

Rare B decays at LHCb

Jibo HE/何吉波(UCAS) HFCPV2019 @ 内蒙古大学

Introduction

• Flavor-Changing Neutral Current (FCNC) process suppressed in SM. New Physics?

Described by effective Hamiltonion

$$H_{eff} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_{i} \begin{bmatrix} \mathcal{C}_i(\mu) \mathcal{O}_i(\mu) + \mathcal{C'}_i(\mu) \mathcal{O'}_i(\mu) \end{bmatrix}_{\substack{i=1,2 \\ i=3-6,8 \\ i=7 \\ i=9,10 \end{bmatrix}} \xrightarrow[i=9,10]{i=0,10} \quad \begin{array}{c} \text{Electroweak penguin} \\ \text{Electroweak penguin} \\ \text{Suppressed in the SM} \\ \end{array}$$

The LHCb experiment

• Dedicated to precision study of *b/c*-hadrons

LHCb luminosity prospects

LHC era			HL-LHC era	
Run 2 (2015-18)	Run 3 (2021-24)	Run 4 (2027-30)	Run 5+ (2031+)	
6 fb⁻¹	23 fb ⁻¹	46 fb ⁻¹	>300 fb ⁻¹ ??	
	Phase-1 Upgrade!!	Phase-1b Upgrade!?	Phase-2 Upgrade??	
	Run 2 (2015-18) 6 fb ⁻¹	Run 2 Run 3 (2015-18) (2021-24) 6 fb ⁻¹ 23 fb ⁻¹ Phase-1 Upgrade!!	Run 2 (2015-18) Run 3 (2021-24) Run 4 (2027-30) 6 fb ⁻¹ 23 fb ⁻¹ 46 fb ⁻¹ Phase-1 Upgrade!! Phase-1b Upgrade!?	

Bremsstrahlung corrections

ECAL

Magnet

Rare decays at LHCb

• Very rare decays

$$-B^{0}_{(s)} \to \mu^{+}\mu^{-}, B^{0}_{(s)} \to \tau^{+}\tau^{-}, B^{0}_{(s)} \to \mu^{+}\mu^{-}\mu^{+}\mu^{-}$$

• Lepton flavor violation

$$-B^{0}_{(s)} \rightarrow \tau^{+}\mu^{-}$$
, $B^{0}_{(s)} \rightarrow e^{+}\mu^{-}$, $\tau^{+} \rightarrow \mu^{+}\mu^{-}\mu^{+}$

- Electroweak penguin $-B^0 \rightarrow K^{*0}\mu^+\mu^-$, LFU
- Radiative

$$-B_s^0 \rightarrow \phi \gamma, \Lambda_b^0 \rightarrow \Lambda \gamma, B^+ \rightarrow K^+ \pi^+ \pi^- \gamma$$

• Rare charm

$$-D^0 \rightarrow \mu^+ \mu^-, \Lambda_c^+ \rightarrow p \mu^+ \mu^-$$

Rare Strange

$$-K_S^0 \rightarrow \mu^+ \mu^-, \Sigma^+ \rightarrow p \mu^+ \mu^-$$

Rare B decays at LHCb

$B_{(s)}^0 \rightarrow \mu^+ \mu^-$, latest results from LHCb

• With 4.6 fb⁻¹ of data, first observation of $B_s^0 \rightarrow \mu^+ \mu^-$ from a single experiment

 $\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (3.0 \pm 0.6^{+0.3}_{-0.2}) \times 10^{-9} \ 7.8\sigma \text{ LHCb alone}$ $\mathcal{B}(B^0 \to \mu^+ \mu^-) < 3.4 \cdot 10^{-10} @ 95\% \text{ CL}$

