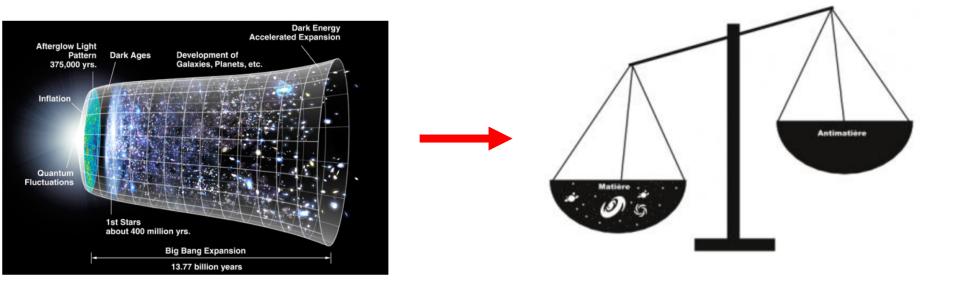


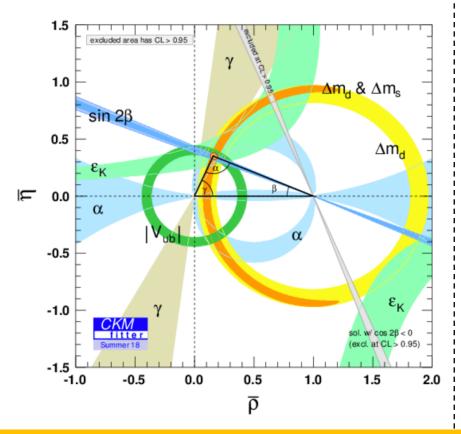
Recent highlights of CPV measurements in B decays at LHCb

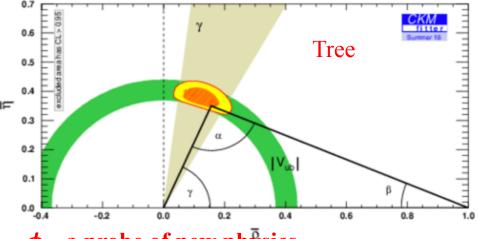

钱文斌(Wenbin Qian)

中国科学院大学(University of Chinese Academy of Sciences) 2019/07/30

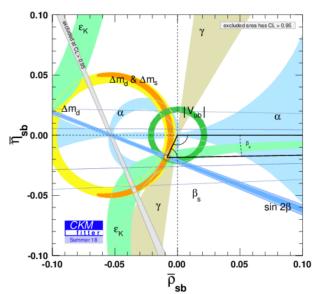
呼和浩特

第17届全国重味物理和CP破坏研讨会


Matter-antimatter asymmetry


- Central question of physics: how the Universe develops into current matterdominated state from Big Bang
- Sakharov conditions: C and CP violation required
- Current SM: CKM mechanism, but orders of magnitude smaller! Need to search for new sources of CPV

Global fit


Precision measurements ⇒ global fit
 ⇒ deviation from SM and find new
 CPV sources (NP)

SM baseline, γ least precise measurement

 ϕ_s , a probe of new physics

Outline

- Recent results on γ measurements
- Recent updates on ϕ_s
- Highlights for CPV in charmless B decays
- Conclusion

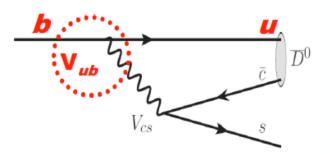
Angle γ

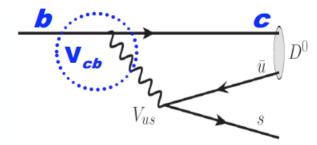
• CPV in SM $\propto \sin \gamma$, key element of CKM matrix (mechanism)

PRL 55 (1985) 1039

$$\gamma = \arg\left[-V_{ud}V_{ub}^*/(V_{cd}V_{cb}^*)\right]$$

Direct:
$$\gamma = (73.5^{+4.3}_{-5.0})^{\circ}$$

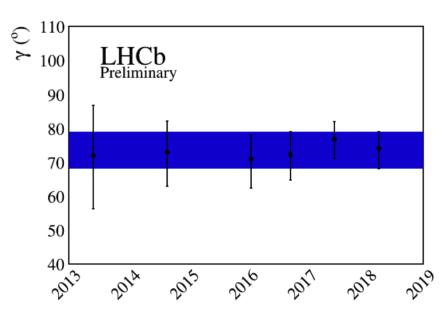

VS


New Physics?

