

Recent experimental results on heavy flavors at Belle

Chengping Shen

shencp@fudan.edu.

- > Observation of $\Xi(1620)^0$
- > Observation of an excited Ω^- baryon
- \succ Search for Ω(2012) → KΞ(1530)
- $\succ \Xi_c$ absolute branching fractions
- > Observation of $\mathcal{Z}_c(2930)^0$ and $\mathcal{Z}_c(2930)^{\pm}$
- > Search for X(3872) $\rightarrow \pi^0 \chi_{c1}$
- > Observatin of a new resonance at 10.753 GeV

Although Belle has stopped the data taking for more than 10 years and Belle II has started its Phase 3 data taking, Belle is still producing many exciting results.

Observation of $\Xi^0(1620)$ and evidence for $\Xi^0(1690)$

PRL 122, 072501 (2019)

List of E(S=-2) particles from PDG

				Status as seen in —				
Particle	J^P	$\begin{array}{c} \mathbf{Overall} \\ \mathbf{status} \end{array}$	$\Xi\pi$	ΛK	ΣK	$\Xi(1530)\pi$	T Other channels	
$\Xi(1318)$	1/2+	****					Decays weakly	
$\begin{array}{l} \Xi(1530) \\ \Xi(1620) \\ \Xi(1690) \\ \Xi(1820) \\ \Xi(1950) \\ \Xi(2030) \\ \Xi(2120) \end{array}$	3/2+ ¹ /2-? 3/2-	**** * * * * * * * * * * * * * * * * *	**** * ** **	*** *** ** **	** ** ***	• ** *	NOT much is known about Ξ^* Not found $\frac{1}{2}$? With L =1 E(1620) and E(1690) are candidates $\Xi\pi$ is possible mode	
$\Xi(2250)$ $\Xi(2370)$ $\Xi(2500)$		** ** *		*	*		3-body decays 3-body decays 3-body decays	

**** Existence is certain, and properties are at least fairly well explored.
*** Existence ranges from very likely to certain, but further confirmation is desirable

and/or quantum numbers, branching fractions, *etc.* are not well determined.

- ** Evidence of existence is only fair.
- * Evidence of existence is poor.

Status of the $\Xi(1620)$

One star: Evidence of existence is poor E. Briefel, PRD 16, 2706 (1977)

The data for this analysis came from two separate exposures, consisting of ~10⁶ pictures each, of the BNL 31-in. bubble chamber to a separated beam of 2.87-GeV/c K⁻ mesons. During the first But !! J.K.Hassall says "no evidence" In NPB189 (1981) 397

the Argonne 12 foot bubble chamber

The $\Xi^-\pi^+$ effective-mass distributions for the reaction $K^-p \rightarrow \Xi^-\pi^+K^0$

Search for $\Xi^0(1620)$ and $\Xi^0(1690)$ at Belle

PRL 122, 072501 (2019)

Search for $\Xi^0(1620)$ and $\Xi^0(1690)$ at Belle in below channel: $\Xi_c^+ \to \Xi^{*0}\pi^+$, $\Xi^{*0} \to \Xi^-\pi^+$

Data set:

Total 980fb⁻¹

Data sample	Luminosity(fb ⁻¹)	Data sample	Luminosity(fb ⁻¹)
Υ(1 <i>S</i>)	5.74	Y(2S)	24.91
Υ(3 <i>S</i>)	2.9	e^+e^- at \sqrt{s} =10.52GeV	89.5
e^+e^- at \sqrt{s} =10.58GeV	711.0	e ⁺ e ⁻ at √s=10.867GeV	121.4

Crucial Selection criteria:

- To purify the \mathcal{Z}_c^+ samples, the scaled momentum $x_p = \frac{p_{CM}}{\sqrt{\frac{1}{4}s m(\Xi_c^+)^2}} < 0.5$
- The retained Ξ^- candidates are combined with the lower and higher momentum pions, as labeled π_L^+ and π_H^+ .
- A vertex fit is applied to the $\Xi_c^+ \to \Xi^- \pi^+ \pi^+$ decay, and the $\chi^2 < 50$

Observation of $\Xi^0(1620)$ and evidence for $\Xi^0(1690)$

Ξ ⁰ (1620) state			
Mass (MeV/c²)	1610.4 <u>+</u> 6.0 ^{+5.9} 3.5		
Width (MeV)	$59.9 \pm 4.8 \substack{+2.8 \\ -3.0}$		

PRL 122, 072501 (2019)

In the simultaneous fit

- The E⁰(1530) and E⁰(1690) signals are modeled with P- and S-wave relativistic BW functions.
- The E⁰(1620) signal is modeled with the S-wave relativistic BW function.
- The interference between $\Xi^0(1620)$ and the S-wave non-resonant process is taken into account.
- The combinatorial backgrounds are described by a threshold.

When the S-wave (P-wave) relativistic BW with fixed mass and width is used as the fitting function, the significance for $\Xi^0(1690)$ is 4.6 σ (4.0 σ).

Observation of an excited Ω^- baryon

PRL 121, 052003 (2018)

$\Omega^- = s s s (S=-3, I=0)$

1. Ω^- excited states have proved difficult to find

- Only one excited Ω^- states, $\Omega(2250)$, has been confirmed until now.
- In addition, the evidence for two other states of Ω^- were reported.
- These Ω^- excited states' masses are much higher than the ground state (>600MeV).
- 2. $\Omega^{*-} \rightarrow \Omega^{-} + \pi^{0}$ is highly suppressed since Ω^{-} is isospin zero
- 3. Preferred modes
- $\Omega^{*-} \rightarrow \Xi^- + K_S^0 \checkmark$
- $\Omega^{*-} \rightarrow \Xi^0 + K^- \checkmark$
- low-lying states
- Analogous to $\Omega_c^0 \to \Xi_c^+ K^-$

[R. Aaij et al. PRL 118, 182001 (2017)] [J. Yelton et al. PRD 97, 051102 (2018)]

Data sample	Luminosity(fb ⁻¹)	Events $(\times 10^8)$
Υ(1 <i>S</i>)	5.7	1.02
Y(2S)	24.9	1.58
Y(3S)	2.9	-

- The decays of these narrow resonances proceed via gluons.
- The production of baryon are enhanced.