Rare B decays at LHCb

$B_{\rm s}^0 \to \mu^+ \mu^-$ effective lifetime

• B_s^0 mixing \Rightarrow effective τ $\tau_{\mu\mu} = \frac{\tau_{B_s}}{(1 - y_s^2)} \frac{1 + 2y_s A_{\Delta\Gamma} + y_s^2}{1 + y_s A_{\Delta\Gamma}}$ [PRL 118 (2017) 191801] $A_{\Lambda\Gamma}=1$ in SM

$$y_s \equiv \tau_{B_s} \Delta \Gamma_s / 2$$

First measurement, not yet sensitive to $A_{\Lambda\Gamma}$

 $\tau(B_s^0 \to \mu^+ \mu^-) = 2.04 \pm 0.44 \pm 0.05$ ps

$$B^0_{(s)} \to \tau^+ \tau^-$$

- $B_{(s)}^{0} \rightarrow \tau^{+}\tau^{-}$ not helicity suppressed in SM, predicted BR ~200 higher than $B_{(s)}^{0} \rightarrow \mu^{+}\mu^{-}$ $\mathcal{B}(B_{s}^{0} \rightarrow \tau^{+}\tau^{-})_{SM} = (7.73 \pm 0.49) \times 10^{-7}$ $\mathcal{B}(B^{0} \rightarrow \tau^{+}\tau^{-})_{SM} = (2.22 \pm 0.19) \times 10^{-8}$
- $\mathcal{B}(B_{(s)}^{0} \to \tau^{+}\tau^{-})$ enhanced by NP scenarios, previously best limit given by Babar $\mathcal{B}(B^{0} \to \tau^{+}\tau^{-}) < 4.1 \times 10^{-3}$ @ 90% C.L. [Babar, PRL 96 (2006) 241802]

 $B^0_{(s)} \rightarrow \tau^+ \mu^-$

- LFV, highly suppressed in SM, $\mathcal{B} \sim O(10^{-54})$, may be enhanced by NP models
 - -Z', up to 10^{-8}
 - Leptoquarks, $10^{-9} 10^{-5}$
 - Pati-Salam gauge model, $10^{-4} 10^{-6}$
- arXiv:1705.06614] Best limit given by Babar $\mathcal{B}(B^0 \to \tau^+ \mu^-) < 2.2 \times 10^{-5}$ at 90% CL

[Babar, PRD 77 (2008) 091104]

 $B_{(s)}^{o} \rightarrow \tau^+ \mu^-$ • Using $\tau^- \rightarrow 3\pi \nu_\tau(a_1)$ mode • Normalized to $B^0 \rightarrow D^- \pi^+$ PΛ Cand. / (0.05 GeV/c²) [arXiv:1705.06614] 120 E LHCb LHCb 100 $B_s^0 \rightarrow \tau^{\pm} (\rightarrow \pi^{\pm} \pi^{\mp} \pi^{\pm} \nu) \mu^{\mp}$ BDT bin 4 simulation Same-sign data 20Pull M_B^{6} [GeV/ c^2] 5 5.2 5.4 5.6 4.8 5 5.8 $M_B \,[{\rm GeV}/c^2]$ $\mathcal{B}(B^0 \to \tau^+ \mu^-) < 1.4 \times 10^{-5}$ at 95% CL $\mathcal{B}(B_{\rm s}^0 \to \tau^+ \mu^-) < 4.2 \times 10^{-5}$ at 95% CL

 $B^0 \rightarrow K^{*0} \mu^+ \mu^-$

Rates and angular distributions sensitive to NP

$B^0 \to K^{*0} \mu^+ \mu^- : P_5'$

- LHCb updated with 3 fb⁻¹, anomaly still there
- Also measured by Belle, ATLAS, CMS

Branching fraction of $b \rightarrow s\ell^+\ell^-$

• Some tensions seen

New physics, or QCD?

