the vacuum-to- B-meson correction functions.
- Advantage I: Computation of the short-distance functions much easier.
- Advantage II: Systematic resummation of enhanced logarithms beyond the LL accuracy.
- Light-cone QCD sum rules with the chiral current for the light meson [Huang, Li, Sun, Zhi-Gang Wang, Wu, Zuo, etc]:
- Advantage: Twist-three light-meson LCDAs do not contribute (at least) at NLO.
- Heavy hadrons of both positive and negative parities enter the hadronic dispersion relation.
- Still more versions to be discussed for the coffee time.

Light-cone QCD sum rules with light-hadron DAs

- Semileptonic $B \rightarrow P$ form factors:
- LO QCD calculations of $B \rightarrow P$ form factors [Belyaev, Khodjamirian, Rückl, 1993].
- NLO QCD calculations of $B \rightarrow P$ form factors at twist-2 accuracy [Khodjamirian, Rückl, Weinzierl, Yakovlev, 1997].
- NLO QCD calculations of $B \rightarrow P$ form factors at twist-3 accuracy [Ball, Zwicky, 2005; Duplancic, Khodjamirian, Mannel, Melic, Offen, 2008].
- Improved NLO QCD calculations of $B \rightarrow P$ form factors at twist-3 accuracy [Khodjamirian, Mannel, Offen, Wang, 2011].
- (Partial) NNLO QCD calculations of $B \rightarrow P$ form factors at twist-2 accuracy [Bharucha, 2012].
- NLO QCD calculations of $B \rightarrow P$ form factors with the chiral interpolating current $[\mathrm{Li}, \mathrm{Si}$, Ying Wang, Zhu, 2015].
- Semileptonic $B \rightarrow V\left(\rightarrow P_{1} P_{2}\right)$ form factors:
- NLO QCD calculations of $B \rightarrow V$ form factors at twist-3 accuracy [Ball, Zwicky, 2005].
- Updated NLO QCD calculations of $B \rightarrow V$ form factors at twist-3 accuracy [Bharucha, Straub, Zwicky, 2015].
- LO QCD calculations of $B \rightarrow \pi K$ form factors [Meißner, Wei Wang, 2014]
- LO QCD calculations of $B \rightarrow \pi \pi$ form factors [Hambrock, Khodjamirian, 2016]
- Semileptonic Λ_{b}-baryon form factors:
- LO QCD calculation of $\Lambda_{b} \rightarrow \Lambda$ form factors [Wang, Li, Lü, 2008].
- LO QCD calculation of $\Lambda_{b} \rightarrow p$ form factors [Khodjamirian, Mannel, Klein, Wang, 2011].
- Many other interesting extensions in different directions.

Light-cone QCD sum rules with heavy-hadron DAs

- LO QCD calculations of $B \rightarrow M$ form factors [Khodjamirian, Offen, Mannel, 2006].
- LO QCD calculations of the non-factorizable charm loops in $B \rightarrow K^{(*)} \ell \ell$ [Khodjamirian, Mannel, Pivovarov, Wang, 2010].
- NLO QCD calculations of $B \rightarrow \pi$ form factors at leading-twist accuracy [Wang, Shen, 2015].
- NLO QCD calculations of $B \rightarrow D$ form factors at leading-twist accuracy and LO QCD calculations of higher-twsit corrections up to the twist-six accuracy [Wang, Wei, Shen, Lü, 2017].
- NLO leading-twist jet function complicated by two distinct hard-collinear variables.
- Power-enhanced charm-quark mass effect.
- LO QCD calculations of $B \rightarrow P$ and $B \rightarrow V$ form factors at twist-four accuracy [Gubernari, Kokulu, van Dyk, 2018].
- Violation of the QCD equations of motion at tree level.
- Sizable theory uncertainties for phenomenological applications.
- Subleading power soft corrections to $B \rightarrow \gamma \ell v$ [Wang, 2016; Beneke, Braun, Ji, Wei, 2018].
- NLO QCD calculations of $\Lambda_{b} \rightarrow \Lambda$ form factors at twist-four accuracy [Wang, Shen, 2016].
- Non-trivial demonstration of the factorization-scale independence.
- Immediately confirmed by the Lattice QCD calculations [Detmold, Meinel, 2016].

