D meson mixing via dispersion relation

Hsiang-nan Li
Academia Sinica/Jinan U
Presented at Hohhot
July 31, 2019

In collaboration with H. Umeeda (梅枝), F. Xu, F. Yu

Goal

- Try to resolve long-standing (2-decade) challenge---how to understand large D meson mixing?
- All theories predicted mixing parameters $x, y<10 E-5$, but data show $x, y>10 E-3$

Year	Exper.	D^{0} final state(s)	$y(\%)$
2007	BABAR [31]	$K^{+} K^{-}, \pi^{+} \pi^{-}$	$1.03 \pm 0.33 \pm 0.19$
2007	Belle [30]	$K^{+} K^{-}, \pi^{+} \pi^{-}$	$1.31 \pm 0.32 \pm 0.25$
2001	CLEO [32]	$K^{+} K^{-}, \pi^{+} \pi^{-}$	$-1.2 \pm 2.5 \pm 1.4$
2001	Belle [33]	$K^{+} K^{-}$	$-0.5 \pm 1.0_{-0.8}^{+0.7}$
2000	FOCUS [34]	$K^{+} K^{-}$	$3.42 \pm 1.39 \pm 0.74$
1999	E791 [35]	$K^{+} K^{-}$	$0.8 \pm 2.9 \pm 1.0$

$$
D^{0}-\bar{D}^{0} \text { Mixing }
$$

- The time evolution 2×2 matrices
- Mass eigenstates in terms of weak eigenstates

$$
\left|D_{1,2}\right\rangle=p\left|D^{0}\right\rangle \pm q\left|\bar{D}^{0}\right\rangle
$$

- Mass difference and Width difference

$$
x \equiv \frac{\Delta m}{\Gamma}=\frac{m_{1}-m_{2}}{\Gamma}
$$

$$
y \equiv \frac{\Delta \Gamma}{2 \Gamma}=\frac{\Gamma_{1}-\Gamma_{2}}{2 \Gamma}
$$

SU(3) breaking

third generation can be neglected

$$
V_{c d}^{*} V_{u d}+V_{c s}^{*} V_{u s}+V_{0 b}^{*} V V^{2}=0 \quad \lambda \sim 0.2
$$

GIM: $x \sim y \sim 0$ in the $S U(3)$ limit
Wolfenstein

$$
\lambda^{2} * \lambda^{3}
$$

Parameter;
Cabibbo angle

Non-zero mixing from SU(3) breaking effects
more precisely, U-spin symmetry breaking
$D^{0}-\overline{D^{0}}$ mixing: data

$(x, y)=(0,0)$ is excluded by 11.5σ
Mixing is confirmed

$(|q / p|, \arg)=(1,0)$ is allowed
\rightarrow No evidence of CP violation

Challenges

- Charm not heavy enough to apply HQET, PQCD, NRQCD...; large $1 / m_{C}, \alpha_{S}\left(m_{C}\right)$ corrections
- Charm not light enough to apply chiral perturbation, and to allow finite number of decay channels
- GIM mechanism, charm mixing due to $\operatorname{SU}(3)$ breaking, difficult to estimate
- Multi-particle channels give significant contribution to y, difficult to calculate

Two major approaches: inclusive and exclusive

Inclusive approach:

quark level Heavy Quark Expansion

small SU(3)
breaking

$$
x \sim\left(m_{s} / m_{c}\right)^{4} \quad y \sim\left(m_{s} / m_{c}\right)^{6}
$$

$$
x \sim 10^{-6} \quad y \lesssim 0.9 \times 10^{-5} \quad\left[\begin{array}{l}
{[\text { Bobrowski, Lenz, }} \\
{[\text { Lenz,et al, 10'] }}
\end{array}\right.
$$

Short-distance contributions are small

Higer-dimensional operators

$\mathcal{O}\left(\alpha_{s}(4 \pi)\langle\bar{q} q\rangle / m_{c}^{3}\right)$

$$
\mathcal{O}\left(\alpha_{s}^{2}(4 \pi)^{2}\langle\bar{q} q\rangle^{2} / m_{c}^{6}\right)
$$

