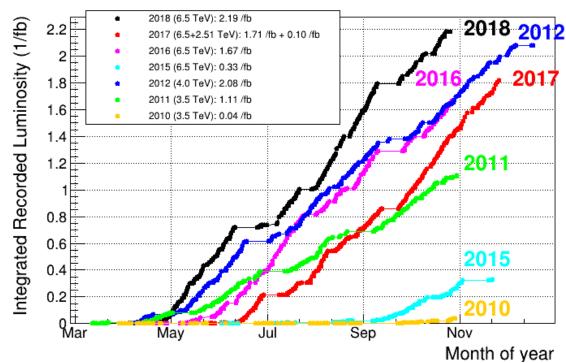
Hadron Spectroscopy and Exotic States at LHCb

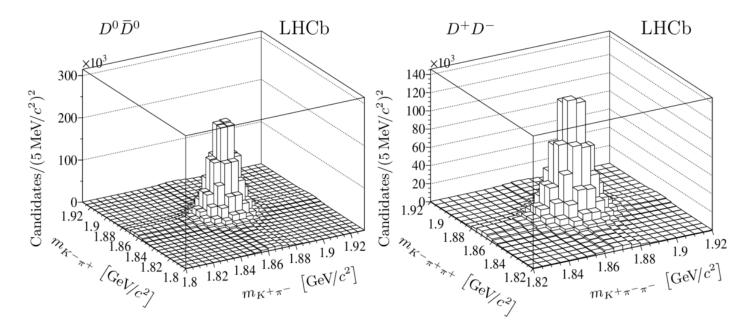
第一年印範大學

July 29th, 2019


Introduction

Recent LHCb results on hadron spectroscopy and exotic states

Introduction


- Characteristic LHCb is an factory for "standard" and "exotic" spectroscopy
- O High cross-section allows high yield of heavy hadrons
 - $ightarrow 10^{11} \ b \overline{b}$ / year
 - ⇒ $c\bar{c}$ 20 times more
- Heavy flavor production and spectroscopy is a broad topic
- This talk only covers a selection of recent results

LHCb Integrated Recorded Luminosity in pp, 2010-2018

New charmonium state in $D\overline{D}$

- First LHCb analysis using Run1+ Run2 data: 9 fb⁻¹
- Combined analysis of prompt D^+D^- and $D^0\overline{D^0}$
- Scan wide region of Q value above threshold

Strategy:

Reduce combinatorics background exploiting *D* lifetime

Tight \pm 20 MeV mass cuts

D mass constrained to known values

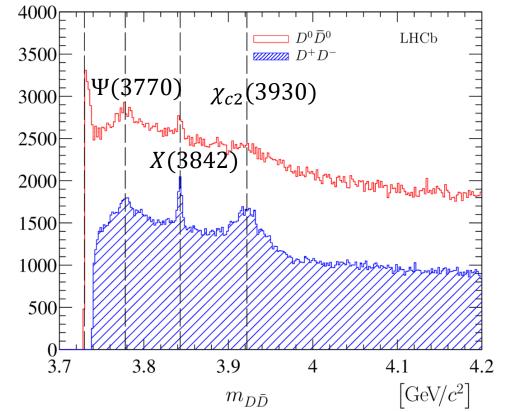
Fits performed in different mass regions for better paramerisation of background components

New charmonium state in $D\overline{D}$

JHEP 07 (2019) 035

5

- Narrow charmonium state X(3842) found in both channels
- Interpretation as the unobserved $\Psi_3(1^3D_3)$ with $J^{PC} = 3^{--}$
- First observations of prompt hadron production of $\Psi(3770)$ and $\chi_{c2}(3930)$


 $Candidates/(2 MeV/c^2)$

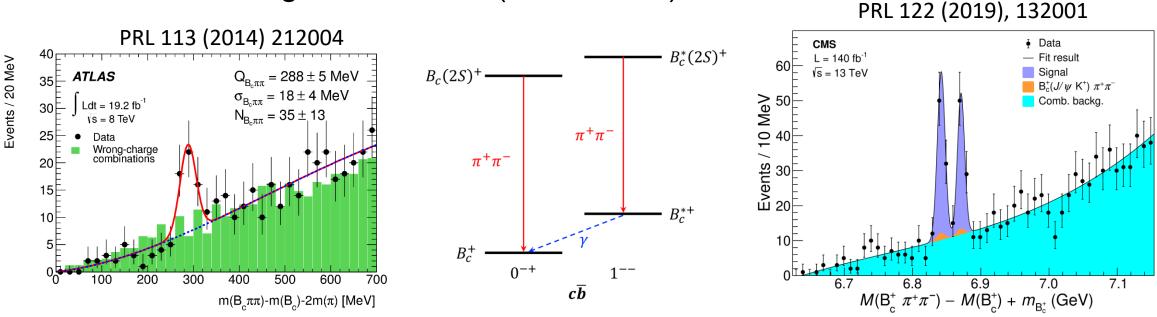
Properties:

$$m_{\rm X(3842)} = 3842.71 \pm 0.16 \pm 0.12 \,{
m MeV}/c^2$$

 $\Gamma_{\rm X(3842)} = 2.79 \pm 0.51 \pm 0.35 \,{\rm MeV}\,,$

2019/07/29

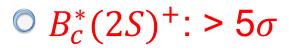
New charmonium state in $D\overline{D}$

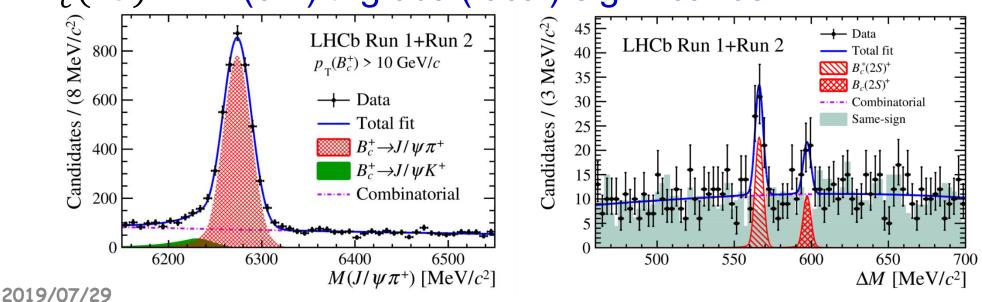

JHEP 07 (2019) 035

- The mass of $\chi_{c2}(3930)$ is 2σ lower than current world average
- The width of $\chi_{c2}(3930)$ is 2σ higher than current WG
- Mass value is in the middle between mass of this state and for the X(3915)
- Are they two distinct cc̄ states or only one? [PRL 115(2015) 0220001]

		$m_{\chi_{c2}(3930)} \left[\text{MeV}/c^2 \right]$	$\Gamma_{\chi_{c2}(3930)}$ [MeV
Belle BaBar	[17] $[18]$	$3929 \pm 5 \pm 2$ 2026 7 ± 2 7 ± 1 1	$29 \pm 10 \pm 2$ $21.3 \pm 6.8 \pm 3.6$
This analys	[]	$\begin{array}{c} 3926.7 \pm 2.7 \pm 1.1 \\ 3921.9 \pm 0.6 \pm 0.2 \end{array}$	$21.3 \pm 0.8 \pm 3.0$ $36.6 \pm 1.9 \pm 0.9$

Observation of excited B_c^+ state


- \bigcirc *B_c* spectroscopy
 - → First observation of B_c (CDF 1998)
 - ⇒ First observation of excited $B_c(2S)$ (ATLAS 2014)
 - → Resolving two radial-excited states, $(\uparrow\downarrow)^*$ and $(\uparrow\uparrow)^*$ (CMS 2019)
 - Confirming of two states (LHCb 2019)