Observation of an excited Ω^- baryon

Results & Summary

 $\mathcal{R} = \frac{\mathcal{B}(\Omega^{*-} \to \Xi^0 K^-)}{\mathcal{B}(\Omega^{*-} \to \Xi^- \overline{K}^0)} = 1.2 \pm 0.3$

Data	Mode	Mass (MeV/c^2)	Yield	$\Gamma({ m MeV})$	χ^2 /d.o.f.	n_{σ}
$\Upsilon(1S, 2S, 3S)$	$\Xi^0 K^-, \Xi^- K^0_S$	2012.4 ± 0.7	$242 \pm 48, \ 279 \pm 71$	$6.4^{+2.5}_{-2.0}$	227/230	8.3
	(simultaneous)					
$\Upsilon(1S, 2S, 3S)$	$\Xi^0 K^-$	2012.6 ± 0.8	239 ± 53	6.1 ± 2.6	115/114	6.9
$\Upsilon(1S,2S,3S)$	$\Xi^- K_S^0$	2012.0 ± 1.1	286 ± 87	6.8 ± 3.3	101/114	4.4
Other	$\Xi^0 K^-$	2012.4 (Fixed)	209 ± 63	6.4 (Fixed)	102/116	3.4
Other	$\Xi^- K_S^0$	2012.4 (Fixed)	153 ± 89	6.4 (Fixed)	133/116	1.7

PRL 121, 052003 (2018)

- The gap in the spectrum between the ground state and this excited state (~340 MeV) is smaller than other Ω⁻ excited states, which is more close to the negative-parity orbital excitations of many other baryons.
- The narrow width observed implies that the quantum number $J^P = \frac{3}{2}^-$ is preferable.

Theoretical interpretation for the $\Omega^*(2012)$

It is generally accepted that $\Omega^*(2012)$ is 1P orbital excitation of the ground state Ω baryon with three strange quark, whose quantum numbers are $J^P = \frac{3}{2}^{-}$.

Notably, the newly observed $\Omega^*(2012)$ is revealed as a KE(1530) hadronic molecule. [PRD 98, 054009 (2018), PRD 98, 056013 (2018), arXiv:1807.02145, arXiv:1807.06485, arXiv:1807.06485]

From PRD 98, 056013 (2018)

FIG. 1: The three-body decays of $\Omega(2012)$ in the $K \equiv (1530)$ molecular picture.

The $K\Xi\pi$ three-body component is	$J^{F} = \frac{3}{2}^{-}$ $\Omega(2012) \ (K \Xi(1530))$		
largely dominant.		Widths (MeV)	Branch Ratio($\%$)
	KΞ	0.4	14.3
	$K\pi\Xi$	2.4	85.7
	Total	2.8	100.0

Search for $\Omega(2012) \rightarrow K\Xi(1530) \rightarrow K\pi\Xi$

Search for $\Omega(2012) \rightarrow K\Xi(1530) \rightarrow K\pi\Xi$

A simultaneous fit to all three-body decay modes is performed.

$$R_{\Xi K}^{\Xi \pi K} = \frac{\mathcal{B}(\Omega \to \Xi(1530)(\to \Xi \pi)K)}{\mathcal{B}(\Omega \to \Xi K)} = (6.0 \pm 3.7(\text{stat.}) \pm 1.3(\text{syst.}))\%$$
$$R_{\Xi K}^{\Xi \pi K} = \frac{\mathcal{B}(\Omega \to \Xi(1530)(\to \Xi \pi)K)}{\mathcal{B}(\Omega \to \Xi K)} < 11.9\% \text{ at } 90\% \text{ C.L.}$$

Measurements of absolute Brs of Ξ_c^0

- Weak decays of charmed hadrons play an unique role in the study of strong interaction; the charmed-baryon sector also offers an unique and excellent laboratory for testing heavyquark symmetry and light-quark chiral symmetry.
- For the charmed baryons of the SU(3) anti-triplet, only Λ_c absolute Brs were measured by Belle [PRL113,042002(2014), first time] and BESIII [PRL116,052001(2016)]
- Since E⁰_c [PRL62,863(1989)] and E⁺_c [PLB122,455 (1983)] were discovered ~30 years ago, no absolute Brs could be measured.
- For Ξ_c^0 , the Brs are all measured with ratios to the $\Xi^-\pi^+$, the so called reference mode.

 Ξ_c^+

udc

 $\Xi_c^{\hat{0}}_{dsc}$

Measurements of absolute Brs of Ξ_c^0

- Theory: $B(\Xi_c^0 \to \Xi^- \pi^+) \sim 1.12\%$ or 0.74% [PRD48, 4188 (1993)], (2.24±0.34)% [JHEP03, 66(2018)], (1.91±0.17)% [1811.07265]
- The $B(\Xi_c^0 \to \Lambda K^- \pi^+) / B(\Xi_c^0 \to \Xi^- \pi^+) = 1.07 \pm 0.12 \pm 0.07$ and $B(\Xi_c^0 \to p K^- K^- \pi^+) / B(\Xi_c^0 \to \Xi^- \pi^+) = 0.33 \pm 0.03 \pm 0.03 \pm 0.03$ [PLB 605,237]
- $\Xi_c^0 \rightarrow p K^- K^- \pi^+$ plays a fundamental role in lots of bottom baryons study at LHCb .
- How to measure Ξ_c^0 absolute Brs ? Model Independent!