Exclusive Approach

phase

$$
y \approx \frac{\Gamma_{+}-\Gamma_{-}}{2 \Gamma}=\frac{1}{2} \sum_{n}\left(B r\left(D_{+} \rightarrow n\right)-B r\left(D_{-} \rightarrow n\right)\right)
$$ space factor

$$
\left.\left.=\left.\frac{1}{2 \Gamma} \sum_{n} \rho_{n}\left(\left|\left\langle D_{+}\right| H_{w}\right| n\right\rangle\right|^{2}-\left|\left\langle D_{-}\right| H_{w}\right| n\right\rangle\left.\right|^{2}\right),
$$

$$
C P|n\rangle=\eta_{\mathrm{CP}}^{n}|\bar{n}\rangle \quad \mathcal{A}\left(\bar{D}^{0} \rightarrow n\right)=\mathcal{A}\left(D^{0} \rightarrow \bar{n}\right)
$$

$$
\begin{aligned}
y & =\frac{1}{2 \Gamma} \sum_{n} \rho_{n} \eta_{\mathrm{CP}}(n)\left(\left\langle D^{0}\right| H_{w}|n\rangle\langle\bar{n}| H_{w}\left|D^{0}\right\rangle+\left\langle D^{0}\right| H_{w}|\bar{n}\rangle\langle n| H_{w}\left|D^{0}\right\rangle\right) \\
& =\sum \eta_{\mathrm{CKM}}(n) \eta_{\mathrm{CP}}(n) \cos \delta_{n} / \sqrt{\operatorname{Br}\left(D^{0} \rightarrow n\right) \operatorname{Br}\left(D^{0} \rightarrow \bar{n}\right)},
\end{aligned}
$$

sum up all the intermediate states
$(-1)^{n_{S}} \quad y_{P P+V P}=(0.36 \pm 0.26) \%$ or $(0.24 \pm 0.22) \%$ number of s quarks
[Cheng, Chiang, 2010]

Factorization-assisted topological amplitudes Li et al. 2012, 2017

- With higher precision in global fit

$$
\begin{array}{ll}
y_{P P+P V}=(0.21 \pm 0.07) \%, & \chi^{2}=6.9 \text { per d.o.f. } \\
y_{V V}=(0.28 \pm 0.47) \times 10^{-3} & \text { reduced from } 87 \\
\text { by Cheng, Chiang }
\end{array}
$$

- PP, PV, VV (amount up to $50 \% \mathrm{Br}$ of D decays) cannot explain y
- Other 2-body and multi-body modes relevant
- Not applicable to evaluation of x; exclusive approach not practical

possibilities discussed in the literature

HQE is not valid for charm? likely

 -testable in lifetime ratio?Lenz and Rauh, 2013

Higer dimensional operator $(\mathrm{D}=9,12)$?

-able to avoid severe GIM cancellation? unlikely
Bigi and Uraltsev, 2001

Beyond the standard model?

Golowich and Pakvasa and Petrov, 2007 last resort
20% breakdown of quark-hadron duality?
Jubb, Kirk, Lenz and Tetlalmatzi-Xolocotzi, 2017 who knows?

Way out of desperate situation?

OPE result for short-distance

D meson

Golowich and Petrov 2005

$$
y_{D} \simeq 6 \times 10^{-7}
$$

much below data
Suppressed by GIM

HFLAV at CHARM18
Exp. $\left\{\begin{array}{l}x_{D}=3.6_{-1.6}^{+2.1} \times 10^{-3} \\ y_{D}=6.7_{-1.3}^{+0.6} \times 10^{-3}\end{array}\right.$
Exp. $\left\{\begin{array}{c}\text { HFLAV at CHARM18 } \\ x_{D}=3.6_{-1.6}^{+2.1} \times 10^{-3} \\ y_{D}=6.7_{-1.3}^{+0.6} \times 10^{-3}\end{array}\right.$

B_{s} meson

Artuso, Borissov and Lenz, 2016

$$
\mathrm{SM}\left\{\begin{array}{l}
\Delta M_{s}=(18.3 \pm 2.7) \mathrm{ps}^{-1} \\
\Delta \Gamma_{s}=(0.088 \pm 0.020) \mathrm{ps}^{-1}
\end{array}\right.
$$

- Order of magnitude is not reproduced for D meson.
- The SM is in agreement with data for $\mathrm{B}(\mathrm{d}, \mathrm{s})$ meson.