indirect: $\gamma = (65.6^{+1.0}_{-3.4})^{\circ}$

 γ at tree level: clean theory prediction, $\delta \gamma / \gamma \sim 10^{-7}$

JHEP 1401 (2014) 051

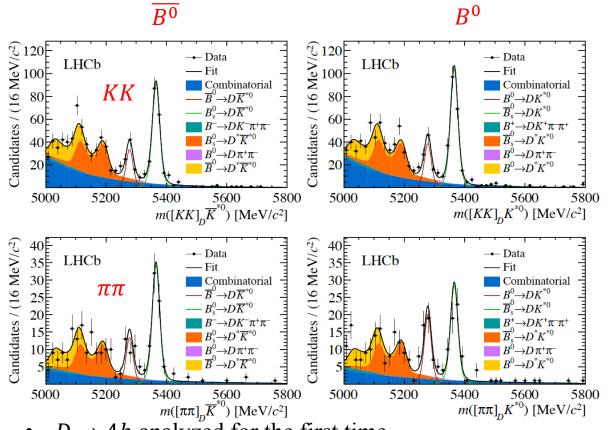


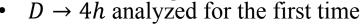
• Least well known CKM parameters before LHCb, bottle net for understanding CKM mechanism

Continuing efforts from LHCb

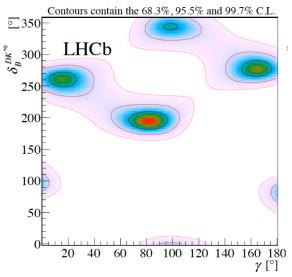
• LHCb reduces its uncertainties by more than a factor of 2 and will do more

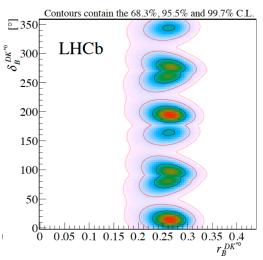
Tree-level γ: sensitive channels
 (B → D^(*)h(h) etc.) with small BFs,
 need to combined them to achieve
 best sensitivity

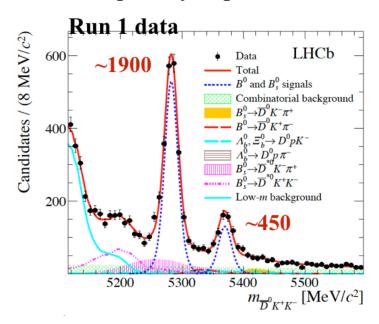

B decay	D decay	Method	Ref.	Dataset [†]
$B^+ \to DK^+$	$D \rightarrow h^+h^-$	GLW	[14]	Run 1 & 2
$B^+ \to DK^+$	$D \to h^+ h^-$	ADS	[15]	Run 1
$B^+ \to DK^+$	$D \to h^+\pi^-\pi^+\pi^-$	GLW/ADS	[15]	Run 1
$B^+ \to DK^+$	$D \to h^+ h^- \pi^0$	GLW/ADS	[16]	Run 1
$B^+ \to DK^+$	$D \to K_{\mathrm{s}}^0 h^+ h^-$	GGSZ	[17]	Run 1
$B^+ \to DK^+$	$D \to K_{\rm s}^0 h^+ h^-$	GGSZ	[18]	Run 2
$B^+ \to DK^+$	$D \to K_{\rm s}^0 K^+ \pi^-$	GLS	[19]	Run 1
$B^+ \to D^* K^+$	$D \to h^+ h^-$	GLW	[14]	Run 1 & 2
$B^+ \to DK^{*+}$	$D \to h^+ h^-$	GLW/ADS	[20]	Run 1 & 2
$B^+ \to DK^{*+}$	$D \to h^+\pi^-\pi^+\pi^-$	GLW/ADS	[20]	Run 1 & 2
$B^+ \to D K^+ \pi^+ \pi^-$	$D \to h^+ h^-$	GLW/ADS	[21]	Run 1
$B^0 \to DK^{*0}$	$D \to K^+\pi^-$	ADS	[22]	Run 1
$B^0\!\to DK^+\pi^-$	$D \to h^+ h^-$	GLW-Dalitz	[23]	Run 1
$B^0 \to DK^{*0}$	$D \to K_{\mathrm{s}}^0 \pi^+ \pi^-$	GGSZ	[24]	Run 1
$B_s^0 \to D_s^\mp K^\pm$	$D_s^+\!\to h^+h^-\pi^+$	TD	[25]	Run 1
$B^0\!\to D^\mp\pi^\pm$	$D^+\!\to K^+\pi^-\pi^+$	TD	[26]	Run 1

