The radiative decays $h_c \rightarrow \gamma \eta^{(\prime)}$ with relativistic corrections

Jun-Kang He and Chao-Jie Fan

Central China Normal University

July 30, 2019

Outline

- Motivation
- $h_c \rightarrow \gamma \eta^{(\prime)}$ with relativistic corrections
- Numerical Results
- Conclusion

Motivation

Motivation

Experimental aspect

$$\begin{split} \mathcal{B}(h_c \to \gamma \eta) &= (4.7 \pm 1.5 \pm 1.4) \times 10^{-4} \\ \mathcal{B}(h_c \to \gamma \eta') &= (1.52 \pm 0.27 \pm 0.29) \times 10^{-3} \\ R_{h_c} &= \frac{\mathcal{B}(h_c \to \gamma \eta)}{\mathcal{B}(h_c \to \gamma \eta')} = (30.7 \pm 11.3 \pm 8.7)\% \end{split}$$

$$\mathcal{B}(h_c \to \gamma \eta)$$
 $\mathcal{B}(h_c \to \gamma \eta')$
 R_{h_c}

 Zhu
 1.30 × 10⁻⁴
 1.94 × 10⁻³
 6.7%

 Fan
 1.1 × 10⁻⁴
 0.37 × 10⁻³
 30.1%

$$|\eta_8\rangle = |u\bar{u} + d\bar{d} - 2s\bar{s}\rangle/\sqrt{6}$$

 $|\eta_0\rangle = |u\bar{u} + d\bar{d} + s\bar{s}\rangle/\sqrt{3}$

M. Ablikim et al. (BESIII Collaboration) Phys. Rev. Lett. 116, 251802 (2016).
 R.-L. Zhu and J.-P. Dai, Phys. Rev. D94, 094034 (2016). NRQCD
 Q. Wu, G. Li, and Y. Zhang, Eur. Phys. J. C77, 336 (2017). Meson loops model
 C.-J. Fan and J.-K. He (2019), arXiv:1906.07353. pQCD

Bethe-Salpeter equation

For a quank-antiquark bound state:

$$({\it f}-\hat{m}_c)\Psi(K,q)({\it ar f}+\hat{m}_c)=i\int rac{\mathrm{d}^4 q'}{(2\pi)^4}\mathcal{K}(K,q,q')\Psi(K,q')$$

quark and antiquark momenta:

$$f=rac{K}{2}+q, \quad ar{f}=rac{K}{2}-q$$

In the rest frame of the bound state and CIA:

$$\mathcal{K}(\mathcal{K},q,q') = \mathcal{K}(\hat{q},\hat{q}') \qquad egin{cases} \hat{q}^{\mu} \equiv q^{\mu} - rac{q_{\parallel}}{M}\mathcal{K}^{\mu} \Rightarrow (0,\mathbf{q}) \ q_{\parallel} \equiv rac{q_{\cdot K}}{M} \Rightarrow q^{0} \end{cases}$$

The Salpeter wave function:

$$\psi(\hat{q}) = rac{i}{2\pi} \int \mathrm{d}q_{\parallel} \Psi(K,q)$$

Salpeter wave function

$$\psi(\hat{q}) = \hat{q} \cdot \epsilon \left[1 + \frac{k}{M} + \frac{\hat{q}k}{\hat{m}_c M} \right] \gamma^5 f(\hat{q}^2)$$

$$f(\hat{q}^2) = N_A \left(rac{2}{3}
ight)^{rac{1}{2}} rac{1}{\pi^{rac{3}{4}}eta_{h_c}^{rac{5}{2}}} \left|\hat{\mathbf{q}}
ight| e^{-rac{\hat{\mathbf{q}}^2}{2eta_{h_c}^2}}$$

normalization constant: N_A harmonic oscillator parameter: β_{h_c}

G.-L. Wang, Phys. Lett. B650, 15 (2007).
 S. Bhatnagar and L. Alemu, Phys. Rev. D97, 034021 (2018).

The typical Feynman diagrams

Figure: quark-untiquark contributions. Figure: gluonic contributions.