Idea:

connection between high and low mass regions, via which HQE constrains D mixing

Dispersion relation

- Consider "fictitious D meson" of mass s

Implementation

- $s>\Lambda^{2}$: known heavy-quark input
- $s<\Lambda^{2}$: unknown to be solved
- Divide both sides by measured total width

$$
\begin{array}{r}
\int_{4 m_{\pi}^{2}}^{\Lambda^{2}} d s^{\prime} \frac{y\left(s^{\prime}\right)}{s-s^{\prime}}=\pi x(s)+\int_{\substack{\Lambda^{2} \\
\uparrow}}^{m_{W}^{2} / 2} d s^{\prime} \frac{y\left(s^{\prime}\right)}{s^{\prime}-s} \equiv \omega(s) \\
\text { where y vanishes to avoid end-point singularity }
\end{array}
$$

"potential" at high s

Width, mass difference of fictitious D

- Fictitious D meson can be heavier than b quark so b quark information is consistent on two sides of relation

- Γ_{12} and M_{12} both show thresholds of single b quark and b quark pair formulas referred to Buras, Slominski, Steger, 1984

Known input at large s

cusps cancel
low s contribution should not know b quark threshold
use this input at high s to constrain y at low s

Highly nontrivial to solve dispersion relation, took almost one year effort

One of many failed attempts

- Discretize integral equation

$$
\begin{array}{cc}
\frac{1}{\pi} \sum_{j=2}^{N} M_{i j} y_{j}=x\left(s_{N^{\prime}+i}\right)+\frac{1}{\pi} P \int_{m_{b}^{2}}^{M_{W}^{2}} \frac{y(s) d s}{s-s_{N^{\prime}+i}}, & (\text { for } i=1,2, \cdots, N-1) \\
\text { unknowns } \quad \text { input } & M_{i j}=\left\{\begin{array}{cc}
1 /(i-j), & i \neq j \\
0, & i=j
\end{array}\right.
\end{array}
$$

- initial condition $y_{1}=y\left(4 m_{\pi}^{2}\right)=0$
- Inverse matrix to get $y\left(m_{c}^{2}\right)$, and then $x\left(m_{c}^{2}\right)$

Singular matrix

- It is called non-singular Fredholm integral equation: domains of s and s^{\prime} do not overlap
- Matrix M becomes singular quickly for fine meshes, and solution diverges
the rows M_{ij} and $\mathrm{M}(\mathrm{i}+1) \mathrm{j}$ become almost identical, when mesh gets finer

After getting solution, we realized why M is singular. If it is not singular, there will be unique solution, which is perturbative solution, and small.

Deep frustration...until observing that $\omega(s)$ becomes $1 /$ s quickly

Qualitative behavior

- The shape of Ihs is close to $1 /\left(s-m^{2}\right)$ surprise! of order charm mass ${ }^{\uparrow}$ squared
- If exact $1 /\left(s-m^{2}\right)$, solution is $y\left(s^{\prime}\right) \sim \delta\left(s^{\prime}-m^{2}\right)$
- Recall pole term (δ-function) in spectral density for QCD sum rules...
- Deviation implies smearing of δ-function
- It hints that y shows substantial distribution only around the scale m_{c}^{2} within narrow interval. Magnitude of y can be enhanced.

Preliminary solution y(s)

- Assume CP symmetry
- Input b quark mass 4.8 GeV

about 30-40\% theoretical uncertainty

Preliminary solution $x(s)$

- Substitute $y\left(s^{\prime}\right)$ into dispersion relation, we get $x(s)$

Comparison with data

Parameter	No $C P$ Violation	$C P$ Violation Allowed	95% C.L. Interval $C P V$ Allowed	
$x(\%)$	$0.46_{-0.15}^{+0.14}$	0.32 ± 0.14	$[0.04,0.62]$	
$y(\%)$	0.62 ± 0.08	$0.69_{-0.07}^{+0.06}$	$[0.50,0.80]$	PDG 2019

Summary

- Promising to understand D mixing in SM via dispersion relation (1st successful approach)
- Solve for x, y at low mass from inputs at high mass; $\lambda_{s} \lambda_{b}, \lambda_{b}^{2}$ contributions dominate
- Naïve estimate agrees with data in order of magnitude
- Need to implement (systematic) HQET, include QCD correction, bag parameters, allow CPV, analyze theoretical uncertainty,...
- Applicable to kaon mixing?