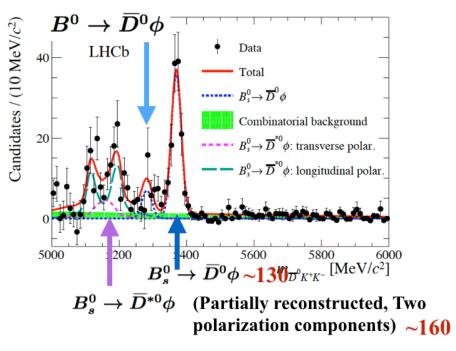

Updates from $B^0 \rightarrow DK^*$, $D \rightarrow hh$, 4h

LHCb-PAPER-2019-021


4.8 fb⁻¹

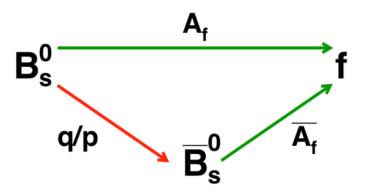

• Updates from previous 3 fb⁻¹ analysis with $D \to 2h$, and Dalitz plot analysis of $B \to DK\pi$

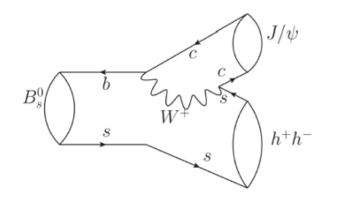

- First discovery on $B^0 \to D(\pi^+ K^-) K^{*0}$ and $B^0 \to D(4\pi) K^{*0}$
- $r_B^{DK^{*0}}$ constrained to 0.265 ± 0.023

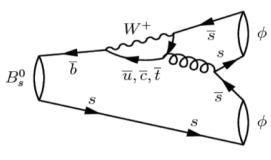


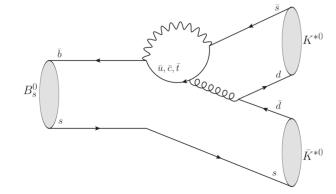
Other activities

- B⁰→D⁰KK and B_s→D⁰KK decays
 - Time-Dependent Dalitz analyses to access CKM angle γ and $\beta_{(s)}$
 - Not only probe $\sin 2\beta_{(s)}$, but also $\cos 2\beta_{(s)}$
 - Dalitz structures interesting for charm spectroscopy studies
- $B_s \rightarrow D^{(*)} \phi$ decays: special cases where final states are in CP eigenstates

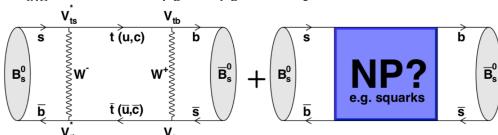


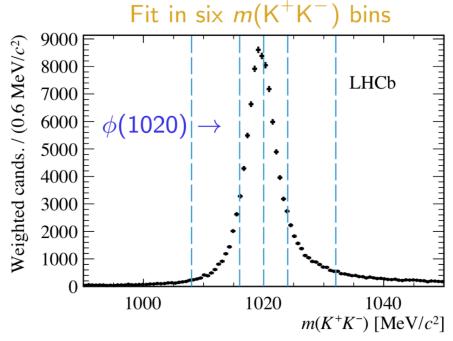


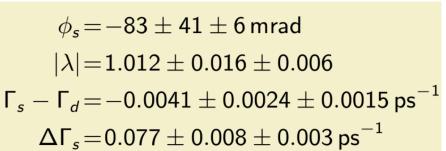

• Comparable sensitivity on γ w.r.t. that of the golden GGSZ mode expected for $B_s \rightarrow D^{(*)} \varphi$ decays and LHCb-China group are currently working on its measurements

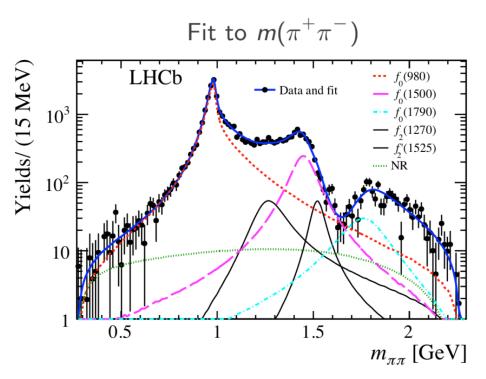

ϕ_s measurements

- ϕ_s : mixing-induced CPV phase in B_s^0 decays
- Depending on final states (quark-level diagram) difference, we have: $\phi_s^{c\bar{c}s}$, $\phi_s^{s\bar{s}s}$, $\phi_s^{d\bar{d}s}$ etc.