Light-cone SCET sum rules with heavy-hadron DAs

- NLO QCD calculations of $B \rightarrow M$ form factors at leading-twist accuracy [De Fazio, Feldmann, Hurth, 2006; 2008].
- NLO QCD calculations of $B \rightarrow V$ form factors at leading-twist accuracy and LO QCD calculation of higher-twsit corrections up to the twist-six accuracy [Gao, Lü, Shen, Wang, Wei, 2019].
- Rigorous perturbative matching with the evanescent-operator approach.
- First SCET computation of the $\mathrm{SU}(3)$-symmetry breaking effects.
- Identify mechanisms responsible for the discrepancies between QCDF and LCSR:

$$
\begin{aligned}
\mathscr{R}_{1, \mathrm{LCSR}} & =1+\left.(-0.049)\right|_{C_{i}^{\mathrm{A} 0)}}+(+0.054) \\
\mathscr{R}_{i, \mathrm{QCDF}}^{(\mathrm{B} 1)} & =\left.\left(-3.5 \times 10^{-5}\right)\right|_{3 \mathrm{PHT}} \\
& =1+\left.(-0.023)\right|_{C_{i}^{(\mathrm{A} 0)}}+\left.(+0.086)\left[1+\mathscr{O}\left(\alpha_{s}\right)\right]\right|_{C_{i}^{(\mathrm{B} 1)}}
\end{aligned}
$$

(a) No perturbative expansion for the A0-type $\mathrm{SCET}_{\mathrm{I}}$ form factor in QCDF.
(b) Almost a factor of two smaller prediction of the B1-type $\mathrm{SCET}_{\mathrm{I}}$ form factor in LCSR.

- Interesting extensions to many other exclusive B-meson decays in progress.

Story II: Theory challenges for light-cone sum rules

- NLO QCD calculations of the higher-twist corrections to $B \rightarrow M$ form factors.
- Complicated by the infrared subtractions in the presence of the non-trivial renormalization mixing (2-, 3-, 4-particle LCDAs).
- Consistent implementation of the QCD equations of motion at one loop.
- Complete NNLO QCD calculations of the leading-twist corrections to $B \rightarrow M$ form factors.
- Complicated by the non-trivial jet functions due to two hard-collinear variables.
- Modern techniques of multiloop calculations in demand.
- NNLL resummation calls for the three-loop Lange-Neubert kernel.
- Nonfactorizable charm-loop effects in $B \rightarrow V \ell \ell$ and $B \rightarrow V \gamma$ at $\mathscr{O}\left(\alpha_{s}^{2}\right)$.
- Non-trivial factorization theorems dependent on the power-counting schemes.
- Two-loop four-point functions with three different scales in QCD.
- RGEs of three-particle B-meson LCDAs for the NLL resummation.
- Improving the duality ansatz implemented in the sum-rule construction.
- Intensive model-dependent investigations [Blok, Shifman, Zhang, 1998; González-Alonso, Pich, Prades, 2010, Jamin, 2011; etc].
- Better understanding essential to the sum-rule improvement.

Story II: General aspects of $\Lambda_{b} \rightarrow p$ form factors

- Traditional parameterizations [Manohar, Wise \oplus many others]:

$$
\begin{aligned}
\left\langle N\left(P^{\prime}\right)\right| \bar{u} \gamma_{\mu} b\left|\Lambda_{b}(P)\right\rangle & =\bar{N}\left(P^{\prime}\right)\left\{f_{1}\left(q^{2}\right) \gamma_{\mu}+i \frac{f_{2}\left(q^{2}\right)}{m_{\Lambda_{b}}} \sigma_{\mu v} q^{v}+\frac{f_{3}\left(q^{2}\right)}{m_{\Lambda_{b}}} q_{\mu}\right\} \Lambda_{b}(P), \\
\left\langle N\left(P^{\prime}\right)\right| \bar{u} \gamma_{\mu} \gamma_{5} b\left|\Lambda_{b}(P)\right\rangle & =\bar{N}\left(P^{\prime}\right)\left\{g_{1}\left(q^{2}\right) \gamma_{\mu}+i \frac{g_{2}\left(q^{2}\right)}{m_{\Lambda_{b}}} \sigma_{\mu v} q^{v}+\frac{g_{3}\left(q^{2}\right)}{m_{\Lambda_{b}}} q_{\mu}\right\} \gamma_{5} \Lambda_{b}(P) .
\end{aligned}
$$

Axial-vector matrix element does not vanish, different from $B \rightarrow \pi$ transition.

- Helicity-based parameterizations [Feldmann, Yip, 2011]:

$$
\begin{array}{r}
\left\langle N\left(P^{\prime}\right)\right| \bar{u} \gamma_{\mu} b\left|\Lambda_{b}(P)\right\rangle=\bar{N}\left(P^{\prime}\right)\left\{f_{+}\left(q^{2}\right) \frac{m_{\Lambda_{b}}+m_{N}}{s_{+}}\left(P_{\mu}+P_{\mu}^{\prime}-\frac{q_{\mu}}{q^{2}}\left(m_{\Lambda_{b}}^{2}-m_{N}^{2}\right)\right)\right. \\
\left.+f_{\perp}\left(q^{2}\right)\left(\gamma_{\mu}-\frac{2 m_{N}}{s_{+}} P_{\mu}-\frac{2 m_{\Lambda_{b}}}{s_{+}} P_{\mu}^{\prime}\right)+f_{0}\left(q^{2}\right)\left(m_{\Lambda_{b}}-m_{N}\right) \frac{q_{\mu}}{q^{2}}\right\} \Lambda_{b}(P) .
\end{array}
$$

Simper expressions for angular distributions and for unitary bounds.