$$\mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+) \equiv \frac{\mathcal{B}(B^- \to \bar{\Lambda}_c^- \Xi_c^0) \mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+)}{\mathcal{B}(B^- \to \bar{\Lambda}_c^- \Xi_c^0)},$$
$$\mathcal{B}(\Xi_c^0 \to \Lambda K^- \pi^+) \equiv \frac{\mathcal{B}(B^- \to \bar{\Lambda}_c^- \Xi_c^0) \mathcal{B}(\Xi_c^0 \to \Lambda K^- \pi^+)}{\mathcal{B}(B^- \to \bar{\Lambda}_c^- \Xi_c^0)}.$$
$$\mathcal{B}(\Xi_c^0 \to p K^- K^- \pi^+) \equiv \frac{\mathcal{B}(B^- \to \bar{\Lambda}_c^- \Xi_c^0) \mathcal{B}(\Xi_c^0 \to p K^- K^- \pi^+)}{\mathcal{B}(B^- \to \bar{\Lambda}_c^- \Xi_c^0)}$$

- For inclusive $B^- \to \overline{\Lambda}_c^- \Xi_c^0$, $\Xi_c^0 \to anything$, never measured before.
- For exclusive $B(B^- \to \overline{\Lambda}_c^- \Xi_c^0) B(\Xi_c^0 \to \Xi^- \pi^+)$; $B(B^- \to \overline{\Lambda}_c^- \Xi_c^0) B(\Xi_c^0 \to \Lambda K^- \pi^+)$, measured by Belle and BaBar with large **errors**.

Measurements of Br of $B^- \rightarrow \overline{\Lambda}_c^- \Xi_c^0$, $\Xi_c^0 \rightarrow anything$

- The $\overline{\Lambda}_{c}^{-}$ reconstructed via its $\overline{p}K^{+}\pi^{-}$ and $\overline{p}K_{s}^{0}$ decays
- A tagged B meson candidate, B_{tag}^+ , is reconstructed using a neural network based on the full hadron-reconstruction algorithm

• An unbinned maximum likelihood fit: $N(\Xi_c^0)=40.9 \pm 9.0, 5.5\sigma(\text{stat.})$

• $B(B^- \to \overline{\Lambda}_c^- \Xi_c^0, \Xi_c^0 \to anything) = (9.51 \pm 2.10 \pm 0.88) \times 10^{-4}$ for the first time PRL122, 082001 (2019)

PRL122, 082001 (2019)

Measurements of absolute Brs of Ξ_c^0

Summary of the measured branching fractions and the ratios of Ξ_c^0 decays PRL122, 082001 (2019)

Channel	Br/Ratio	
$B(B^- \rightarrow \overline{\Lambda}_c^- \Xi_c^0)$	(9.51±2.10±0.88)×10 ⁻⁴	
$B(\boldsymbol{B}^{-} \to \overline{\boldsymbol{\Lambda}}_{c}^{-} \Xi_{c}^{0}) B(\Xi_{c}^{0} \to \Xi^{-} \pi^{+})$	$(1.71\pm0.28\pm0.15)\times10^{-5}$	(2.4±0.9)×10 ⁻
$B(\mathbf{B}^- \to \overline{\mathbf{\Lambda}}_c^- \Xi_c^0) \ B(\Xi_c^0 \to \Lambda \mathrm{K}^- \pi^+)$	$(1.11\pm0.26\pm0.10)\times10^{-5}$	(2.1±0.9)×10 ⁻
$B(\boldsymbol{B}^{-} \to \overline{\boldsymbol{\Lambda}}_{c}^{-} \boldsymbol{\Xi}_{c}^{0}) B(\boldsymbol{\Xi}_{c}^{0} \to \mathrm{p}\mathrm{K}^{-}\mathrm{K}^{-}\pi^{+})$	(5.47±1.78±0.57)×10 ⁻⁶	Ť
$B(\Xi_c^0 \rightarrow \Xi^- \pi^+)$	(1.80±0.50±0.14)%	
$B(\Xi_{\rm c}^0 \to \Lambda {\rm K}^- \pi^+)$	(1.17±0.37±0.09)%	PDG
$B(\Xi_{\rm c}^0 \rightarrow {\rm pK^-K^-}\pi^+)$	(0.58±0.23±0.05)%	¥
$B(\Xi_{\rm c}^0 \to \Lambda {\rm K}^-\pi^+)/B(\Xi_{\rm c}^0 \to \Xi^-\pi^+)$	0.65±0.18±0.04	1.07 ± 0.14
$B(\Xi_{\rm c}^0 \rightarrow \mathrm{pK^-K^-}\pi^+)/B(\Xi_{\rm c}^0 \rightarrow \Xi^-\pi^+)$	0.32±0.12±0.07	0.34 ± 0.04

- We have performed an analysis of $B^- \to \overline{\Lambda}_c^- \Xi_c^0$ inclusively and exclusively
- First model-independent measurement of absolute Brs of E⁰_c decays
- The branching fraction $B(B^- \rightarrow \overline{\Lambda}_c^- \Xi_c^0)$ is measured for the first time
- The $B(\Xi_c^0 \to \Xi^- \pi^+)$ can be used to determine the BR of other Ξ_c^0 decays.

Measurements of absolute Brs of Ξ_c^+

- The decays of charmed baryons in experiment are needed to extract the non-perturbative contribution thus important to constrain phenomenological models of strong interaction.
- For the SU(3) anti-triplet charmed baryons the branching fractions of Λ_c^+ [PRL 113,042003(2014); PRL 116,052001(2016)] and Ξ_c^0 [PRL 122,082001(2019)] has been measured.
- The Brs of remaining Ξ_c^+ are all measured with ratio to the $\Xi_c^+ \rightarrow \Xi^- \pi^+ \pi^+$

• The comparison of Ξ_c^+ decays with those of Λ_c^+ and Ξ_c^0 can also provide an important test of SU(3) flavor symmetry.

 $\Xi_c^+ \rightarrow p \ K^- \ \pi^+$ is a particularly important decay mode as it is the one most often used to reconstruct Ξ_c^+ candidates at hadron collider experiments, such as LHCb. Theory predicts the B($\Xi_c^+ \rightarrow p \ K^- \ \pi^+$)=(2.2±0.8)% [EPJC 78, 224 (2018); Chin. Phys. C 42, 051001 (2018)].