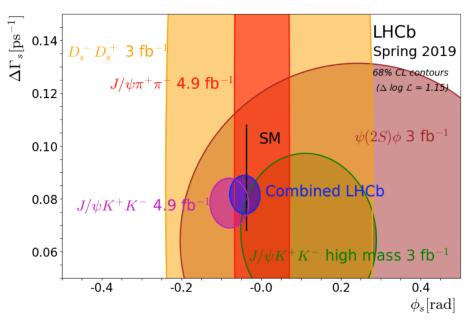


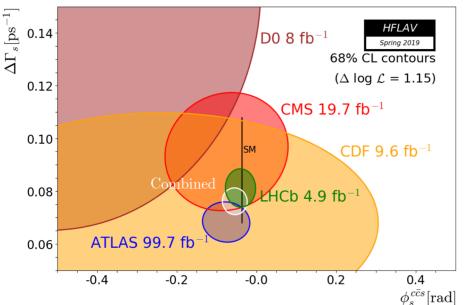





• SM prediction for $\phi_s^{c\bar{c}s} = -36.8^{+1.0}_{-0.8}$ mrad, and $\phi_s^{s\bar{s}s}$, $\phi_s^{d\bar{d}s}$ very small; NP can contribute and enhance them

• We have two important updates recently: $B_s^0 \to J/\psi \phi$ with 4.9 fb⁻¹ and $B_s^0 \to J/\psi \pi^+ \pi^-$ with 4.9 fb⁻¹





$$egin{aligned} \phi_{s} &= -57 \pm 60 \pm 11 \, ext{mrad} \ |\lambda| &= 1.01 \, ^{+0.08}_{-0.06} \pm 0.03 \ \Gamma_{H} - \Gamma_{d} &= -0.050 \pm 0.004 \pm 0.004 \, ext{ps}^{-1} \end{aligned}$$

- LHCb combination gives: $\phi_s = -0.041 \pm 0.025$ rad
- B physics now attracts more interests from GPD, there are also results from ATLAS on $B_s^0 \to J/\psi \, \phi$ (see weiming's talk)
- World average: $\phi_s = -0.054 \pm 0.020$ rad vs -0.0370 ± 0.0006 rad from prediction

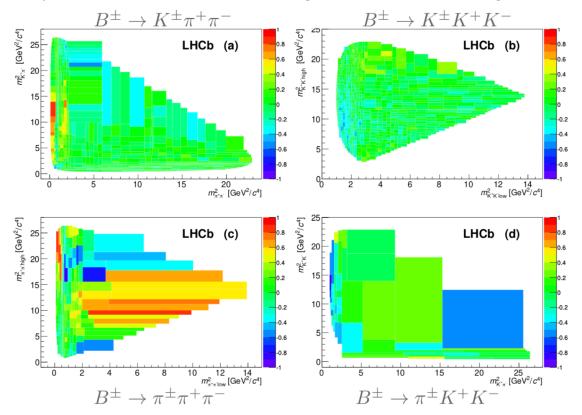
$\phi_s^{s\bar{s}s}$ and $\phi_s^{d\bar{d}s}$ situation

• LHCb has performed measurements of $B_s^0 \to (K^+\pi^-)(K^-\pi^+)$ with 3 fb⁻¹ data and gives

$$\phi_s^{s\overline{d}d} = -0.10 \pm 0.13 \pm 0.14$$
 rad,

• Update of $B_s^0 \to \phi \phi$ with 4.9 fb⁻¹ data and gives

$$\phi_s^{s\bar{s}s} = -0.073 \pm 0.115 \pm 0.027 \text{ [rad]}$$

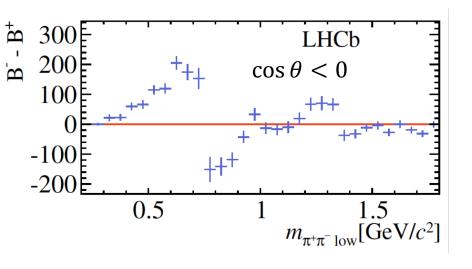

• LHCb prospects for ϕ_s in different processes:

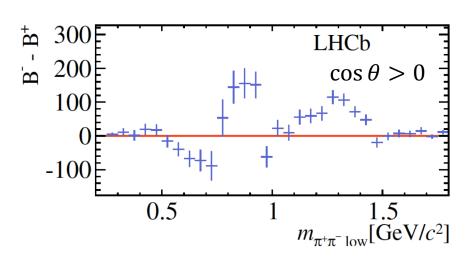
	Run 1	Run 2	Upgrade I	Upgrade II
$\phi_s^{car{c}s}$	37 mrad	15 mrad	4 mrad	2 mrad
$\phi_s^{dar{d}s}$	180 mrad	90 mrad	22 mrad	10 mrad
$\phi_s^{sar{s}s}$	150 mrad	75 mrad	19 mrad	8 mrad

• LHCb-China group heavily involved in $B_s^0 \to J/\psi \ KK/\pi\pi$ and $B_s^0 \to \phi\phi$