Observation of excited B_c^+ state

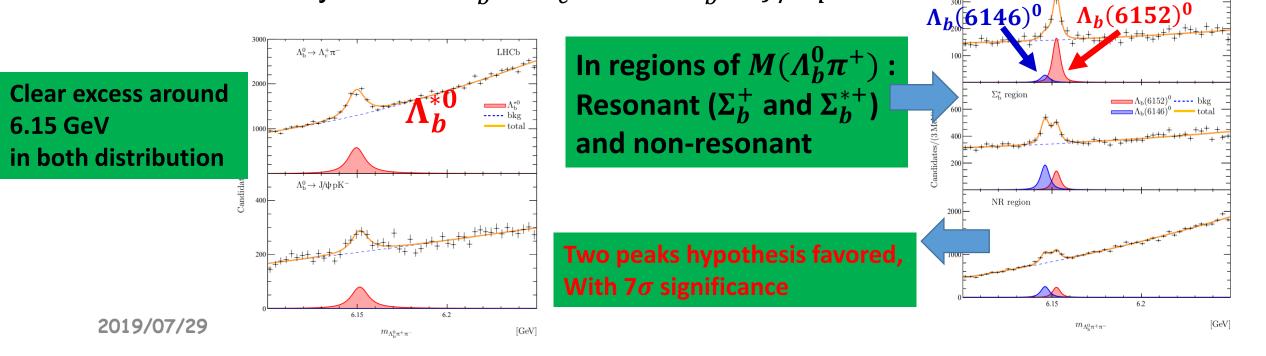
PRL 113 (2014) 212004

- Look for $\pi\pi$ transitions
- Main decay mode: $B_c(2S) \rightarrow B_c \pi^+ \pi^-$, $B_c^*(2S) \rightarrow B_c^*(\rightarrow B_c \gamma) \pi^+ \pi^-$
- Low energy photon (not reconstructed)

Observation of new resonances in $\Lambda_b^0 \pi^+ \pi^-$

• Previous study of Λ_b spectrum at LHCb: 1 fb⁻¹ of data

- → Discovery of $\Lambda_b(5912)^0$ and $\Lambda_b(5920)^0$
- Confirmed by CDF


PRL 109 172003, 2012 PRD 88 071101, 2013

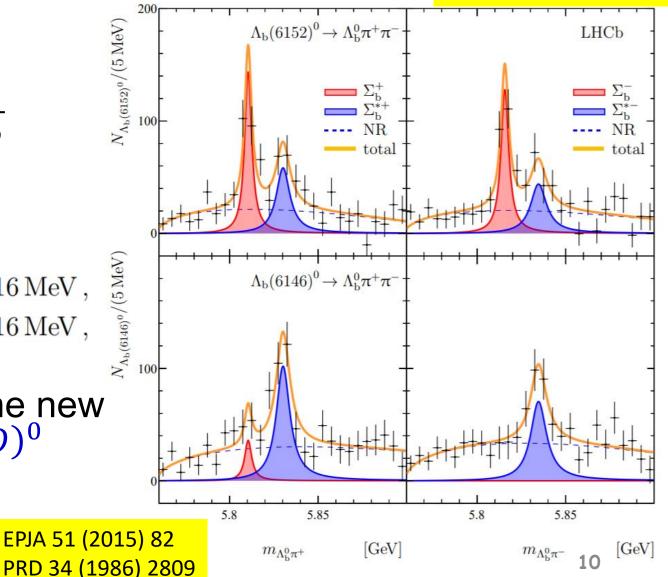
 $\Sigma_{\rm b}$ region

LHCb

○ New results with Run-1 and Run-2 data sample: 9 fb^{-1} of data

⇒ Two decay modes: $\Lambda_b^0 \to \Lambda_c^+ \pi^-$ and $\Lambda_b^0 \to J/\Psi pK$

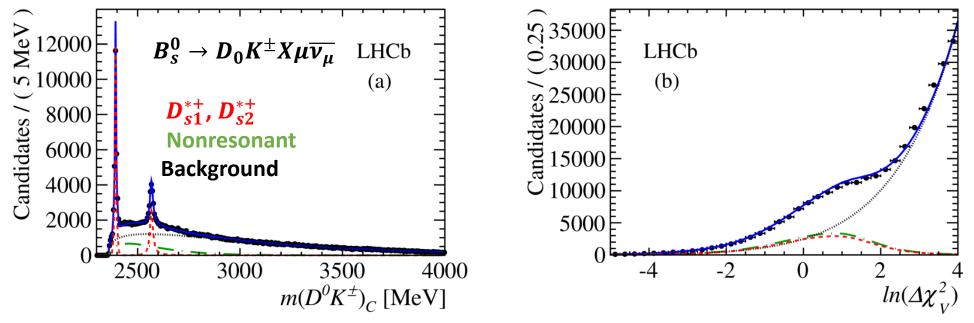
Observation of new resonances in $\Lambda_b^0 \pi^+ \pi^-$


LHCb-PAPER-2019-025

- $M(\Lambda_b^0 \pi^+)$ after background subtraction
- Different decay rates via Σ⁺_b and Σ^{*+}_b for observed states
 Results:

 $\begin{array}{lll} m_{\Lambda_{\rm b}(6146)^0} &=& 6146.17 \pm 0.33 \pm 0.22 \pm 0.16 \, {\rm MeV} \,, \\ m_{\Lambda_{\rm b}(6152)^0} &=& 6152.51 \pm 0.26 \pm 0.22 \pm 0.16 \, {\rm MeV} \,, \end{array}$

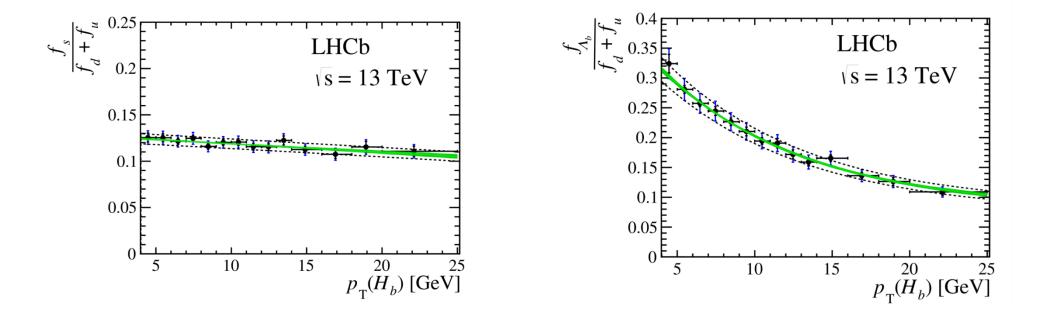
• Possible interpretation of the new states as a doublet of $\Lambda_b (1D)^0$ states with $J^P = \frac{3}{2}^+$ and $\frac{5}{2}^+$


2019/07/29

Measurement of *b*-hadron fractions at 13 TeV

ARXIV:1902.06794

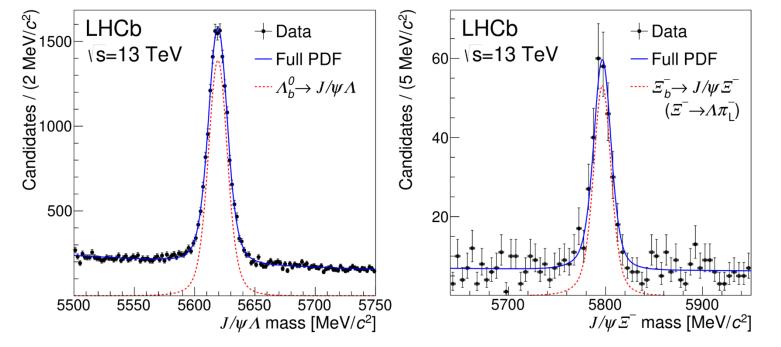
- \bigcirc Part of Run-2 data, 1.67 fb⁻¹
- Inclusive semileptonic decays to $H_c X \mu \overline{\nu_{\mu}}$ are used to reconstruct *b* hardons
- 2D fit to distinguish signal and background in decays to $H_c h X \mu \overline{\nu_{\mu}}$


Measurement of *b*-hadron fractions at 13 TeV

ARXIV:1902.06794

First measurement of b hadron fractions at 13 TeV

$$\Rightarrow \frac{f_s}{f_u + f_d} = 0.122 \pm 0.006, \frac{f_{\Lambda_b^0}}{f_u + f_d} = 0.259 \pm 0.018$$