 $h_c
ightarrow \gamma \eta^{(\prime)}$ with relativistic corrections

Amplitude (quark-untiquark contributions)

$$T^{q}_{\alpha\beta}E^{\alpha}(\kappa)\epsilon^{*\beta}(\kappa) = \frac{1}{2}\int \frac{\mathrm{d}^{4}k_{1}}{(2\pi)^{4}}\mathcal{M}_{\alpha\beta\mu\nu}\mathcal{A}^{\mu\nu}\frac{i}{k_{1}^{2}+i\epsilon}\frac{i}{k_{2}^{2}+i\epsilon}E^{\alpha}(\kappa)\epsilon^{*\beta}(\kappa)$$

The coupling of $h_c \rightarrow \gamma g^* g^*$:

$$\mathcal{M}^{\alpha\beta\mu\nu}E_{\alpha}(\mathcal{K})\epsilon_{\beta}^{*}(k)\epsilon_{\mu}^{*}(k_{1})\epsilon_{\nu}^{*}(k_{2}) = \sqrt{3}\int\frac{\mathrm{d}^{4}q}{(2\pi)^{4}}\mathrm{Tr}\left[\Psi(\mathcal{K},q)\mathcal{O}(q)\right] \simeq -i\sqrt{3}\int\frac{\mathrm{d}^{3}\hat{q}}{(2\pi)^{3}}\mathrm{Tr}\left[\psi(\hat{q})\mathcal{O}(\hat{q})\right]$$

The coupling of $g^*g^* - \eta^{(\prime)}$:

$$\mathcal{A}^{\mu\nu} = -i(4\pi\alpha_s)\delta_{ab}\epsilon^{\mu\nu\rho\sigma}k_{1\rho}k_{2\sigma}\sum_{q=u,d,s}\frac{f^q_{\eta^{(\prime)}}}{6}\int_0^1 du\phi^q(u)\Big(\frac{1}{\bar{u}k_1^2 + uk_2^2 - u\bar{u}p^2 - m_q^2} + (u\leftrightarrow\bar{u})\Big)$$

The light-cone DA:

$$\phi^{q}(u) = 6u(1-u) \Big[1 + \sum_{n=2,4\cdots} c_{n}^{q}(\mu) C_{n}^{\frac{3}{2}}(2u-1) \Big]$$

A. Ali and A. Ya. Parkhomenko, Phys. Rev. D65, 074020 (2002).

S. S. Agaev et al., Phys. Rev. D90, 074019 (2014).

Chao-Jie Fan (CCNU)

 $h_c \rightarrow \gamma \eta^{(\prime)}$

Helicity amplitude (quark-untiquark contributions)

Lorentz invariance, parity conservation, and gauge invariance

$$T^{\boldsymbol{q}}_{\alpha\beta} \propto h_{\alpha\beta}, \qquad \quad h_{\alpha\beta} = -g_{\alpha\beta} + \frac{k_{\alpha}K_{\beta}}{K \cdot k}$$

Helicity projector:

$$\mathbb{P}^{lphaeta} = rac{1}{2} h_{lpha'eta'} \Big(- g^{lphalpha'} + rac{K^{lpha}K^{lpha'}}{M^2} \Big) \Big(- g^{etaeta'} \Big) = rac{1}{2} \Big(- g^{lphaeta} + rac{k^{lpha}K^{eta}}{k\cdot K} \Big)$$

Helicity amplitude:

$$H^{q}_{QCD} = T^{lphaeta} \mathbb{P}_{lphaeta} = rac{2Q_{c}}{3\sqrt{3}}\sqrt{4\pilpha}(4\pilpha_{s})^{2}\sum_{q=u,d,s}f^{q}_{\eta^{(\prime)}}H_{q}$$

🌲 J. G. Körner, J. H. Kühn, M. Krammer, and H. Schneider, Nucl. Phys. B229, 115 (1983).

Helicity amplitude (gluonic contributions)

The matrix elements of $\eta^{(\prime)}$ over two-gluon fields:

$$\langle \eta^{(\prime)}(p) | A^{a}_{\alpha}(x) A^{b}_{\beta}(y) | 0 \rangle = \frac{1}{4} \epsilon_{\alpha\beta\mu\nu} \frac{k^{\mu} p^{\nu}}{p \cdot k} \frac{C_{F}}{\sqrt{3}} \frac{\delta^{ab}}{8} f^{1}_{\eta^{(\prime)}} \int \mathrm{d} u e^{i(up \cdot x + \bar{u}p \cdot y)} \frac{\phi^{g}(u)}{u(1-u)}$$

Gluonic twist-2 DA:

$$\phi^{g}(u) = 30u^{2}(1-u)^{2} \sum_{n=2,4\cdots} c_{n}^{g}(\mu) C_{n-1}^{\frac{5}{2}}(2u-1)$$

Effective decay constant: $f^1_{\eta^{(\prime)}} = rac{1}{\sqrt{3}} (f^u_{\eta^{(\prime)}} + f^d_{\eta^{(\prime)}} + f^s_{\eta^{(\prime)}})$