CPV in charmless B decays

- Interesting CPV pattern seen on Dalitz plot of $B \to h'^+h^+h^-$, h = K, π
- Dalitz plot analysis needed to shed more light on understanding nature of these CPV


• Now, amplitude analyses of $B^+ \to \pi^+ \pi^+ \pi^-$ and $B^+ \to \pi^+ K^+ K^-$, with much larger statistics than previous B-factory analyses, has been performed


CPV over **Dalitz** plot

Two competitive contributions needed to have CPV

$$A = a_1 e^{i(\delta_1 + \phi_1)} + a_2 e^{i(\delta_2 + \phi_2)} \qquad \bar{A} = a_1 e^{i(\delta_1 - \phi_1)} + a_2 e^{i(\delta_2 - \phi_2)}$$
$$A_{CP} = \frac{|A|^2 - |\bar{A}|^2}{|A|^2 + |\bar{A}|^2} \propto \sin(\delta_1 - \delta_2) \sin(\phi_1 - \phi_2)$$

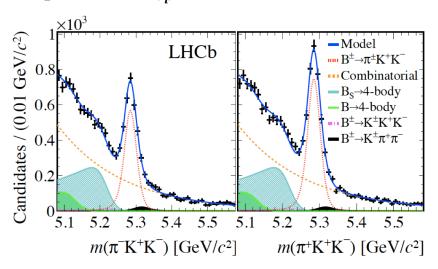
Distributions over PHSP offer possibilities to exam different sources of CPV

Dalitz plot analysis with CPV

• Amplitude with CPV is modelled as

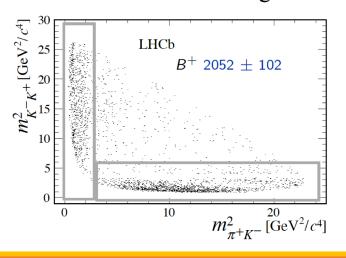
$$A(\Phi_3)=\sum_i A_i(\Phi_3)=\sum_i c_i F_i(\Phi_3)$$
 Strong dynamics $ar{A}(ar{\Phi}_3)=\sum_i ar{c}_i F_i(\Phi_3)$ Strong + weak

CPV then described as


$$c_i = (x_i + \Delta x_i) + i(y_i + \Delta y_i)$$

$$\bar{c}_i = (x_i - \Delta x_i) + i(y_i - \Delta y_i)$$

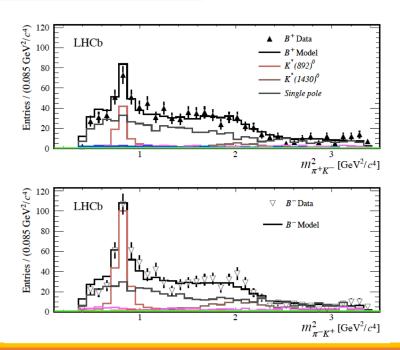
Observables:


$$\mathcal{F}_{i} \equiv \frac{\int d\Phi_{3} |A_{i}(\Phi_{3})|^{2} + \int d\Phi_{3} |\bar{A}_{i}(\Phi_{3})|^{2}}{\int d\Phi_{3} |A(\Phi_{3})|^{2} + \int d\Phi_{3} |\bar{A}_{i}(\Phi_{3})|^{2}} \qquad \mathcal{A}_{CP}^{i} \equiv \frac{\int d\Phi_{3} |\bar{A}_{i}(\Phi_{3})|^{2} - \int d\Phi_{3} |A_{i}(\Phi_{3})|^{2}}{\int d\Phi_{3} |\bar{A}_{i}(\Phi_{3})|^{2} + \int d\Phi_{3} |A_{i}(\Phi_{3})|^{2}}$$

3 fb⁻¹

• Global CPV observed previous: $A_{cp} = -0.123 \pm 0.017 \pm 0.012 \pm 0.007$

• Clear CPV found over different regions of Dalitz plot


• Resonant contributions:

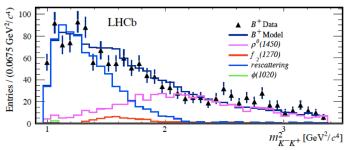
Contribution	Fit Fraction(%)	$A_{CP}(\%)$
K*(892) ⁰	$7.5\pm0.6\pm0.5$	$+12.3 \pm 8.7 \pm 4.5$
$K_0^*(1430)^0$	$4.5 \pm 0.7 \pm 1.2$	$+10.4 \pm 14.9 \pm 8.8$
Single pole	$32.3 \pm 1.5 \pm 4.1$	$-10.7 \pm 5.3 \pm 3.5$
$ ho$ (1450) $^{\circ}$	$30.7 \pm 1.2 \pm 0.9$	$-10.9 \pm 4.4 \pm 2.4$
$f_2(1270)$	$7.5 \pm 0.8 \pm 0.7$	$+26.7 \pm 10.2 \pm 4.8$
Rescattering	$16.4\pm0.8\pm1.0$	$-66.4 \pm \ 3.8 \pm \ 1.9$
ϕ (1020)	$0.3 \pm 0.1 \pm 0.1$	$+9.8 \pm 43.6 \pm 26.6$