⇒ Fragmentation fractions extracted as a function of p_T

Measurement of the mass and production rate of Ξ_b^- baryons

○ 3 fb⁻¹ @7, 8 TeV + 1.8 fb⁻¹ @13 TeV

 $\bigcirc \Xi_b^-$ reconstructed via $\Xi_b^- \to J/\Psi\Xi^-$, normalization: $\Lambda_b^0 \to J/\Psi\Lambda$

First measurement of Ξ_b^- production

2019/07/29

$$\frac{f_{\Xi_b^-}}{f_{\Lambda_b^0}} \frac{\mathcal{B}(\Xi_b^- \to J/\psi \,\Xi^-)}{\mathcal{B}(\Lambda_b^0 \to J/\psi \,\Lambda)} = (10.8 \pm 0.9 \pm 0.8) \times 10^{-2} \quad [\sqrt{s} = 7, 8 \,\text{TeV}],$$

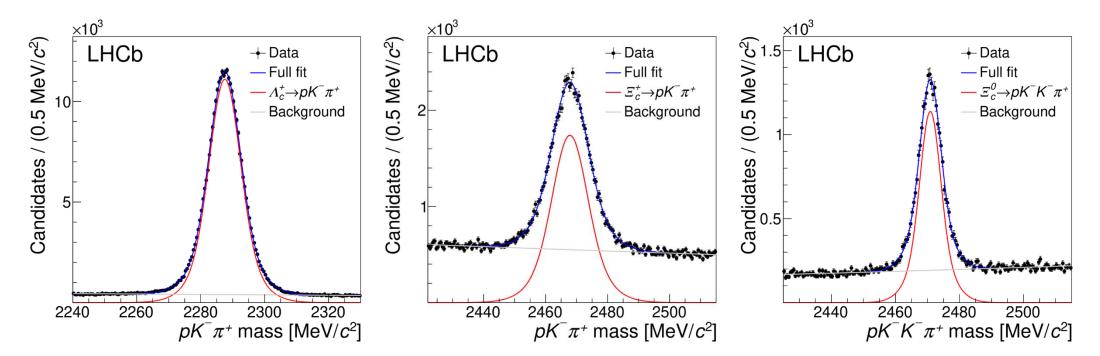
$$\frac{f_{\Xi_b^-}}{f_{\Lambda_b^0}} \frac{\mathcal{B}(\Xi_b^- \to J/\psi \,\Xi^-)}{\mathcal{B}(\Lambda_b^0 \to J/\psi \,\Lambda)} = (13.1 \pm 1.1 \pm 1.0) \times 10^{-2} \quad [\sqrt{s} = 13 \,\text{TeV}],$$
13

Measurement of the mass and production rate of Ξ_b^- baryons

O Assuming SU(3) symmetry, the fragmentation fraction is obtained $\frac{f_{\Xi_b^-}}{f_{\Lambda_b^0}} = (6.7 \pm 0.5 \pm 0.5 \pm 2.0) \times 10^{-2} \quad [\sqrt{s} = 7, 8 \, \text{TeV}],$

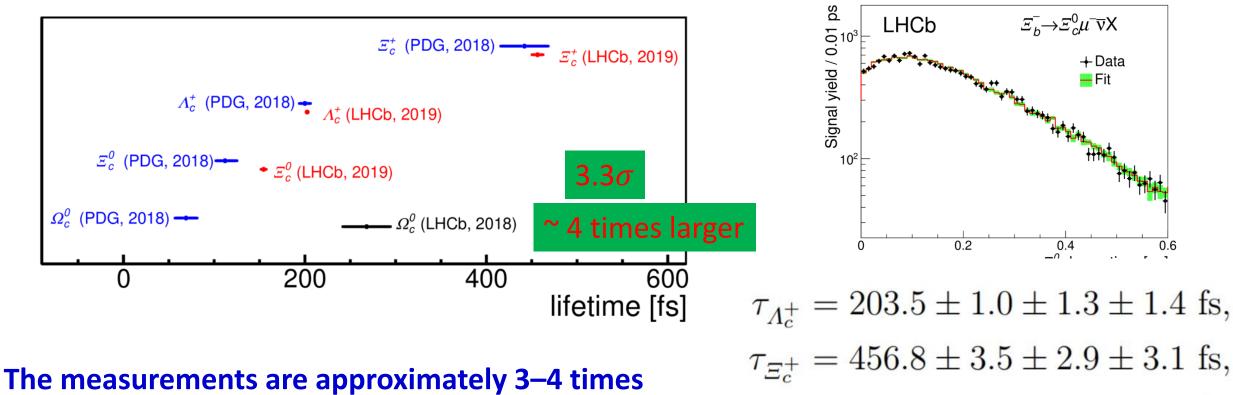
 $\frac{f_{\Xi_b^-}}{f_{A_b^0}} = (8.2 \pm 0.7 \pm 0.6 \pm 2.5) \times 10^{-2} \ [\sqrt{s} = 13 \,\text{TeV}].$

No significant production asymmetry observed


 $A_{\text{prod}}(\Xi_b^-) = (1.1 \pm 5.6 \pm 1.9)\% \ [\sqrt{s} = 7, 8 \text{ TeV}],$ $A_{\text{prod}}(\Xi_b^-) = (-3.9 \pm 4.9 \pm 2.5)\% \ [\sqrt{s} = 13 \text{ TeV}].$

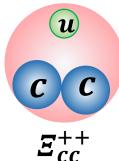
• The most precise measurement of Ξ_b^- mass $m(\Xi_b^-) = 5796.70 \pm 0.39 \pm 0.15 \pm 0.17 \text{ MeV}/c^2$,

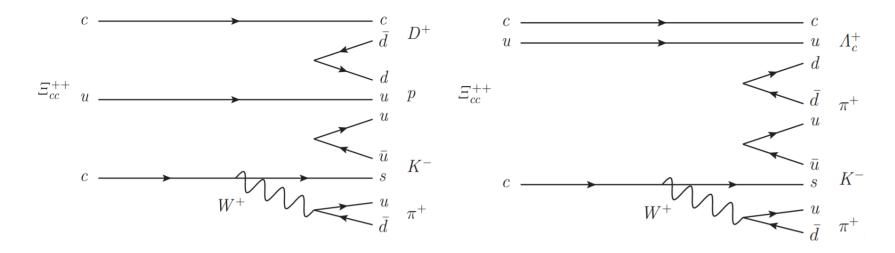
Precision measurement of the Λ_c^+ , Ξ_c^0 , and Ξ_c^+ baryons lifetimes


 \odot Use Run-1 data set: 3.0 fb⁻¹

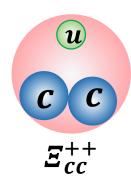
○ Decay channels: $\Lambda_c^+ \rightarrow pK^-\pi^+$, $\Xi_c^+ \rightarrow pK^-\pi^+$, $\Xi_c^0 \rightarrow pK^-K^-\pi^+$

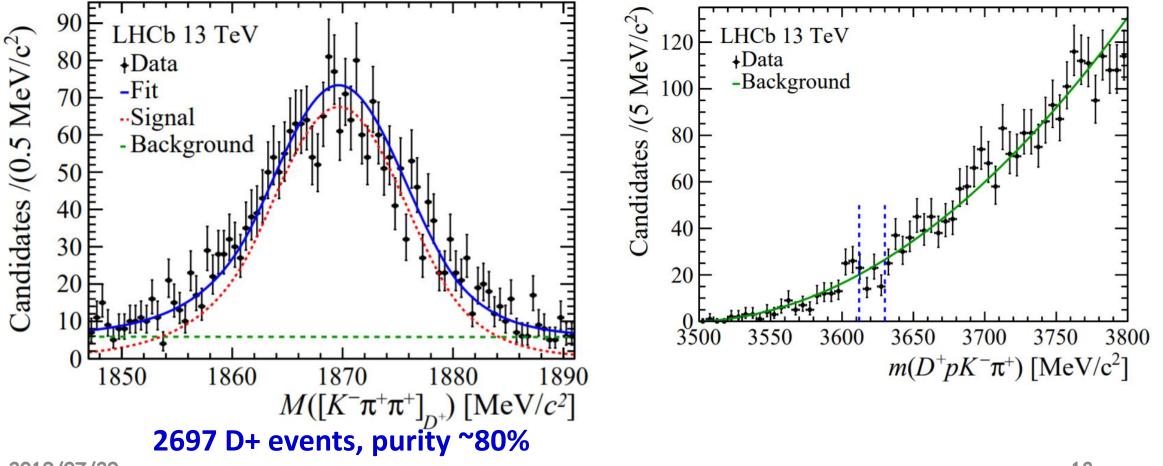
Precision measurement of the Λ_c^+ , Ξ_c^0 , and Ξ_c^+ baryons lifetimes