Helicity amplitude:

$$H_{QCD}^{g} = \frac{2Q_{c}}{9}\sqrt{4\pi\alpha}(4\pi\alpha_{s})f_{\eta^{(\prime)}}^{1}H_{g}$$

P. Ball and G. W. Jones, JHEP 08, 025 (2007).
 S. S. Agaev et al., Phys. Rev. D90, 074019 (2014).

Decay widths and light-cone DAs

Decay widths:

$$\Gamma(h_c o \gamma \eta^{(\prime)}) = rac{2}{3} rac{M^2 - m^2}{16 \pi M^3} |H^q_{QCD} + H^g_{QCD}|^2$$

Light-cone DAs:

Table: Gegenbauer coefficients at the scale $\mu_0 = 1 \, {\rm GeV}$

S. S. Agaev et al., Phys. Rev. D90, 074019 (2014).

Phenomenological parameters

FKS scheme (quark flavor basis):

$$f_{\eta}^{u(d)} = \frac{f_q}{\sqrt{2}} \cos \phi \qquad f_{\eta}^s = -f_s \sin \phi$$
$$f_{\eta'}^{u(d)} = \frac{f_q}{\sqrt{2}} \sin \phi \qquad f_{\eta'}^s = f_s \cos \phi$$

Table: The values of ϕ , f_q and f_s with three phenomenological approaches

	ϕ°	f_q/f_π	f_s/f_π
LEPs [1]	40.6 ± 0.9	1.10 ± 0.03	1.66 ± 0.06
ηTFF [2]	40.3 ± 1.8	1.06 ± 0.01	1.56 ± 0.24
$\eta' TFF$ [2]	33.5 ± 0.9	1.09 ± 0.02	$\textbf{0.96} \pm \textbf{0.04}$

- [1] R. Escribano and J.-M. Frère, JHEP 06, 029 (2005).
- [2] R. Escribano, P. Masjuan, and P. Sanchez-Puertas, Phys. Rev. D89, 034014 (2014).

Our results

Table: The quark-antiquark contributions					
	LEPs	ηTFF	$\eta'TFF$	Exp	
$\mathcal{B}(h_c o \gamma \eta)$	$3.4 imes10^{-6}$	$6.0 imes10^{-6}$	$1.9 imes10^{-4}$	$(4.7\pm1.5\pm1.4) imes10^{-4}$	
${\cal B}(h_c o \gamma \eta')$	$1.13 imes 10^{-3}$	$1.02 imes 10^{-3}$	$0.60 imes 10^{-3}$	$(1.52\pm0.27\pm0.29)\times10^{-3}$	
R _{hc}	0.3%	0.6%	31.7%	$(30.7 \pm 11.3 \pm 8.7)\%$	
Table: The gluonic contributions					
	LEPs	ηTFF	$\eta'TFF$	Exp	
$\mathcal{B}(h_c o \gamma \eta)$	$1.3 imes10^{-6}$	$2.3 imes10^{-6}$	$0.7 imes10^{-4}$	$(4.7\pm1.5\pm1.4) imes10^{-4}$	
${\cal B}(h_c o \gamma \eta')$	$0.58 imes10^{-3}$	$0.53 imes10^{-3}$	$0.31 imes 10^{-3}$	$(1.52\pm 0.27\pm 0.29)\times 10^{-3}$	
R _{hc}	0.2%	0.4%	23.4%	$(30.7\pm11.3\pm8.7)\%$	
Table: Both quark-antiquark and gluonic contributions					
	LEPs	ηTFF	η′TFF	Exp	
$\mathcal{B}(h_c o \gamma \eta)$	$8.5 imes10^{-6}$	$1.5 imes10^{-5}$	$4.7 imes10^{-4}$	$(4.7\pm1.5\pm1.4) imes10^{-4}$	
$\mathcal{B}(\overline{h_c} \to \gamma \eta')$	$2.97 imes 10^{-3}$	$2.68 imes 10^{-3}$	$1.57 imes 10^{-3}$	$(1.52 \pm 0.27 \pm 0.29) imes 10^{-3}$	
R _{hc}	0.3%	0.6%	30.3%	$(30.7\pm11.3\pm8.7)\%$	

Chao-Jie Fan (CCNU)