Measurement of Ξ_c^+ **absolute BRs**

Measurement $\mathcal{B}(\overline{B}^0 \to \overline{\Lambda}_c^- \Xi_c^+)$ with $\Xi_c^+ \to anythings$

- reconstruct $\overline{\Lambda}_c^-$ via $\overline{p}K^+\pi^-$ decay mode
- tag a B^0 with neural network based Full-Reconstruction algorithm.
- An unbinned maximum likelihood fit: $N(\Xi_c^+) = 18.8 \pm 6.8$
- $\mathcal{B}(\overline{B}^0 \to \overline{\Lambda}_c^- \Xi_c^+) = [1.16 \pm 0.42(stat.) \pm 0.15(syst.)] \times 10^{-3}$

Measurement of Ξ_c^+ **absolute BRs**

Measurement $\mathcal{B}(\overline{B}{}^0 \to \overline{\Lambda}_c^- \Xi_c^+)$ with $\Xi_c^+ \to \Xi^- \pi^+ \pi^+$ or $p[\overline{K}^*(892) \to K^- \pi^+]$

$\frac{\text{Measurement of }\Xi_{c}^{+} \text{ absolute BRs}}{\text{Summary of the measured BRs}}$

Decay mode	Br/ Ratio	PDG value
$\mathcal{B}(\overline{B}{}^0 \to \overline{\Lambda}{}^c ^+_c)$	$[1.16\pm 0.42\pm 0.15]\times 10^{-3}$	
$\mathcal{B}(\overline{B}{}^0 \to \overline{\Lambda}{}^c \mathcal{Z}{}^+_c) \mathcal{B}(\mathcal{Z}{}^+_c \to \mathcal{Z}{}^-\pi^+\pi^+)$	$[3.32\pm 0.74\pm 0.33]\times 10^{-5}$	$(1.8 \pm 1.8) \times 10^{-5}$
$\mathcal{B}(\overline{B}{}^0 \to \overline{\Lambda}{}^c \mathcal{Z}{}^+_c) \mathcal{B}(\mathcal{Z}{}^+_c \to p K^- \pi^+)$	$[5.27 \pm 1.51 \pm 0.69] \times 10^{-5}$	
$\mathcal{B}(\overline{B}{}^0 \to \overline{\Lambda}{}^c \mathcal{Z}{}^+_c) \mathcal{B}(\mathcal{Z}{}^+_c \to p\overline{K}{}^*(892))$	$[2.97 \pm 1.31 \pm 0.44] \times \mathbf{10^{-5}}$	
$\mathcal{B}(\mathcal{Z}_c^+ \to \mathcal{Z}^- \pi^+ \pi^+)$	$[{\bf 2.86 \pm 1.21 \pm 0.38}]\%$	
$\mathcal{B}(\mathcal{Z}_c^+ \to pK^-\pi^+)$	$[0.45\pm 0.21\pm 0.07]\%$	
$\mathcal{B}(\mathcal{Z}_c^+ \to \mathbf{p}\overline{\mathbf{K}}^*(892))$	$[0.25\pm 0.16\pm 0.04]\%$	
$\mathcal{B}(\Xi_c^+ \to pK^-\pi^+)/\mathcal{B}(\Xi_c^+ \to \Xi^-\pi^+\pi^+)$	$0.16 \pm 0.06 \pm 0.02$	0.21 ± 0.04
$\mathcal{B}(\mathcal{Z}_{c}^{+} \to p\overline{K}^{*}(892))/\mathcal{B}(\mathcal{Z}_{c}^{+} \to \Xi^{-}\pi^{+}\pi^{+})$	$0.09 \pm 0.04 \pm 0.01$	0.116 ± 0.030
$\mathcal{B}(\mathcal{Z}_{c}^{+} \to p\overline{K}^{*}(892))/\mathcal{B}(\mathcal{Z}_{c}^{+} \to pK^{-}\pi^{+})$	$0.56 \pm 0.30 \pm 0.08$	$0.54 \pm 0.09 \pm 0.05$

- First model –independent $\mathcal{B}(\bar{B}^0 \to \bar{\Lambda}_c^- \Xi_c^+)$ measurement
- $\mathcal{B}(\Xi_c^+ \to \Xi^- \pi^+ \pi^+)$ can be used to determine the BR of other Ξ_c^+ decay

$\Xi_c(2930)^0$ in $B^+ \to K^+ \Lambda_c^+ \overline{\Lambda}_c^-$

- Belle reported a structure, called X(4630), in the $\Lambda_c^+ \overline{\Lambda}_c^-$ invariant mass distribution in $e^+e^- \rightarrow \gamma_{ISR} \Lambda_c^+ \overline{\Lambda}_c^-$ PRL 101, 172001
- BarBar once studied B⁺ → K⁺Λ⁺_cΛ⁻_c and found two small peaks in M_{Λ⁺_cΛ⁻_c} spectrum and a vague structure named Ξ_c(2930) is seen in the distribution of M_{K Λ_c}. Larger data is needed to verify them.
 PRD 77, 031101
- Also, some theory explained that Y(4660) has a large partial decay width to Λ⁺_c Λ⁻_c and it's isospin partner Y(4616) is predicted. PRD 82, 094008; PRL102, 242004

$\Xi_c(2930)^0$ in $B^+ \to K^+ \Lambda_c^+ \overline{\Lambda}_c^-$

tion for experimental resolution, we obtain $m = 2931 \pm 3(\text{stat}) \pm 5(\text{syst}) \text{ MeV}/c^2$ and $\Gamma = 36 \pm 7(\text{stat}) \pm 11(\text{syst})$ MeV. We do not see any such structure in the m_{ES} sideband region. This description is in good agreement with the data (χ^2 probability of 22%) and could be interpreted as a single Ξ_c^0 resonance with those parameters, though a more complicated explanation (e.g. two narrow resonances in close proximity) cannot be excluded.

Observation of $\mathcal{Z}_c(2930)^0$ in $B^+ \to K^+ \Lambda_c^+ \overline{\Lambda}_c^-$ at Belle

Eur. Phys. J. C78, 252 (2018)

Clear confirmation for the BaBar claim, PRD77,031101(2008) and much more precise M=2928.9 \pm 3.0 +0.8/-12.0 MeV, Γ =19.5 \pm 8.4 +5.4/-7.9 MeV

\(\mathbf{E}_c(2930)^0 = csd\) is the first charmed-strange baryon established in B decay.