Fit decay time spectra to get lifetime information

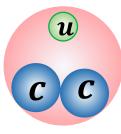

more precise than the current world average values

 $\tau_{\Xi_c^0} = 154.5 \pm 1.7 \pm 1.6 \pm 1.0$ fs,

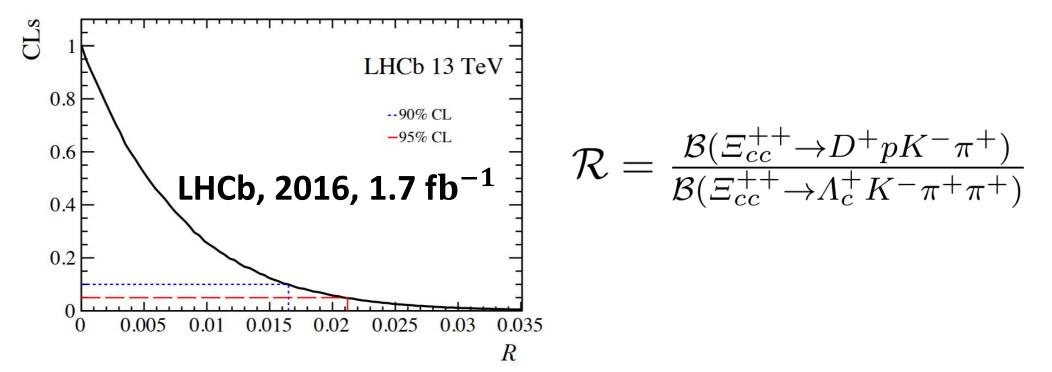

A search for $\mathcal{Z}_{cc}^{++} \rightarrow D^+ p K^- \pi^+$


- First observation of double charmed baryon triggered a lot of theoretical attention
- At LHCb: $D^+ \rightarrow K^- \pi^+ \pi^+$ trigger is very efficient
- Similar tree level amplitudes of the inclusive decay of these channels: but smaller phase space due to lesser energy release

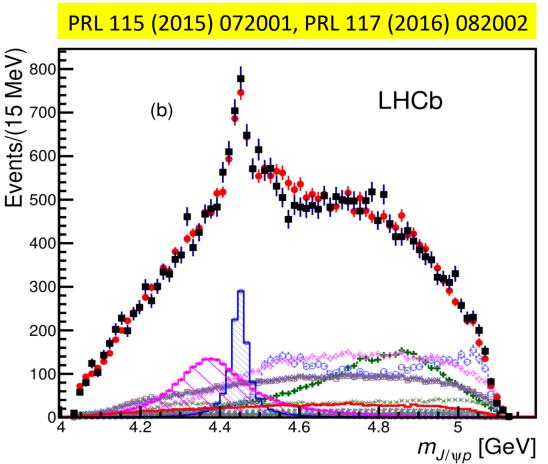
Mass distributions



After event selection


PAPER-2019-011 arXiv:1905.02421

Upper limit


PAPER-2019-011 arXiv:1905.02421

- No significant signal is found in the mass range 330-3800 MeV \mathcal{I}_{cc}^{++}
- Set Upper limit using CLs method:
 - ⇒ $R < 1.7(2.1) \times 10^{-2}$ at 90% (95%) CL level

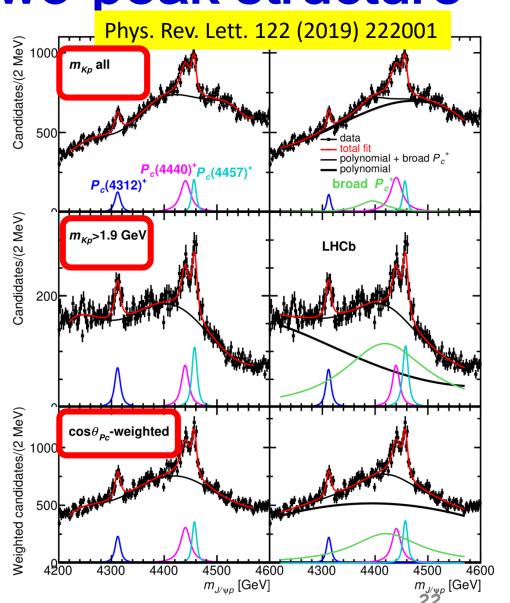
Experimental history of pentaquarks

- In 2015 LHCb report the observation of two pentaquark candidates
- Analysis performed with Run-1 data 3 fb⁻¹ using $\Lambda_b \rightarrow J/\Psi pK$
 - 26k signal candidates with 5.4% background
- Dalitz plot analysis (6D amplitude fit) confirmed 2 new states
- Followed by a model independent analysis to exclude reflections from Λ* resonances
- Two exotic states with opposite parities

Narrow $P_c(4312)^+$ and two-peak structure

- OUpdate of the analysis with full Run-1 and Run-2 data set
- 246k signal events of nice $\Lambda_b \rightarrow J/\Psi pK$
 - more than 9× statistics used in previous analysis
- \bigcirc More statistics \rightarrow finer binning
 - Reveals more complicate structures in the J/Ψp system
- Summary:

2019/07/29

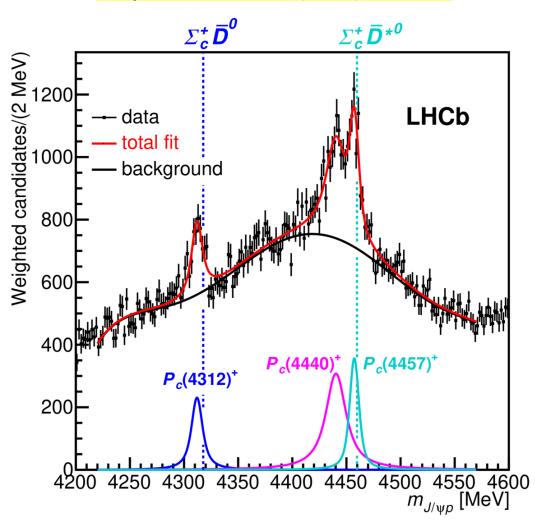

- Narrow peak at 4312 MeV: width comparable with experimental resolution (2-3 MeV)
- The structure at 4450 MeV now resolved into two narrow peaks at 4440 and 4457 MeV
- All statistical significance are well above 5σ

Phys. Rev. Lett. 122 (2019) 222001 € 1000 LHCb Candidates/(2 800 600 400 200 Candidates/(2 MeV) 005 005 000 005 000 LHCb 100 m_{Kn}>1.9 Ge\ 4.2 4.6 *m*_{J/₩D} [Ge**2**]

Narrow $P_c(4312)^+$ and two-peak structure

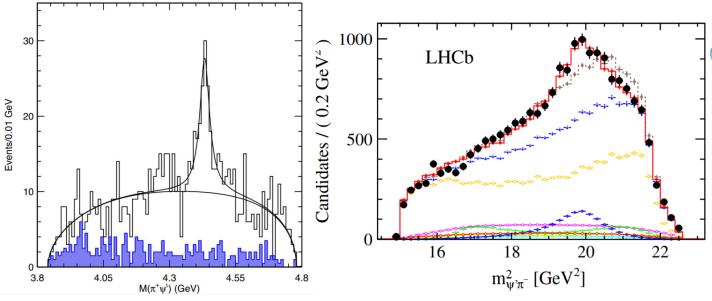
- O Amplitude analysis is challenging
 - ✤ size of sample
 - amplitude model
 - mass resolution
- Can reduce the contribution from $Λ^*$ reflections with $Λ^* p_T$ cuts
- Other cross checks performed