- Charm loop effects? [Lyon, Zwicky, arXiv:1406.0566]
 - Large non-factorisable effects (or NP) required to have consistent picture between BESII $e^+e^- \rightarrow$ hadrons data and the LHCb result

 \mathcal{R}_K

[PRL 113 (2014) 151601]

•
$$\mathcal{R}_K \equiv \frac{\mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)}{\mathcal{B}(B^+ \to K^+ e^+ e^-)} = 1 \pm \mathcal{O}(10^{-3})$$
 in the SM

• $B^+ \rightarrow J/\psi K^+$ as normalization channel, double ratio used to cancel systematic uncertainties

$$\mathcal{R}_{\mathcal{K}} = \left(\frac{\mathcal{N}_{\mathcal{K}^{+}\mu^{+}\mu^{-}}}{\mathcal{N}_{\mathcal{K}^{+}e^{+}e^{-}}}\right) \left(\frac{\mathcal{N}_{J/\psi(e^{+}e^{-})\mathcal{K}^{+}}}{\mathcal{N}_{J/\psi(\mu^{+}\mu^{-})\mathcal{K}^{+}}}\right) \left(\frac{\varepsilon_{\mathcal{K}^{+}e^{+}e^{-}}}{\varepsilon_{\mathcal{K}^{+}\mu^{+}\mu^{-}}}\right) \left(\frac{\varepsilon_{J/\psi(\mu^{+}\mu^{-})\mathcal{K}^{+}}}{\varepsilon_{J/\psi(e^{+}e^{-})\mathcal{K}^{+}}}\right)$$

• Analysis done in the experimentally and theoretically favoured region $1 < q^2 < 6 \text{ GeV}^2/c^4$

\mathcal{R}_K , signal yields

19

\mathcal{R}_K , results with Run-I data

Systematic uncertainties

[PRL 113 (2014) 151601]

	$B^+ \rightarrow J/\psi (\mu^+ \mu^-) K^+$	$B^+ \rightarrow K^+ \mu^+ \mu^-$	$B^+ \rightarrow J/\psi (e^+ e^-) K^+$	$B^+ \rightarrow K^+ e^+ e^-$
sig models	-	-	-1.0%	-1.0%
bkg models	-	-	+0.0%	+0.5%
bin migration	-	-	-	1.6%
trigger efficiency	-	3%	-	3%
Kaon PID	+0.2%	-0.1%	-2.0%	-1.9%
Electron PID	-	-	+3.0%	+3.0%
Muon PID	-0.1%	+0.1%	-	-
K-e veto	-	-	+0.1%	+0.3%

• $R_{K} = 0.745^{+0.090}_{-0.074} \pm 0.036$, compatible with SM within 2.6 σ

- ▶ Previous Run 1 result vs. this Run 1 result (new reconstruction selection): $< 1 \sigma$;
- Run 1 result vs. Run 2 result: 1.9σ .

Rare B decays at LHCb

 $\mathcal{R}_{K^{*0}}$

$$R_{K^{*0}} = \frac{\mathcal{B}(B^0 \to K^{*0} \mu^+ \mu^-)}{\mathcal{B}(B^0 \to K^{*0} J/\psi \,(\to \mu^+ \mu^-))} \bigg/ \frac{\mathcal{B}(B^0 \to K^{*0} e^+ e^-)}{\mathcal{B}(B^0 \to K^{*0} J/\psi \,(\to e^+ e^-))}$$

$\mathcal{R}_{K^{*0}}$, results with Run-I data

• Deviations from SM seen by LHCb ($\sim 2.4\sigma$)

• PRL 103 (2009) 171801

Photon polarization in B_s^0 • Photons in $b \rightarrow s\gamma$ mainly left-handed • Time-dependent signal rate W $\mathcal{P}(t) \propto e^{-\Gamma_s t} \{ \cosh\left(\Delta\Gamma_s t/2\right) - \mathcal{A}^{\Delta} \sinh\left(\Delta\Gamma_s t/2\right) \}$ $+\zeta C \cos(\Delta m_s t) - \zeta S \sin(\Delta m_s t) \}$ with $\mathcal{A}^{\Delta} \propto 2 \frac{\gamma_R}{m}$. $\mathcal{A}^{\Delta}_{SM} = 0.05 \pm 0.03$ 0005 MeV/C² Candidates / (25 MeV/c² LHCb 500 LHCb + Data + Data - Model - Model $B^0 \rightarrow K^{*0} \gamma$ 400 $B^0_s \rightarrow \phi \gamma$ ···· Signal \$3₂₀₀₀ Peaking Peaking $B^0 \rightarrow K^{*0} \eta$ 300 Missing kaon Missing pion -4.1k 24.8k Combinatorial: $B \rightarrow K \pi \pi^0 X$ 200 Combinatorial 100 500 0 5000 5500 6000 5000 5500 6000 $m(K^{*0}\gamma)$ [MeV/ c^2] $m(\phi \gamma)$ [MeV/ c^2] Jibo HE (UCAS) Rare B decays at LHCb