Search for Y(4660) and its spin part in $B^+ \to K^+ \Lambda_c^+ \overline{\Lambda}_c^-$ at Belle

Eur. Phys. J. C78, 252 (2018)

- No Y(4660) and its spin partner Y_{η} were observed in the $\Lambda_c^+ \overline{\Lambda}_c^-$ invariant mass distribution
- 90% C.L. upper limits of $B^+ \to K^+ Y(4660) \to K^+ \Lambda_c^+ \overline{\Lambda}_c^-$ and $B^+ \to K^+ Y_\eta \to K^+ \Lambda_c^+ \overline{\Lambda}_c^-$ are 1.2×10^{-4} and 2.0×10^{-4} .

Evidence of charged $\Xi_c(2930)$ in $B^0 \rightarrow K^0 \Lambda_c^+ \overline{\Lambda}_c^-$ Eur. Phys. J. C 78, 928 (2018)

- Based on full $\Upsilon(4S)$ data set (772 M $B\overline{B}$ pairs) at Belle
- Three Λ_c decay channels:

 $\Lambda_c^+ \to pK^-\pi^+, \Lambda_c^+ \to pK_s(\pi^+\pi^-) \text{ and } \Lambda_c^+ \to \Lambda(p\pi^-)\pi^+.$

• B candidates extracted via 2D fit to M_{bc} and ΔM_B

• Quite clear $\Lambda_c^+ \bar{\Lambda}_c^-$ signals and B^0 signals.

- $N^{\rm sig} = 34.9 \pm 6.6$ with a statistical signal significance above 8.3σ
- $\mathcal{B}(\bar{B}^0 \to \bar{K}^0 \Lambda_c^+ \bar{\Lambda}_c^-) = [3.99 \pm 0.76 (\text{stat.}) \pm 0.51 (\text{syst.})] \times 10^{-4}$

BELLE

Evidence of charged $\mathcal{Z}_c(2930)$ in $B^0 \to K^0 \Lambda_c^+ \overline{\Lambda}_c^-$

• Charged $\mathcal{I}_c(2930)$ extracted by fitting $M_{K_s^0\Lambda_c}$

- $N(\Xi_c^{\pm}(2930))=21.2\pm4.6$, stat. significance 4.1σ
- $M(\Xi_c^{\pm}(2930))=2942.3\pm4.4\pm1.5 \text{ MeV/c}^2$
- $\Gamma (\Xi_c^{\pm}(2930)) = 14.8 \pm 8.8 \pm 2.5 \text{ MeV}$

After this measurement, $* \rightarrow **$

Search for $X(3872) \rightarrow \pi^0 \chi_{c1}(1P)$

- Although the X(3872) has been found in several modes, the nature of the X(3872) remains unclear.
- If the X(3872) were a conventional $c\bar{c}$ state, pionic transitions to the χ_{cJ} should be very small ($\Gamma(X(3872) \rightarrow \pi^0 \chi_{c1}) \sim 0.06 \text{keV}$ [PRD77, 014013 (2018)]).
- If the X(3872) were a tetraquark or molecular state, the ratios of the pionic transitions are excepted to be sizeable [PRD77, 014013 (2018)], PRD92, 034019 (2015)].
- The study of $X(3872) \rightarrow \pi^0 \chi_{c1}(1P)$ can help to figure out the X(3872) is conventional $c\bar{c}$ state or tetraquark/molecular.

The study for $X(3872) \rightarrow \pi^0 \chi_{c1}(1P)$ at BESIII and Belle:

Collaboration	Studied mode	Dataset
BESIII	$\begin{array}{c} e^+e^- \rightarrow \gamma X(3872) \\ X(3872) \rightarrow \pi^0 \chi_{c1}(1P) \end{array}$	9fb ⁻¹ E _{CM} between 4.15 and 4.30 GeV
Belle	$\begin{array}{c} B^+ \to X(3872) K^+ \\ X(3872) \to \pi^0 \chi_{c1}(1P) \end{array}$	$772 \times 10^6 B\overline{B}$ events collected at the $\Upsilon(4S)$ resonance

Observation of the decay $X(3872) \rightarrow \pi^0 \chi_{c1}(1P)$ at BESIII

The distributions of the invariant mass of the $\pi^0 \chi_{cJ}(1P)$ Phys.Rev.Lett. 122 (2019) 202001

Efficiency (no ISR) (%)	32.3	8.8	14.1	12.8
Efficiency ratio (with ISR)		0.272	0.435	0.392
$\mathcal{B}(\chi_{cJ} \to \gamma J/\psi) \times \mathcal{B}(\pi^0 \to \gamma \gamma) \ (\%)$		1.3	33.5	19.0
Total systematic error $(\%)$		17.0	11.9	9.4
$\mathcal{B}(X \to \pi^0 \chi_{cJ}) / \mathcal{B}(X \to \pi^+ \pi^- J/\psi)$		$6.6^{+6.5}_{-4.5} \pm 1.1 \ (19)$	$0.88^{+0.33}_{-0.27} \pm 0.10$	$0.40^{+0.37}_{-0.27} \pm 0.04 \ (1.1)$

- This is the first time the X(3872) was observed in mode $\pi^0\chi_{c1}(1P)$.
- BESIII results disfavors the $c\overline{c}$ interpretation for X(3872).

Search for $X(3872) \rightarrow \pi^0 \chi_{c1}(1P)$ at Belle

1D unbinned extended maximum likelihood fit to the $M(\pi^0\chi_{c1}(1P))$

PRD 99, 111101 (R) (2019)

Comparison of Belle and BESIII result.