 For narrow peaks perform 1D fit to mass



2019/07/29

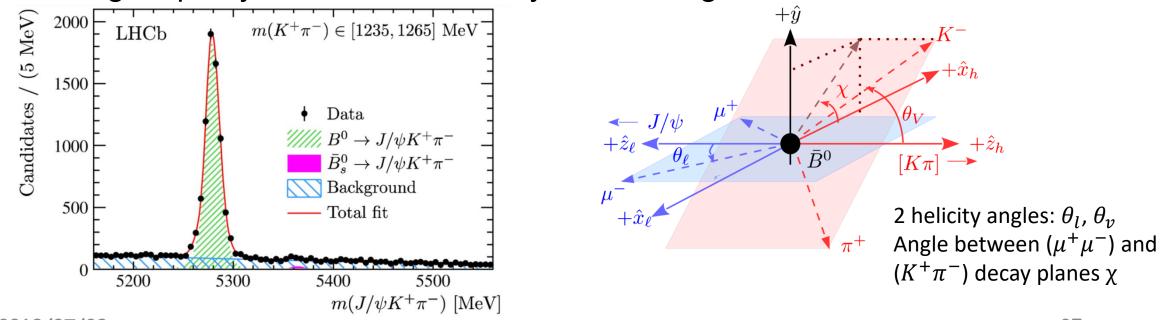
Narrow $P_c(4312)^+$ and two-peak structure


Phys. Rev. Lett. 122 (2019) 222001

- Wide P_c does not perturbate the fit to the lower mass states
- $P_c(4312)^+$ and $P_c(4440)^+$ are not near triangle diagram thresholds
- $P_c(4457)^+$ close to thresholds
- Data are described by BW than triangle-diagram terms
- Narrow widths and masses close to thresholds points toward baryon-meson bound states interpretation

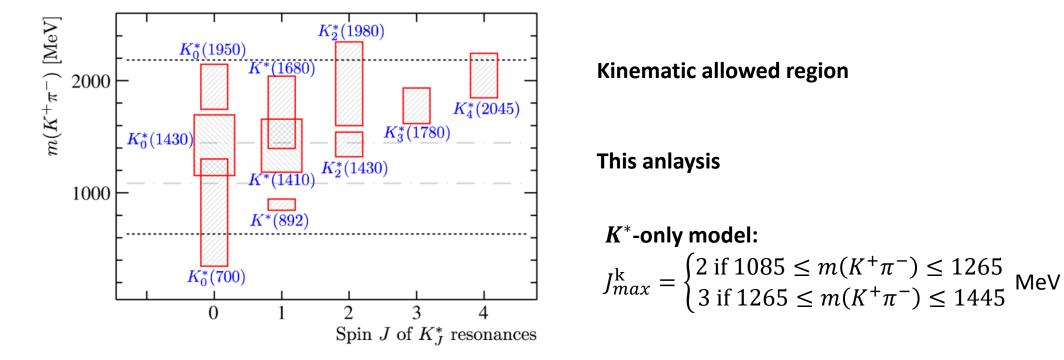
• The $Z(4430)^-$ is the only confirmed exotic state, and it couples to the excited $\Psi(2S)$, rather than the ground state J/Ψ

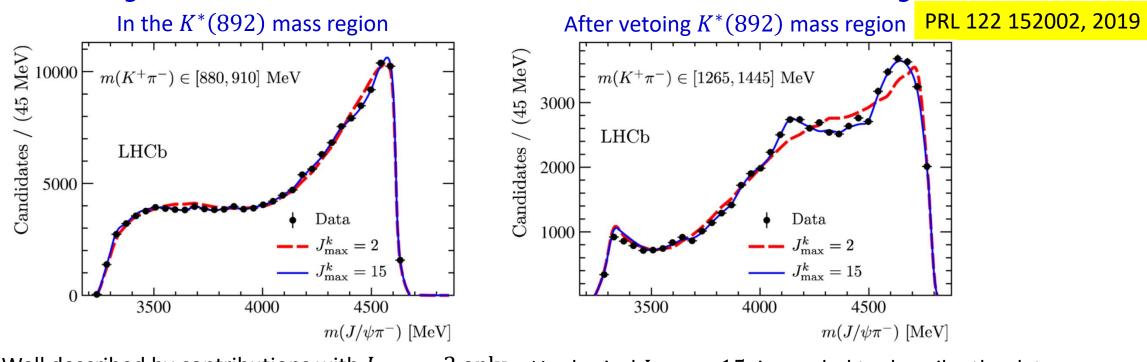
- ⇒ Discovered by Belle experiment: $B^0 \to Z(4430)^- (\to \Psi(2S)\pi^-)K^+$
- Not confirmed by the Babar Collaboration
- Confirmed by the LHCb Collaboration


PRL 100 142001, 2008 PRD 79 112001, 2009 PRL 112 222002, 2014

- Evidence for $Z(4430)^-$ is found the $B^0 \rightarrow J/\Psi K^+\pi^-$ decay by Belle
 - Suppressed by at least a factor of 10
 - ⇒ A new exotic hadron is observed: $B^0 \rightarrow Z(4200)^- (\rightarrow J/\Psi\pi^-) K^+$

PRD 90 112009, 2014


PRL 122 152002, 2019


- Run-1, 3 fb⁻¹: Signal yield $B^0 \rightarrow J/\Psi K^+\pi^- \sim 5 \times 10^5$
 - 40 times larger than in Babar study
 - 20 times larger than in Belle study
- Angular analysis in 35 $K^+\pi^-$ mass bins
 - Signal purity above 90% in every bin, 3D angular fit in each bin

PRL 122 152002, 2019

- Parameters of K* spectrum are not very well experimentally measured
 - Model-independent analysis relying only on highest allowed spin, J_{max}

Well described by contributions with $J_{max} = 2$ only

Unphysical $J_{max} = 15$ is needed to describe the data $m(J/\Psi\pi) \sim 4200$ and 4600 MeV regions

Significance well exceeds 5 σ

Model-dependent amplitude analysis is needed to determine the nature of these states

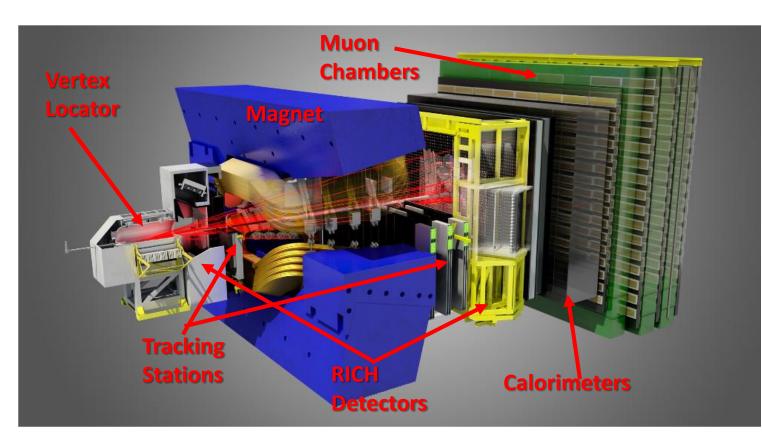
Summary

LHCb detector is designed for the heavy flavour physics

The first analyses using the full Run-1+Run-2 datasets

- Significant LHCb contribution to study heavy flavour production and spectroscopy
- The exotic studies sector at LHCb is rapidly developing
- Many new states confirmed/unconfirmed/waiting for confirmation
- Still a large area for studies both from experimental and theoretical sides

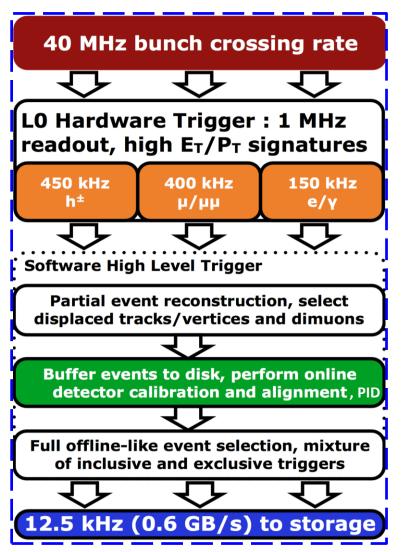
Many updates in the future, and many Dalitz analyses become feasible
Stay tuned for new results !