 $h_c \to \gamma \eta^{(\prime)}$

July 30, 2019 12 / 17

Showing the contributions of relativistic corrections

Table: The quark-untiquark contributions				
	zero-binding approximation	B-S equation	Exp	
$\mathcal{B}(h_c o \gamma \eta)$	$0.7 imes10^{-4}$	$1.9 imes10^{-4}$	$(4.7\pm1.5\pm1.4) imes10^{-4}$	
${\cal B}(h_c o \gamma \eta')$	$0.26 imes10^{-3}$	$0.6 imes10^{-3}$	$(1.52\pm0.27\pm0.29) imes10^{-3}$	
R _{hc}	27.5%	31.7%	$(30.7\pm11.3\pm8.7)\%$	
Table: The gluonic contributions				
	zero-binding approximation	B-S equation	Exp	
$\mathcal{B}(h_c o \gamma \eta)$	$0.4 imes10^{-4}$	$0.7 imes10^{-4}$	$(4.7\pm1.5\pm1.4) imes10^{-4}$	
$\mathcal{B}(h_c o \gamma \eta')$	$0.19 imes10^{-3}$	$0.31 imes 10^{-3}$	$(1.52\pm0.27\pm0.29) imes10^{-3}$	
R _{hc}	23.8%	23.4%	$(30.7 \pm 11.3 \pm 8.7)\%$	
Table, Dath model without and alwayis contributions				

Table: Both quark-untiquark and gluonic contributions

	zero-binding approximation	B-S equation	Exp
$\mathcal{B}(h_c o \gamma \eta)$	$1.9 imes 10^{-4}$	4.7×10^{-4}	$(4.7\pm1.5\pm1.4) imes10^{-4}$
$\mathcal{B}(h_c o \gamma \eta')$	$0.63 imes 10^{-3}$	$1.57 imes10^{-3}$	$(1.52\pm 0.27\pm 0.29)\times 10^{-3}$
R _{hc}	30.2%	30.3%	$(30.7 \pm 11.3 \pm 8.7)\%$

C.-J. Fan and J.-K. He (2019), arXiv:1906.07353.

The prediction of the mixing angle ϕ

Using our calculation

$$R_{h_c} = \frac{M^2 - m_{\eta}^2}{M^2 - m_{\eta'}^2} \frac{|H_{QCD}^q + H_{QCD}^g|_{m=m_{\eta}}^2}{|H_{QCD}^q + H_{QCD}^g|_{m=m_{\eta'}}^2}$$

and the ratio

$$\frac{\Gamma(\eta \to \gamma \gamma)}{\Gamma(\eta' \to \gamma \gamma)} = \frac{m_{\eta}^3}{m_{\eta'}^3} \left(\frac{5\sqrt{2}\frac{f_s}{f_q} - 2\tan\phi}{5\sqrt{2}\frac{f_s}{f_q}\tan\phi + 2} \right)^2$$

Comparing the experimental values

 \Rightarrow

$$\begin{aligned} R_{h_c}^{exp} &= (30.7 \pm 11.3 \pm 8.7)\% \\ \Gamma^{exp}(\eta' \to \gamma\gamma) &= 4.36(14) \text{ KeV} \\ \Gamma^{exp}(\eta \to \gamma\gamma) &= 0.516(18) \text{ KeV} \end{aligned}$$

$$\phi = 33.8^\circ \pm 2.5^\circ$$

Chao-Jie Fan (CCNU)

 $h_c \rightarrow \gamma \eta^{(\prime)}$

The dependence of R_{h_c} on the mixing angle ϕ

Figure: The dependence of the ratio R_{h_c} on the mixing angle ϕ . The blue band is our calculated results. The yellow band denotes the experimental value of R_{h_c} with 1σ uncertainty.

UKQCD collaboration: $\phi = 34^{\circ} \pm 3^{\circ}$ ETM collaboration: $\phi = 38.8^{\circ} \pm 3.3^{\circ}$

- E. B. Gregory, A. C. Irving, C. M. Richards, and C. McNeile (UKQCD), Phys. Rev. D86, 014504 (2012).
- K. Ottnad and C. Urbach (ETM), Phys. Rev. D97, 054508 (2018).

Conclusion

- ✓ The helicity amplitude from the quark-antiquark contributions is insensitive to the light quark masses and the shapes of the $\eta^{(\prime)}$ DAs.
- ✓ Both the quark-antiquark content contributions and the gluonic content contributions are important in the decays $h_c \rightarrow \gamma \eta^{(\prime)}$.
- ✓ The contributions from the relativistic corrections are actually rather significant and meaningful in the exclusive *P*-wave decays $h_c \rightarrow \gamma \eta^{(\prime)}$, although there is no IR divergence.

Thanks for your attention!

Email: fancj@mails.ccnu.edu.cn