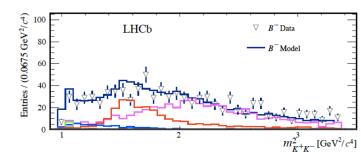
• $K\pi$ non-resonance modelled by

$$\mathcal{A}_{ ext{source}} = \left(1 + rac{s}{\Lambda^2}
ight)^{-1}$$
 $s = m_{\pi^{\pm}K^{\mp}}^2$ $\Lambda = 1 \, ext{GeV}/c^2$

Phys. Rev. D 92 (2015) 054010

• Resonant contributions:

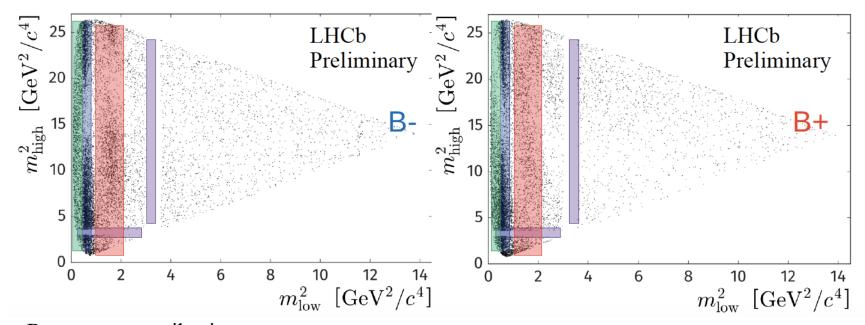

Contribution	Fit Fraction(%)	A _{CP} (%)
K*(892) ⁰	$7.5\pm0.6\pm0.5$	$+12.3 \pm 8.7 \pm 4.5$
$K_0^*(1430)^0$	$4.5 \pm 0.7 \pm 1.2$	$+10.4 \pm 14.9 \pm 8.8$
Single pole	$32.3 \pm 1.5 \pm 4.1$	$-10.7 \pm 5.3 \pm 3.5$
$ ho$ (1450) $^{\circ}$	$30.7 \pm 1.2 \pm 0.9$	$-10.9 \pm 4.4 \pm 2.4$
$f_2(1270)$	$7.5\pm0.8\pm0.7$	$+26.7\pm10.2\pm\;\;4.8$
Rescattering	$16.4 \pm 0.8 \pm 1.0$	$-66.4 \pm \ 3.8 \pm \ 1.9$
ϕ (1020)	$0.3 \pm 0.1 \pm 0.1$	$+9.8 \pm 43.6 \pm 26.6$


• *KK* non-resonance modelled by rescattering model

$$\mathcal{A}_{ ext{rescattering}} = \left(1 + rac{s}{\Lambda^2}
ight)^{-1} \sqrt{1 -
u^2} e^{2i\delta}$$

Phys. Rev. D 71 (2005) 074016

 CPV as larger as -66.4%, largest CPV found in a single decay



Dalitz plot analysis with $B \to \pi\pi\pi$

3 fb⁻¹

• Dalitz plot analysis with 20594 \pm 1569 events

• Resonant contributions:

 ρ - ω , $f_0(500)$, $f_0(980)$ region: S-P wave interference

 $f_2(1270)$ region: D-S, P wave interference

High mass: $KK-\pi\pi$ rescattering

S-wave description

- General agreed descriptions (RBW, GS) for $\pi\pi$ P- and D-waves;
- More complicated $\pi\pi$ S-wave, modeled in three different approaches:
 - Isobar model: different S-wave contributions are explicitly modeled:

f₀(500): RBW, complex pole parameterization

 $f_0(980)$: Flatte parametrization

 $T_{\sigma}(m_{13}) = \frac{1}{m_{\sigma}^2 - m_{13}^2},$

PRD 71 (2005) 054030

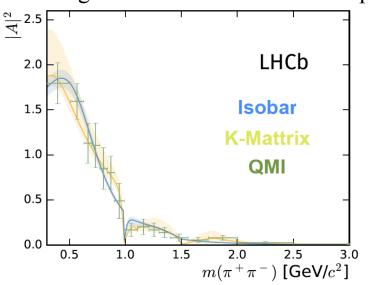
non-resonant: flat, Belle model, re-scattering model etc

$$T_{nr}(m_{13}, m_{23}) = c_{nr}(e^{-\alpha_{nr}m_{13}^2}e^{i\delta_1^{nr}} + e^{-\alpha_{nr}m_{23}^2}e^{i\delta_2^{nr}}),$$

$$T_{nr}(m_{13}) = \frac{a^{nr}}{1 + \frac{m_{13}^2}{\Lambda^2}} e^{i\delta^{nr}}$$