- The magenta dashed curve shows the $B^+ \rightarrow X(3872)(\rightarrow \pi^0 \chi_{c1}(1P))K^+$ signal
- The red dashed curve shows the $B^+ \rightarrow X(3915)(\rightarrow \pi^0 \chi_{c1}(1P))K^+$ signal
- The fit yields (2.7±5.5) events for the B⁺ \rightarrow X(3872)($\rightarrow \pi^0 \chi_{c1}(1P)$)K⁺ with the significance of 0.3 σ

 $R_{\chi_{c1/\psi}}^X = \frac{\mathcal{B}(X \to \pi^0 \chi_{c1}(1P))}{\mathcal{B}(X \to \pi^+ \pi^- J/\psi)} < 0.97 \text{ at } 90\% \text{ C.L.}$

- The $R_{\chi_{c1/\psi}}^X$ at 90% C.L from Belle does not contradict the BESIII result.
- But more data samples are needed to confirm the BESIII result.

$e^+e^- ightarrow \Upsilon(nS)\pi^+\pi^-$

Motivation

(A. Bondar, R. Mizuk *et al.* (to be submitted to JHEP))

- Above the $B\bar{B}$ threshold, $\Upsilon(4S)$, $\Upsilon(10860)$ and $\Upsilon(11020)$ have properties that are unexpected for pure $b\bar{b}$ bound states [1]. Possible explanations:
 - Contribution of hadron loops (equivalently, presence of a $B_{(s)}^{(*)}\overline{B}_{(s)}^{(*)}$ admixture) [2-4].
 - Presence of other exotic states (e.g. compact tetraquarks [5] or hadrobottomonia [6]).
- $\Upsilon(3, 4D)$ states are predicted in the region of the $\Upsilon(4, 5, 6S)$ levels [7,8].
- Recent study of $e^+e^- \rightarrow \Upsilon(nS)\pi^+\pi^-$ in Belle show a small hint of new structure at $\sqrt{s} = 10.77$ GeV [9].

Analysis features

- $\Upsilon(nS) \to \ell^+ \ell^- (\ell \in \{\mu, e\}).$
- Signal yields are extracted via fitting to $M_{\text{recoil}}(\pi^+\pi^-)$ instead of counting.
- Using ISR process with the high stat. Υ(10860) on-resonance data to obtain additional information about the cross section shapes.
- Energy balance requirement: $|M_{\text{recoil}}(\pi^+\pi^-) - M(\ell^+\ell^-)| < 150 \text{ MeV}.$

[1] MPLA32,1750025 [2] PRD77,074003 [3] PLB 671, 55 [4] PRD85, 034024 [5] PRL 104, 162001 (s (GeV) [6] PLB 666, 344 [7] EPJC 71, 1825 [8] PRD 92, 054034 [9] PRD 93, 011101 30

$$e^+e^- \rightarrow \Upsilon(nS)\pi^+\pi^-$$

Scan data: 22 points, each point 1fb^{-1} Y(10860) on-resonance data: 121 fb⁻¹, between 10.864 and 10.868 GeV Continuum data at 10.52 GeV, 60 fb⁻¹

Global significance: 6.7σ Possible explanations: resonance $\Upsilon(3D)$, exotic state, complicated rescattering,

$e^+e^- \rightarrow \Upsilon(nS)\pi^+\pi^-$

Continuum below $\Upsilon(4S)$

- $E_{c.m.} = 10.52 \text{ GeV}.$
- Required $M(\pi^+\pi^-) > 0.85$ GeV.
- A clear signal for the $\Upsilon(1S)\pi^+\pi^-$ process is evident.

•
$$\sigma[e^+e^- \to \Upsilon(1S)\pi^+\pi^-] = 42^{+17}_{-15}$$
 fb.

Significance including systematics: > 3.5σ.

 \rightarrow Evidence for $e^+e^- \rightarrow \Upsilon(1S)\pi^+\pi^$ in continuum at $E_{c.m.} = 10.52$ GeV!

It is an indication of the presence of a non-resonant contribution in the energy dependence of the $e^+e^- \rightarrow \Upsilon(nS)\pi^+\pi^-$ cross sections.

- Although Belle has stopped data taking for ~10 years, we are still producing exciting results in (light) hadron spectrum, charmed baryon, exotic states, and bottomonium spectrum.
- Belle II has started to take data on 25 March with full its detector.
- Belle II will reach 50 ab⁻¹ by 2027, which will provide greater sensitivity and precise measurements in hadron physics

Belle II physics book (arXiv:1808.10567): https://confluence.desy.de/display/BI/B2TiP+ReportStatus

Thanks for your attention

沈成平

shencp@buaa.edu.cn

Short summary on the X(3872)

The X(3872) was first observed in 2003 by Belle in the process of B \rightarrow KX(3872)($\rightarrow \pi^+\pi^- J/\psi$). Then, it was confirmed by BESIII, BABAR, CDF, DØ, CMS, LHCb, ...

PRL91, 262001 (2003)

$$\begin{split} &\Gamma_{tot} = 15 \times \Gamma(X(3872) \rightarrow \pi^+\pi^- J/\psi) \\ &\Gamma(X(3872) \rightarrow \pi^+\pi^- J/\psi) < 80 \text{keV} \end{split}$$

The remarkable features:

- M_X closes to $D^0 \overline{D}^{*0}$ threshold ($\Delta M=0.18 \text{ MeV/c}^2$)
- Surprisingly narrow: Γ_{tot} < 1.2 MeV at 90% C.L.
- It has quantum numbers $J^{PC} = 1^{++}$
- No isospin partners are recently knows
- No nearby neutral X(3872) partners
- It has isospin-violating decays $\rho J/\psi$ and $\omega J/\psi$
- It also decays to $D^0\overline{D}^{*0}$, $\gamma J/\psi$, $\gamma \psi(2S)$, and $\omega J/\psi$.

Measurements of absolute Brs of Ξ_c^0

udc

 $\Xi_c^{\hat{0}}_{dsc}$

- Weak decays of charmed hadrons play an unique role in the study of strong interaction; the charmed-baryon sector also offers an unique and excellent laboratory for testing heavyquark symmetry and light-quark chiral symmetry.
- For the charmed baryons of the SU(3) anti-triplet, only Λ_c absolute Brs were measured by Belle [PRL113,042002(2014), first time] and BESIII [PRL116,052001(2016)]
- Since E⁰_c [PRL62,863(1989)] and E⁺_c [PLB122,455 (1983)] were discovered ~30 years ago, no absolute Brs could be measured.