Backup

2019/07/29

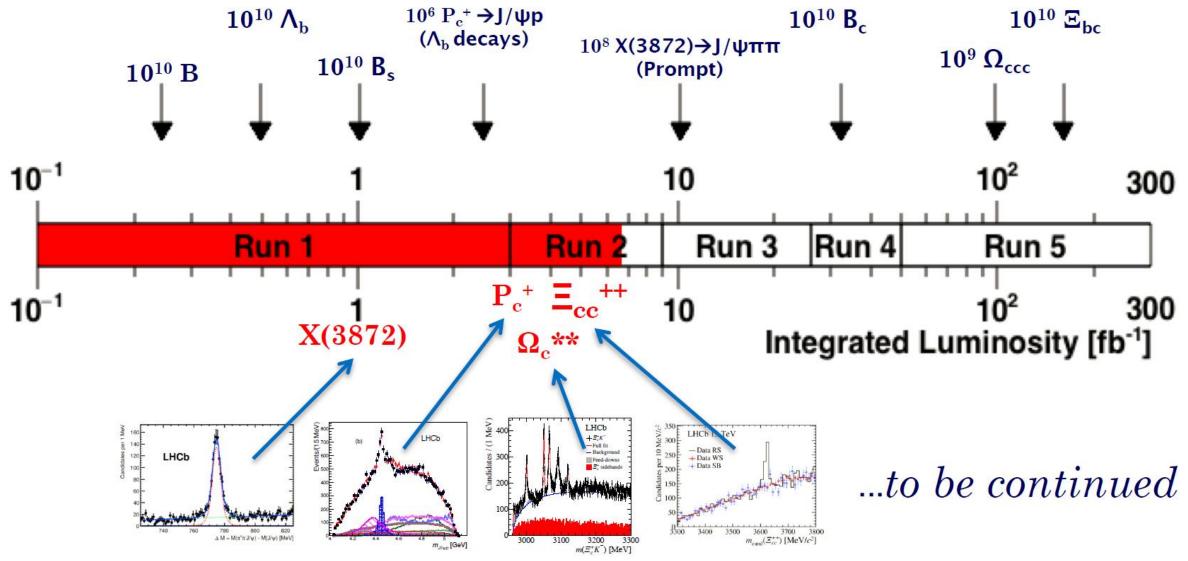
JINST 3 (2008) S08005 IJMPA 30 (2015) 1530022


LHCb detector

○ LHCb is a forward spectrometer suited for *b*, *c* hadrons: $2 < \eta < 5$

- O Momentum resolution:
 - 0.5% at 5 GeV, 1.0% at 200
 GeV
- Excellent track and vertex reconstruction
- Good particle-ID separation

LHCb trigger

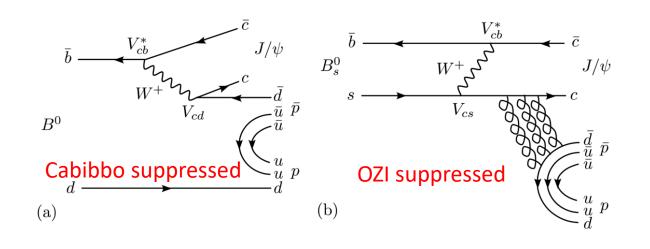


- Run real-time alignment and calibration of the detector
- Data buffered out of first software trigger stage
- Second software trigger runs asynchronously
- Permits Turbo real-time analysis strategy
 - Candidates reconstructed at the trigger level saved directly for offline analysis + (online alignment and calibration)

The first two analyses of today's talk benefit from the Turbo stream.

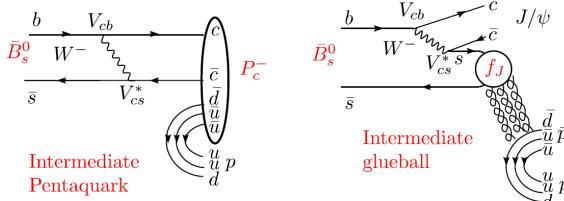
Comput. Phys. Commun. 208 (2016) 35-42 Int. J. Mod. Phys. A 30, 1530022 (2015)

Hadron spectroscopy @ LHCb



2019/07/29

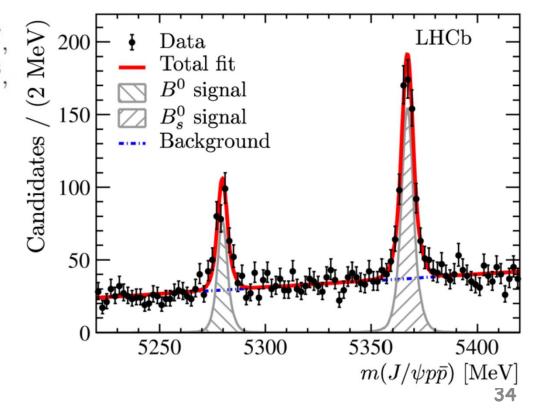
Get from M. Pappagallo 32


$B_s^0 \rightarrow J/\Psi p \overline{p}$ decay

- Rare baryonic B-decay
- Phase-space suppression
- pQCD: $Br(B^0) > Br(B_s^0)$ [EPJC 75, 101 (2015), Hsiao]

- Suppression can be lifted by pentaquark in $[J/\Psi p]$ or glueball in $[p\bar{p}]$
- LHCb set upper limit using Run-1 data

JHEP 09 (2013) 006



$B_s^0 \rightarrow J/\Psi p \overline{p}$ decay

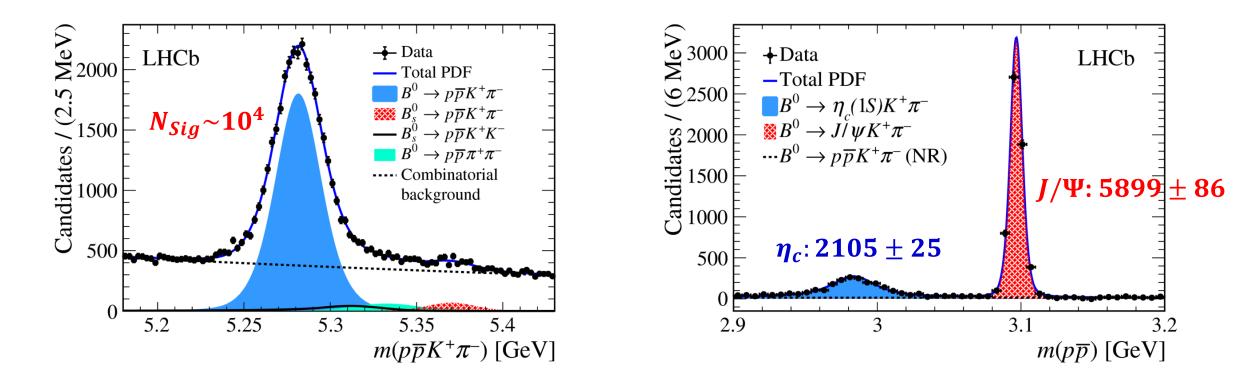
- 2011-2016 data sets
- O Powerful new BDT with proton PID + kinematic variables
- First observation of these modes: $\gg 10\sigma$ significance

 $\mathcal{B}(B^0 \to J/\psi \, p\bar{p}) = (4.51 \pm 0.40 \text{ (stat)} \pm 0.44 \text{ (syst)}) \times 10^{-7},$ $\mathcal{B}(B^0_s \to J/\psi \, p\bar{p}) = (3.58 \pm 0.19 \text{ (stat)} \pm 0.33 \text{ (syst)}) \times 10^{-6},$