- Symmetry-based parameterizations [Feldmann, Yip, 2011]:

$$
\left\langle N\left(P^{\prime}\right)\right| \bar{u} \Gamma b\left|\Lambda_{b}(P)\right\rangle=\xi_{i j}^{(\pm)}\left(v \cdot P^{\prime}\right) \bar{N}\left(P^{\prime}\right)\left\{\Gamma_{i} \frac{\not h_{ \pm} \not h_{\mp}}{4} \Gamma \Gamma_{j}\right\} \Lambda_{b}(P) .
$$

$\xi_{i j}^{(-)}\left(v \cdot P^{\prime}\right)$ suppressed in both the HQET and SCET limits.

Symmetry relations of $\Lambda_{b} \rightarrow p$ form factors

- Form factors in the HQET limit [Manohar, Wise 2000]:

$$
\left\langle N\left(P^{\prime}\right)\right| \bar{u} \Gamma b\left|\Lambda_{b}(P)\right\rangle=\bar{N}\left(P^{\prime}\right)\left[F_{1}\left(v \cdot P^{\prime}\right)+F_{2}\left(v \cdot P^{\prime}\right) \nmid\right] \Gamma \Lambda_{b}(P),
$$

implying the relations

$$
\begin{array}{cl}
f_{1}=g_{1}=F_{1}+\frac{m_{N}}{m_{\Lambda_{b}}} F_{2}, & f_{2}=f_{3}=g_{2}=g_{3}=F_{2}, \\
f_{0}=g_{+}=g_{\perp}=F_{1}+F_{2}, & g_{0}=f_{+}=f_{\perp}=F_{1}-F_{2} .
\end{array}
$$

- Only two form factors in the HQET limit (10 independent form factors in total).
- (Soft)-form factors in the SCET limit [Mannel, Wang, 2011; Feldmann, Yip, 2011]:

$$
\left\langle N\left(P^{\prime}\right)\right| \bar{u} \Gamma b\left|\Lambda_{b}(P)\right\rangle=F\left(n_{+} \cdot P^{\prime}\right) \bar{N}\left(P^{\prime}\right) \Gamma \Lambda_{b}(P) .
$$

- Only a single (soft) form factor in the large recoil limit.
- Symmetry relations still hold including the leading-power hard spectator interaction.
- Symmetry breaking effects induced by the perturbative and power corrections.

SCET factorization for $\Lambda_{b} \rightarrow p$ form factors

- QCD factorization at leading power in Λ / m_{b} [Wei Wang, 2011]:

$$
F\left(n_{+} \cdot P^{\prime}\right)=\Phi_{\Lambda_{b}}\left(\omega_{i}\right) \otimes H\left(\omega_{i}, x_{i}\right) \otimes \Phi_{N}\left(x_{i}\right)+\mathscr{O}\left(\Lambda_{Q C D} / E\right) .
$$

- Leading power contribution due to the exchanges of two hard-collinear gluons.
- Leading power contribution completely calculable in QCD factorization.
- The scaling behaviour (different from the soft contribution):

$$
F\left(n_{+} \cdot P^{\prime}\right) \sim \mathscr{O}\left(\Lambda_{Q C D}^{2} /\left(n_{+} \cdot P^{\prime}\right)^{2}\right)
$$

- The LO QCD diagrams:
- Leading power contributions from the diagrams (a), (b), (f), but (b) + (f) vanishes.
- For the diagram (a), both two gluons are transverse polarized.
- Need the light-cone projectors of both the Λ_{b}-baryon and nucleon for a complete calculation even at tree level [BFWY, 2013; BFMS, 2000].

Theoretical wishlist

- Systematic understanding of the (high-twist) B-meson distribution amplitudes.
- Renormalization properties beyond the one-loop approximation [conformal symmetry].
- Perturbative constraints at large ω_{i} [OPE technique].
- Renormalon analysis and the renormalization-scheme dependence.
- Precision determinations of the inverse moment λ_{B}.
- QCD factorization for the subleading power corrections.
- SCET analysis for the pion-photon form factor as the first step [operator structures, symmetry constraints, etc].
- General treatment of the rapidity divergences in the (naïve)-factorization formulae.
- Rigorous factorization proof taking into account the Glauber gluons.
- Novel resummation techniques for enhanced logarithms [symmetry, geometry].
- Technical issues for future improvements.
- Factorization techniques for electromagnetic corrections.
- NNLO QCD computations for $B \rightarrow V \ell \ell$ and $B \rightarrow V \gamma$.
- QCD factorization for the radiative and electroweak penguin decays of the Λ_{b}-baryon.
- Improved understanding of the parton-hadron duality violation.
- Very promising future for QCD aspects of heavy-quark physics!

[^0]: 12-23 August 2019
 Mainz Institute for Theoretical Physics, Johannes Gutenberg University
 Europe/Berlin timezone