 Ξ_c^{A}

Measurements of absolute Brs of Ξ_c^0

- Theory: $B(\Xi_c^0 \to \Xi^- \pi^+) \sim 1.12\%$ or 0.74% [PRD48, 4188 (1993)], (2.24±0.34)% [JHEP03, 66(2018)], (1.91±0.17)% [1811.07265]
- The $B(\Xi_c^0 \to \Lambda K^- \pi^+) / B(\Xi_c^0 \to \Xi^- \pi^+) = 1.07 \pm 0.12 \pm 0.07$ and $B(\Xi_c^0 \to p K^- K^- \pi^+) / B(\Xi_c^0 \to \Xi^- \pi^+) = 0.33 \pm 0.03 \pm 0.03 \pm 0.03$ [PLB 605,237]
- $\Xi_c^0 \rightarrow p K^- K^- \pi^+$ plays a fundamental role in lots of bottom baryons study at LHCb .
- How to measure Ξ_c^0 absolute Brs ? Model Independent!

$$\mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+) \equiv \frac{\mathcal{B}(B^- \to \bar{\Lambda}_c^- \Xi_c^0) \mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+)}{\mathcal{B}(B^- \to \bar{\Lambda}_c^- \Xi_c^0)},$$
$$\mathcal{B}(\Xi_c^0 \to \Lambda K^- \pi^+) \equiv \frac{\mathcal{B}(B^- \to \bar{\Lambda}_c^- \Xi_c^0) \mathcal{B}(\Xi_c^0 \to \Lambda K^- \pi^+)}{\mathcal{B}(B^- \to \bar{\Lambda}_c^- \Xi_c^0)}.$$
$$\mathcal{B}(\Xi_c^0 \to p K^- K^- \pi^+) \equiv \frac{\mathcal{B}(B^- \to \bar{\Lambda}_c^- \Xi_c^0) \mathcal{B}(\Xi_c^0 \to p K^- K^- \pi^+)}{\mathcal{B}(B^- \to \bar{\Lambda}_c^- \Xi_c^0)}$$

- For inclusive $B^- \rightarrow \overline{\Lambda}_c^- \Xi_c^0$, $\Xi_c^0 \rightarrow anything$, never measured before.
- For exclusive $B(\mathbf{B}^- \to \overline{\Lambda}_c^- \Xi_c^0) B(\Xi_c^0 \to \Xi^- \pi^+)$; $B(\mathbf{B}^- \to \overline{\Lambda}_c^- \Xi_c^0) B(\Xi_c^0 \to \Lambda K^- \pi^+)$, measured by Belle and BaBar with large **errors**.

Measurements of Br of $B^- \rightarrow \overline{\Lambda}_c^- \Xi_c^0$, $\Xi_c^0 \rightarrow anything$

- The $\overline{\Lambda_c}$ reconstructed via its $\overline{p}K^+\pi^-$ and $\overline{p}K_s^0$ decays
- A tagged B meson candidate, B⁺_{tag}, is reconstructed using a neural network based on the full hadron-reconstruction algorithm

• An unbinned maximum likelihood fit: $N(\Xi_c^0)=40.9 \pm 9.0, 5.5\sigma(\text{stat.})$

• $B(B^- \to \overline{\Lambda}_c^- \Xi_c^0, \Xi_c^0 \to anything) = (9.51 \pm 2.10 \pm 0.88) \times 10^{-4}$ for the first time PRL122, 082001 (2019)

Measurements of Brs of $B^- \to \overline{\Lambda}_c^- \Xi_c^0$, with $\Xi_c^0 \to \Xi^- \pi^+; \Xi_c^0 \to \Lambda K^- \pi^+; \Xi_c^0 \to p K^- K^- \pi^+$

 $\Xi^{-}\pi^{+}$ 44.8 ± 7.3 9.5 σ

 $\Lambda {\rm K}^- \pi^+$ 24.1 ±5.5 6.8 σ

 $p{
m K^-K^-\pi^+} 16.6 \pm 5.4 \ 4.6\sigma$

PRL122, 082001 (2019)

Measurements of absolute Brs of Ξ_c^0

Summary of the measured branching fractions and the ratios of Ξ_c^0 decays PRL122, 082001 (2019)

Channel	Br/Ratio	
$B(B^- \rightarrow \overline{\Lambda}_c^- \Xi_c^0)$	$(9.51\pm2.10\pm0.88)\times10^{-4}$	
$B(\boldsymbol{B}^{-} \to \overline{\boldsymbol{\Lambda}}_{c}^{-} \boldsymbol{\Xi}_{c}^{0}) \ B(\boldsymbol{\Xi}_{c}^{0} \to \boldsymbol{\Xi}^{-} \pi^{+})$	$(1.71\pm0.28\pm0.15)\times10^{-5}$	(2.4±0.9)×10 ^{-€}
$B(\mathbf{B}^- \to \overline{\mathbf{\Lambda}}_c^- \Xi_c^0) \ B(\Xi_c^0 \to \Lambda \mathrm{K}^- \pi^+)$	(1.11±0.26±0.10)×10 ⁻⁵	(2.1±0.9)×10 ⁻
$B(\mathbf{B}^- \to \overline{\mathbf{\Lambda}}_c^- \Xi_c^0) \ B(\Xi_c^0 \to \mathrm{pK}^- \mathrm{K}^- \pi^+)$	$(5.47 \pm 1.78 \pm 0.57) \times 10^{-6}$	Ť
$B(\Xi_c^0 \rightarrow \Xi^- \pi^+)$	(1.80±0.50±0.14)%	
$B(\Xi_c^0 \to \Lambda \mathrm{K}^- \pi^+)$	(1.17±0.37±0.09)%	PDG
$B(\Xi_{\rm c}^0 \rightarrow {\rm pK^-K^-}\pi^+)$	(0.58±0.23±0.05)%	4
$B(\Xi_{\rm c}^0 \to \Lambda {\rm K}^-\pi^+)/B(\Xi_{\rm c}^0 \to \Xi^-\pi^+)$	0.65±0.18±0.04	1.07±0.14
$B(\Xi_{\rm c}^0 \rightarrow \mathrm{pK^-K^-}\pi^+)/B(\Xi_{\rm c}^0 \rightarrow \Xi^-\pi^+)$	0.32±0.12±0.07	0.34 ± 0.04

- We have performed an analysis of $B^- \to \overline{\Lambda}_c^- \Xi_c^0$ inclusively and exclusively
- First model-independent measurement of absolute Brs of Ξ_c^0 decays
- The branching fraction $B(B^- \rightarrow \overline{\Lambda}_c^- \Xi_c^0)$ is measured for the first time
- The $B(\Xi_c^0 \to \Xi^- \pi^+)$ can be used to determine the BR of other Ξ_c^0 decays.