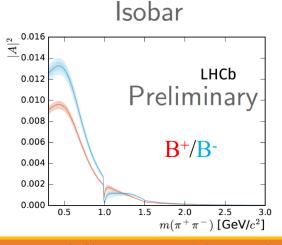
PRL 96 (2006) 251803

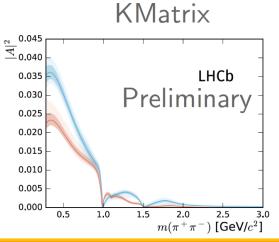
arXiv:hep-ph/1506.08332

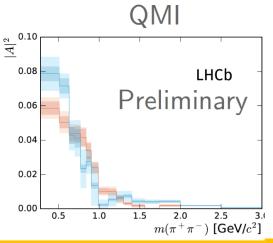

 K-Matrix approach: 5 poles and 5 decay channels; parameters from global fit to previous data while production vector parameters from fit to data

EPJA 16 (2003) 229

• Model independent approach (QMI): $\pi\pi$ S-wave binned into 13 bins; amplitudes in each bin obtained from fit to data (26 free parameters)


S-wave results


• Good agreement between the three approaches

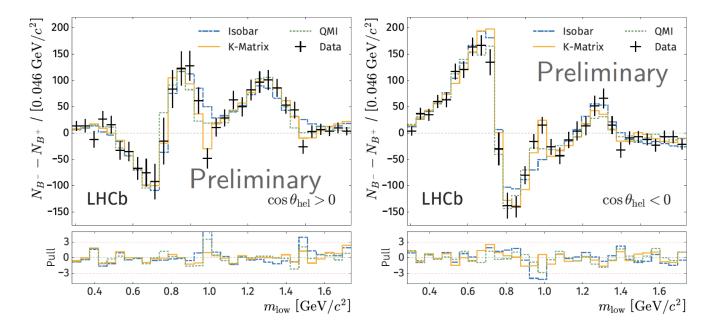


• Similar CPV pattern for the three approaches, as large as 10 σ

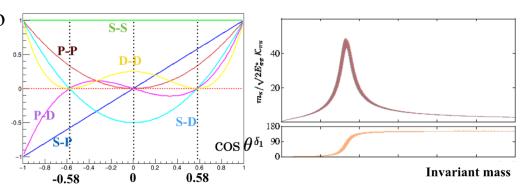
$B \rightarrow \pi\pi\pi$ results

• Fit fractions:

Component	Isobar	K-matrix	QMI
$\rho(770)^{0}$	$55.5 \pm 0.6 \pm 0.7 \pm 2.5$	$56.5 \pm 0.7 \pm 1.5 \pm 3.1$	$54.8 \pm 1.0 \pm 1.9 \pm 1.0$
$\omega(782)$	$0.50 \pm 0.03 \pm 0.03 \pm 0.04$	$0.47 \pm 0.04 \pm 0.01 \pm 0.03$	$0.57 \pm 0.10 \pm 0.12 \pm 0.12$
$f_2(1270)$	$9.0 \pm 0.3 \pm 0.8 \pm 1.4$	$9.3 \pm 0.4 \pm 0.6 \pm 2.4$	$9.6 \pm 0.4 \pm 0.7 \pm 3.9$
$\rho(1450)^{0}$	$5.2 \pm 0.3 \pm 0.4 \pm 1.9$	$10.5 \pm 0.7 \pm 0.8 \pm 4.5$	$7.4 \pm 0.5 \pm 3.9 \pm 1.1$
$\rho_3(1690)^0$	$0.5 \pm 0.1 \pm 0.1 \pm 0.4$	$1.5 \pm 0.1 \pm 0.1 \pm 0.4$	$1.0 \pm 0.1 \pm 0.5 \pm 0.1$
S-wave	$25.4 \pm 0.5 \pm 0.7 \pm 3.6$	$25.7 \pm 0.6 \pm 2.6 \pm 1.4$	$26.8 \pm 0.7 \pm 2.0 \pm 1.0$