Back-up slides

Buras' formulas for B mixing

$$
\left.\left.\begin{array}{rl}
M_{12} & =\frac{G_{\mathrm{F}}^{2} f_{p}^{2} m_{p} M_{\mathrm{W}}^{2} B_{p}}{12 \pi^{2}}\left(\lambda_{\mathrm{c}}^{2} U_{\mathrm{cc}}^{(\mathrm{d})}+\lambda_{\mathrm{t}}^{2} U_{\mathrm{tt}}^{(\mathrm{d})}+2 \lambda_{\mathrm{c}} \lambda_{\mathrm{t}} U_{\mathrm{ct}}^{(\mathrm{d})}\right)
\end{array}\right) \quad \begin{array}{c}
\text { virtual contribution } \\
\text { real contribution }
\end{array}\right)
$$

$$
\times\left\{\left(1+\frac{1}{4} x_{t} x_{l}\right)\left[3 x_{h}^{2}-x_{h}\left(x_{t}+x_{l}\right)-2\left(x_{t}-x_{l}\right)^{2}\right]+2 x_{h}\left(x_{t}+x_{l}\right)\left(x_{t}+x_{l}-x_{h}\right)\right\}
$$

Linear rise in width difference

$$
\begin{aligned}
\Gamma_{12}\left(\overline{\mathrm{~B}}_{p}^{0} \rightarrow \mathrm{~B}_{p}^{0}\right)= & -\frac{G_{\mathrm{F}}^{2} B_{p} f_{\mathrm{B}}^{2} m_{\mathrm{B}}^{(p)}}{8 \pi}\left[\lambda_{\mathrm{c}}^{(p)^{2}} U_{4}+\lambda_{\mathrm{t}}^{(p)^{2}} U_{5}+2 \lambda_{\mathrm{t}}^{(p)} \lambda_{\mathrm{c}}^{(p)} U_{6}\right] \\
U_{4}= & m_{\mathrm{b}}^{2} \eta_{4}^{(\mathrm{B})}\left[\sqrt{1-4 z}(1+2 z)-1+6 z^{2}-4 z^{3}\right] \\
& -\frac{8}{3} m_{\mathrm{c}}^{2} \eta_{5}^{(\mathrm{B})}\left[\sqrt{1-4 z}-(1-z)^{2}\right], \\
U_{5}= & m_{\mathrm{b}}^{2} \eta_{4}^{(\mathrm{B})} \\
U_{6}= & m_{\mathrm{b}}^{2} \eta_{4}^{(\mathrm{B})}\left(3 z^{2}-2 z^{3}\right)+\frac{4}{3} m_{\mathrm{c}}^{2} \eta_{5}^{(\mathrm{B})}(1-z)^{2},
\end{aligned}
$$

no top contribution linear rise renders integral not convergent

$$
M_{12}(s)=-\frac{P}{2 \pi} \int_{4 m_{\pi}^{2}}^{\infty} d s^{\prime} \frac{\Gamma_{12}\left(s^{\prime}\right)}{s^{\prime}-s}
$$

Difference from literature

- In 0402204 (Falk et al), physical D meson was considered, with external momentum being injected to vary its mass

$$
\Delta m=-\frac{1}{2 \pi} \mathrm{P} \int_{2 m_{\pi}}^{\infty} \mathrm{d} E\left[\frac{\Delta \Gamma(E)}{E-m_{D}}+\mathcal{O}\left(\frac{\Lambda_{\mathrm{QCD}}}{E}\right)\right]
$$

- Apply HQET to remove mo dependence, and get dispersion relation with external energy E
- Model shape of $\Delta \Gamma(E)$, and then compute x / y using dispersion relation

Bs mixing

- Integrate out W boson

- Delta B $=2$

Delta B = 1

HQET

hep-ph 9605259

- Width difference expanded

Wilson coefficient

$$
\sum_{n} \frac{C_{n}}{m_{b}^{n}} \mathcal{O}_{n}^{\Delta B=2}(0)
$$

- 4-fermion Delta $\mathrm{B}=2$ operators give bag parameters

$$
\begin{aligned}
Q & =\left(\bar{b}_{i} s_{i}\right)_{V-A}\left(\bar{b}_{j} s_{j}\right)_{V-A} \\
Q_{S} & =\left(\bar{b}_{i} s_{i}\right)_{S-P}\left(\bar{b}_{j} s_{j}\right)_{S-P}
\end{aligned}
$$

- Like those in Delta m

$$
M_{12, q}=\frac{G_{F}^{2}}{12 \pi^{2}}\left(V_{t q}^{*} V_{t b}\right)^{2} M_{W}^{2} S_{0}\left(x_{t}\right) \frac{B_{B_{q}}}{\|} f_{B_{q}}^{2} M_{B_{q}} \hat{\eta}_{B}
$$

Failed method 2

- Expand both unknown and input in terms of orthogonal functions
- Solve for coefficients of orthogonal functions using dispersion relation
- Expansion of delta function in terms of Legendre polynomials PI
- Coefficients al grow with I, no convergence
- Expected, because large coefficients needed to express infinity