• Inverted $Br(B_s^0) > Br(B^0)$ hierarchy confirmed in data

$Z_c(4100)^- \text{ in } B^0 o \eta_c(1S)K^+\pi^-$ EPJC 78 (2018) 1019

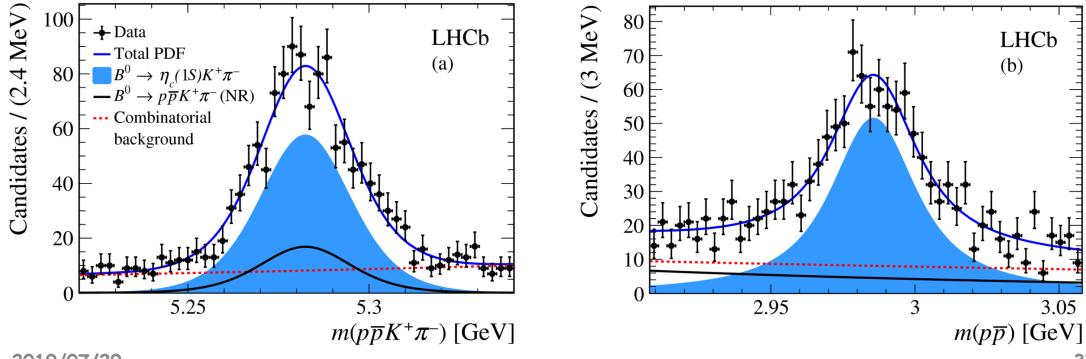
• Understand pattern of Z_c^- states


- $\Rightarrow Z_c(3900)^-$ seen by BES III, and Belle
- Charmonium-like charged stats: exotic

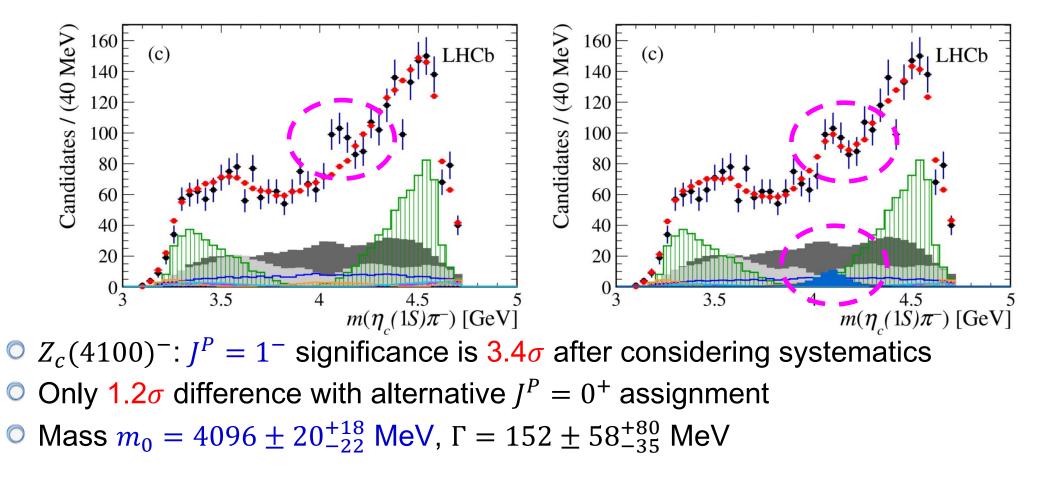
• $\eta_c \pi^-$ accesses J^P other than 1⁺, that several Z_c^- confirmed to be

$Z_c^{+,0}(3900)$	3886.6 ± 2.4	28.1 ± 2.6	1^{+-}	$e^+e^- \to \pi^{-,0} + (J/\psi \pi^{+,0})$	BESIII (92; 101), Belle (88)
				$e^+e^- \to \pi^{-,0} + (D\bar{D}^*)^{+,0}$	BESIII (102; 103)
$Z_c^{+,0}(4020)$	4024.1 ± 1.9	13 ± 5	$1^{+-}(?)$	$e^+e^- \to \pi^{-,0} + (h_c \pi^{+,0})$	BESIII (93; 104)
				$e^+e^- \to \pi^{-,0} + (D^*\bar{D}^*)^{+,0}$	BESIII (105; 106)
$Z^{+}(4050)$	4051^{+24}_{-43}	82^{+51}_{-55}	$?^{?+}$	$B \to K + (\chi_{c1} \pi^+)$	Belle (107), BaBar (108)
$Z^{+}(4200)$	4196^{+35}_{-32}	$370^{+\ 99}_{-149}$	1^{+}	$B \to K + (J/\psi \pi^+)$	Belle (51)
				$B \to K + (\psi' \pi^+)$	LHCb (46)
$Z^{+}(4250)$	4248^{+185}_{-45}	177^{+321}_{-72}	??+	$B \to K + (\chi_{c1} \pi^+)$	Belle (107), BaBar (108)
$Z^{+}(4430)$	4477 ± 20	181 ± 31	1^{+}	$B \to K + (\psi' \pi^+)$	Belle (45; 109; 110), LHCb (46; 111)
				$B \to K + (J\psi \pi^+)$	Belle (51)

$B^0 \rightarrow \eta_c(1S)K^+\pi^-$ signal

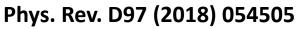

• $L = 4.7 \text{ fb}^{-1}$, including Run-1 + Run-2 (2011-2016) data • Multi-stage signal/bkg separation fits in $m(p\bar{p}K^+\pi^-)$ and $m(p\bar{p})$

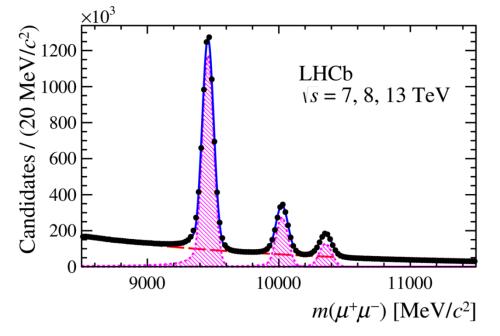
$B^0 \to \eta_c(1S) K^+ \pi^- 2D$ mass fit EPJC 78 (2018) 1019


• Unlike narrow J/Ψ , $\Psi(2S)$, η_c has $\Gamma_0 \sim 32$ MeV

- 2D fit in $m(p\bar{p}K^+\pi^-)$ and $m(p\bar{p})$
- Dalitz analysis: K^* resonances + "non-resonant" $K\pi$ and $p\bar{p}$ S-waves

Evidence for an exotic $Z_c(4100)^{-1019}$

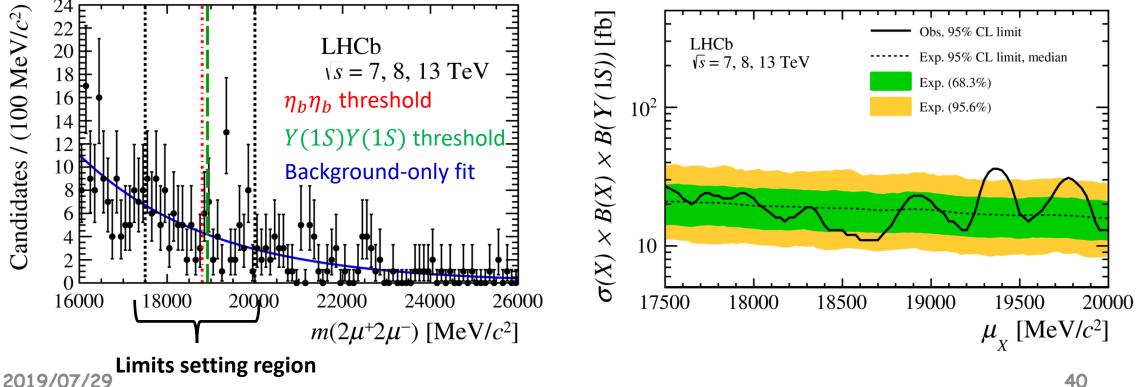

 \bigcirc Good description in all variables after adding an exotic Z_c component



Search for beauty teraquarks: $X_{b\overline{b}b\overline{b}}$

JHEP 10 (2018) 086

- No hadron containing > 2 heavy quarks has been observed so far
- Theoretical prediction:
 - ⇒ Mass within [18.4, 18.8] GeV, $\sigma \times B(Yl^+l^-) \sim 1$ fb
 - → Typically below $\eta_b \eta_b$ threshold: could decay to $Yl^+l^ (l = e, \mu)$
 - Lattice QCD calculation do not find evidence for this state
 Phys. Re