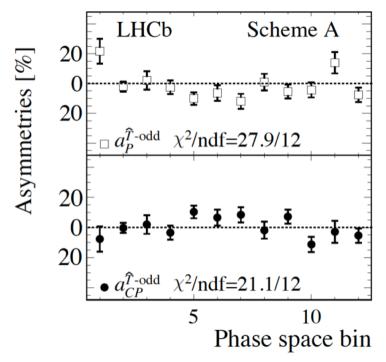

- Dominant contributions from S-wave and $\rho(770)$
- CP asymmetries:

Component	Isobar	K-matrix	QMI
$\rho(770)^0$	$+0.7 \pm 1.1 \pm 1.2 \pm 1.5$	$+4.2 \pm 1.5 \pm 2.6 \pm 5.8$	$+4.4 \pm 1.7 \pm 2.3 \pm 1.6$
$\omega(782)$	$-4.8 \pm 6.5 \pm 6.6 \pm 3.5$	$-6.2 \pm 8.4 \pm 5.6 \pm 8.1$	$-7.9 \pm 16.5 \pm 14.2 \pm 7.0$
$f_2(1270)$	$+46.8 \pm 6.1 \pm 3.6 \pm 4.4$	$+42.8 \pm 4.1 \pm 2.1 \pm 8.9$	$+37.6 \pm 4.4 \pm 6.0 \pm 5.2$
$\rho(1450)^{0}$	$-12.9 \pm 3.3 \pm 7.0 \pm 35.7$	$+9.0 \pm 6.0 \pm 10.8 \pm 45.7$	$-15.5 \pm 7.3 \pm 14.3 \pm 32.2$
$\rho_3(1690)^0$	$-80.1 \pm 11.4 \pm 13.5 \pm 24.1$	$-35.7 \pm 10.8 \pm 8.5 \pm 35.9$	$-93.2 \pm 6.8 \pm 8.0 \pm 38.1$
S-wave	$+14.4 \pm 1.8 \pm 2.1 \pm 1.9$	$+15.8 \pm 2.6 \pm 2.1 \pm 6.9$	$+15.0 \pm 2.7 \pm 4.2 \pm 7.0$

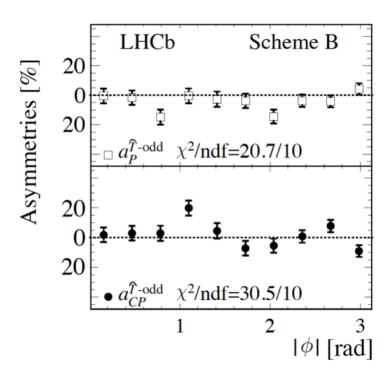

- Large CPV from S-wave and $f_2(1270)$, not $\rho(770)$
- First observation of large CPV in decays with tensor

New CPV pattern

• CPV around $\rho(770)$ pole well described by the three S-wave models



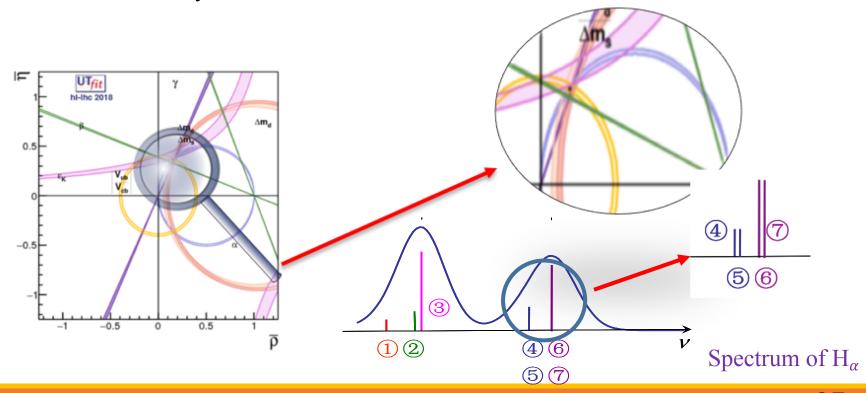
- Over 25σ significance for CPV due to S-P interference, first observation
- Sign-flip due to phase change and helicity angle change



The next CPV

- CPV has not yet been found in baryon decays
- We saw first evidence of 3.3σ 2 years ago in $\Lambda_b \to p3\pi$ using triple products

Binning based on resonant structures, e.g. $\rho(770)$, N^* , Δ^{++}



Binning based on ϕ angle

• Searches are performed extensively in LHCb, including $\Lambda_b \to p3\pi$, $\Lambda_b \to pK_S\pi$ (a CPV as large as 20% is predicted in arXiv:1412.1899)

Conclusion

- Plenty of interesting CPV measurements in B decays performed by the LHCb experiments, shedding new lights on our understanding of underlying dynamics
- One of the key goals of LHCb is to search for New physics through precision measurements. New physics may appear anywhere, maybe in flavor sector in year 202x