$B_s^0 \rightarrow \phi \gamma$, untagged analysis

• Assuming equal mixture of B_s^0/\overline{B}_s^0 , simplified

 $\mathcal{P}(t) \propto e^{-\Gamma_s t} \{ \cosh\left(\Delta\Gamma_s t/2\right) - \mathcal{A}^{\Delta} \sinh\left(\Delta\Gamma_s t/2\right) \}$

Measured

 $\mathcal{A}^{\Delta} = -0.98^{+0.46+0.23}_{-0.52-0.20}$

$B_s^0 \rightarrow \phi \gamma$, tagged analysis

- Same dataset, with flavor-tagging $\mathcal{P}(t) \propto e^{-\Gamma_s t} \{ \cosh\left(\Delta\Gamma_s t/2\right) - \mathcal{A}^{\Delta} \sinh\left(\Delta\Gamma_s t/2\right) \}$ $+\zeta C \cos\left(\Delta m_s t\right) - \zeta S \sin\left(\Delta m_s t\right) \}$ arXiv:1905.06284] $\mathcal{A}_{\phi\gamma}^{\Delta} \approx \frac{\text{Re}\left(e^{-i\phi_{s}}C_{7}C_{7}'\right)}{|C_{7}|^{2} + |C_{7}'|^{2}} \quad S_{\phi\gamma}^{\Delta} \approx \frac{\text{Im}\left(e^{-i\phi_{s}}C_{7}C_{7}'\right)}{|C_{7}|^{2} + |C_{7}'|^{2}}$
 - First measurement of S/C in radiative B_s^0 decay

$$S_{\phi\gamma} = 0.43 \pm 0.30 \pm 0.11$$

 $C_{\phi\gamma} = 0.11 \pm 0.29 \pm 0.11$
 $\mathcal{A}_{\phi\gamma}^{\Delta} = -0.67 \substack{+0.37 \\ -0.41} \pm 0.17$

Observation of $\Lambda_h^0 \to \Lambda \gamma$

- Baryonnic $b \rightarrow s\gamma$ not observed yet. Upper limits set by CDF $\mathcal{B} < 1.9 \times 10^{-3}$ [CDF, PRD 66 (2002) 112002]
- [PRL 123 (2019) 031801] In SM, $\mathcal{B} \sim 0.06 - 1 \times 10^{-5}$

• First observation, BR:

 $\mathcal{B}(\Lambda_b^0 \to \Lambda \gamma) = (7.1 \pm 1.5 \pm 0.6 \pm 0.7) \times 10^{-6}$

Rare B decays at LHCb

 $K_{\rm S}^0 \rightarrow \mu^+ \mu^-$

 SM prediction: BR=(5.0±1.5)×10⁻¹², can be enhanced by up to factor 100

 10^{-6}

 10^{-7}

 10^{-8}

Previous limit

Summary

• LHCb performed the world-leading measurements of rare *B* decays:

– Very rare decays, e.g., $B^0_{(s)} \rightarrow \mu^+ \mu^-$, $B^0_{(s)} \rightarrow \tau^+ \tau^-$

– LFV, e.g.,
$$B^0_{(s)}
ightarrow au^+ \mu^-$$

– Electroweak penguin, e.g., $B^0 \to K^{*0} \mu^+ \mu^-$, $\mathcal{R}_{K^{(*0)}}$

- Radiative, e.g., $B_s^0 \rightarrow \phi \gamma$, $\Lambda_b^0 \rightarrow \Lambda \gamma$
- Rare Strange, e.g., $K_S^0 \rightarrow \mu^+ \mu^-$
- Your suggestions are always appreciated!