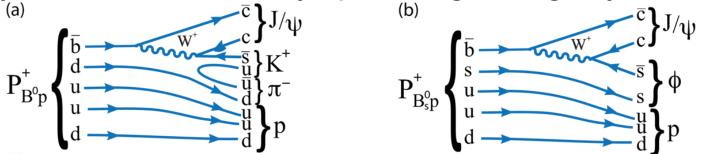


LHCb search:

- $> X_{b\overline{b}b\overline{b}} \rightarrow Y(1S)\mu^+\mu^-$, where $Y(1S) \rightarrow \mu^+\mu^-$
- ➢ Mass range : 17.5 − 20.0 GeV
- Run-1 + Run-2 data

Search for beauty teraquarks: $X_{b\overline{b}b\overline{b}}$

- \bigcirc Cut-based selection, with J/Ψ mass veto
- Y(1S) yields after selection ($\pm 2.5\sigma$ region): $\sim 6 \times 10^6$
- No significant excess is seen in data, upper limit are set \bigcirc



JHEP 10 (2018) 086

Weakly decaying *b*-flavoured pentaquarks

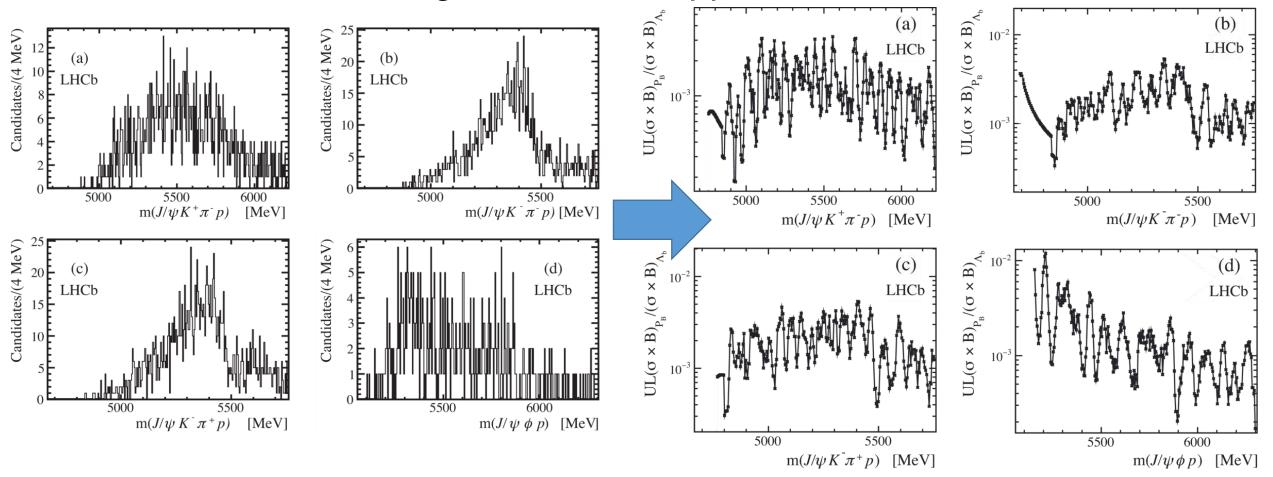
PRD 97 (2018) 032010

Skyrme model: heavy quarks give tightly bound pentaquarks

PLB 590(2004) 185; PLB 586(2004)337; PLB 331(1994)362

Search for mass peaks below strong decay threshold

Mode	Quark content	Decay mode	Search window
Ι	$\overline{b}duud$	$P^+_{B^0p} \to J/\psi K^+\pi^-p$	$4668-6220 { m MeV}$
II	$b\overline{u}udd$	$P^{-}_{\Lambda^0_{\mu}\pi^-} \to J/\psi K^-\pi^- p$	$46685760~\mathrm{MeV}$
III	$b\overline{d}uud$	$P^{+^{o}}_{\Lambda^{0}_{t}\pi^{+}} \rightarrow J/\psi K^{-}\pi^{+}p$	$46685760~\mathrm{MeV}$
\mathbf{IV}	$\overline{b}suud$	$P^{+}_{B^0_s p} \rightarrow J/\psi \phi p$	5055–6305 ${\rm MeV}$


• Upper limit on production ratio $\sigma \cdot B$ wrt $\Lambda_b^0 \to J/\Psi K^- p$

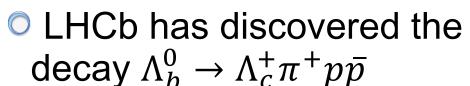
$$R = \frac{\sigma(pp \to P_B X) \cdot \mathcal{B}(P_B \to J/\psi X)}{\sigma(pp \to \Lambda_b^0 X) \cdot \mathcal{B}(\Lambda_b^0 \to J/\psi K^- p)}$$

Weakly decaying *b*-flavoured pentaquarks

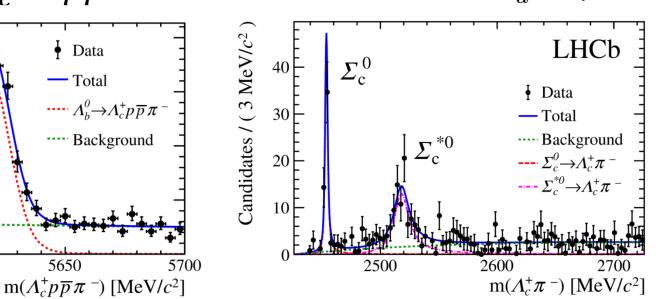
PRD 97 (2018) 032010

No evidence for signal, 90% CL upper limits are set for the ratio

Search for dibaryon state


Data

— Total


5650

 W^{\cdot}

• A dibaryon state [cd][ud][ud] could be produced in Λ_b^0 decays to final state $\Lambda_c^+ \pi^+ p \bar{p}$ L. Maiani, et al. PLB 750 (2015) 37

5600

2019/07/29

5550

Candidates / ($4 \text{ MeV}/c^2$

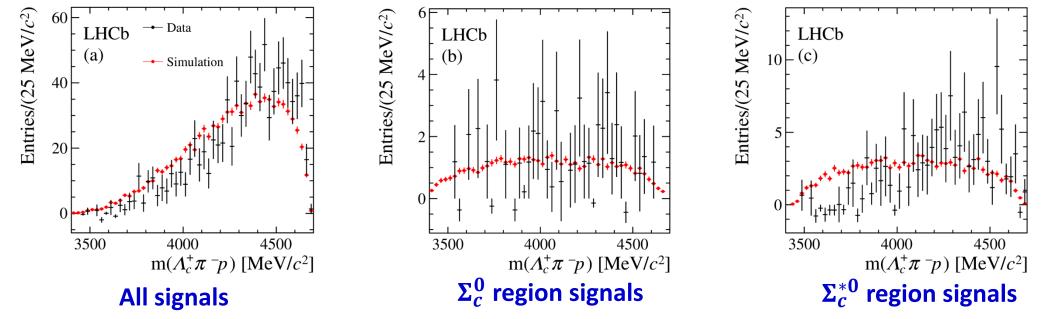
200

150

100

LHCb

(a)


 $D_c^+ \to \Lambda_c^+ \pi^- p$

Search for dibaryon state

Ratio of branching fractions

$$\frac{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ p \overline{p} \pi^-)}{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \pi^-)} = 0.0540 \pm 0.0023 \pm 0.0032$$

• No obvious dibaryon peak in $m(\Lambda_c^+\pi^-p)$ spectra

2019/07/29