Measurements of absolute Brs of Ξ_c^+

- The decays of charmed baryons in experiment are needed to extract the non-perturbative contribution thus important to constrain phenomenological models of strong interaction.
- For the SU(3) anti-triplet charmed baryons the branching fractions of Λ_c^+ [PRL 113,042003(2014); PRL 116,052001(2016)] and Ξ_c^0 [PRL 122,082001(2019)] has been measured.
- The Brs of remaining Ξ_c^+ are all measured with ratio to the $\Xi_c^+ \rightarrow \Xi^- \pi^+ \pi^+$

• The comparison of Ξ_c^+ decays with those of Λ_c^+ and $\exists and \Xi_c^0$ can also provide an important test of SU(3) flavor symmetry.

 $\Xi_c^+ \rightarrow p \ K^- \ \pi^+$ is a particularly important decay mode as it is the one most often used to reconstruct Ξ_c^+ candidates at hadron collider experiments, such as LHCb. Theory predicts the B($\Xi_c^+ \rightarrow p \ K^- \ \pi^+$)=(2.2±0.8)% [EPJC 78, 224 (2018); Chin. Phys. C 42, 051001 (2018)].

Measurement of Ξ_c^+ **absolute BRs**

Measurement $\mathcal{B}(\overline{B}^0 \to \overline{\Lambda}_c^- \Xi_c^+)$ with $\Xi_c^+ \to anythings$

• reconstruct $\overline{\Lambda}_c^-$ via $\overline{p}K^+\pi^-$ decay mode

- tag a B^0 with neural network based Full-Reconstruction algorithm.
- An unbinned maximum likelihood fit: $N(\Xi_c^+) = 18.8 \pm 6.8$
- $\mathcal{B}(\overline{B}^0 \to \overline{\Lambda}_c^- \Xi_c^+) = [1.16 \pm 0.42(stat.) \pm 0.15(syst.)] \times 10^{-3}$

Measurement $\mathcal{B}(\overline{B}{}^0 \to \overline{\Lambda}{}^-_c \mathcal{Z}{}^+_c)$ with $\mathcal{Z}{}^+_c \to \Xi^- \pi^+ \pi^+$ or $p[\overline{K}{}^*(892) \to K^- \pi^+]$

Measurement of Ξ_c^+ **absolute BRs** Summary of the measured BRs

Decay mode	Br/ Ratio	PDG value
$\mathcal{B}(\overline{B}{}^0 o \overline{\Lambda}{}^c \Xi^+_c)$	$[1.16 \pm 0.42 \pm 0.15] \times 10^{-3}$	
$\mathcal{B}(\overline{B}{}^0 \to \overline{\Lambda}{}^c ^+_c) \mathcal{B}(^+_c \to ^-^+^+)$	$[3.32\pm 0.74\pm 0.33]\times 10^{-5}$	$(1.8 \pm 1.8) \times 10^{-5}$
$\mathcal{B}(\overline{B}{}^0 \to \overline{\Lambda}{}^c ^+_c) \mathcal{B}(^+_c \to pK^-\pi^+)$	$[5.27 \pm 1.51 \pm 0.69] \times 10^{-5}$	
$\mathcal{B}(\overline{B}{}^0 \to \overline{\Lambda}{}^c \Xi^+_c) \mathcal{B}(\Xi^+_c \to p\overline{K}^*(892))$	$[2.97 \pm 1.31 \pm 0.44] \times 10^{-5}$	
$\mathcal{B}(\mathcal{Z}_c^+ \to \mathcal{Z}^- \pi^+ \pi^+)$	$[{\bf 2.86 \pm 1.21 \pm 0.38}]\%$	
$\mathcal{B}(\mathcal{Z}_c^+ \to pK^-\pi^+)$	$[0.45 \pm 0.21 \pm 0.07]\%$	
$\mathcal{B}(\mathcal{Z}_{c}^{+} \rightarrow p\overline{K}^{*}(892))$	$[0.25\pm 0.16\pm 0.04]\%$	
$\mathcal{B}(\mathcal{Z}_c^+ \to pK^-\pi^+)/\mathcal{B}(\mathcal{Z}_c^+ \to \Xi^-\pi^+\pi^+)$	$0.16 \pm 0.06 \pm 0.02$	0.21 ± 0.04
$\mathcal{B}(\mathcal{Z}_{c}^{+} \to \mathrm{p}\overline{\mathrm{K}}^{*}(892))/\mathcal{B}(\mathcal{Z}_{c}^{+} \to \Xi^{-}\pi^{+}\pi^{+})$	$0.09 \pm 0.04 \pm 0.01$	0.116 ± 0.030
$\mathcal{B}(\mathcal{Z}_c^+ \to p\overline{K}^*(892))/\mathcal{B}(\mathcal{Z}_c^+ \to pK^-\pi^+)$	$0.56 \pm 0.30 \pm 0.08$	$0.54 \pm 0.09 \pm 0.05$

- First model –independent $\mathcal{B}(\overline{B}^0 \to \overline{\Lambda}_c^- \Xi_c^+)$ measurement
- $\mathcal{B}(\Xi_c^+ \to \Xi^- \pi^+ \pi^+)$ can be used to determine the BR of other Ξ_c^+ decay