

Search for Muon to electron conversion at J-PARC

Wu Chen (吴琛), NJU/IHEP/OU On behalf of the COMET collaboration

Outline

- Physics Motivation
- Design of the COMET Experiment
- Current Status of the COMET Experiment
- Outlook to Future mu-e Conversion Search
- ➤ Summary

Charged Lepton Flavor Violation (cLFV)

- Flavor is mostly conserved, only violated by charged weak current:
 - Flavor mixing in quark sector
 - Beta decay
 - Flavor mixing in lepton sector
 - Neutrino oscillation
- No fundamental physics behind flavor conservation. It's actually **natural** to consider favor violation in new physics.
 FCNC? -> cLFV!
- So far the flavor structure is one of the biggest mystery in the SM
 - Any new phenomena of flavor violation would provide inspiration to new physics.

cLFV as a clean probe to new physics

• cLFV in the SM

- FCNC in lepton sector is suppressed by neutrino mass and GIM mechanism

$$\begin{split} \mathcal{B}(\mu \to e\gamma) &= \frac{3\alpha}{32\pi} \left| \sum_{i=2,3} U_{\mu i}^* U_{ei} \frac{\Delta m_{i1}^2}{M_W^2} \right|^2 \sim 10^{-54} \\ &* Br = \Gamma_{CLFV} / \Gamma_{capture} \end{split}$$

SM background free! Positive result = new physics!

- cLFV in new physics models
 - Taking SUSY as an example, assuming natural energy scale and mixing angle

$$Br(\mu \rightarrow e\gamma) = 10^{-11} \times (\frac{2TeV}{\Lambda})^4 (\frac{\theta_{\mu e}}{10^{-2}})^2$$

Reachable with current technology!

$\mu - e$ conversion

nuclear muon capture

$$\mu^- + (A,Z) \rightarrow \nu_{\mu} + (A,Z-1)$$

 $\mu - e$ conversion: neutrinoless muon nuclear capture

$$\mu^- + (A,Z) \rightarrow e^- + (A,Z)$$

Charged lepton flavor violated

• Signal signature:

 Mono-energetic electron with energy of 105 MeV

• Background signature:

- No accidental background
 - Can utilize high luminosity
- Beam background can be suppressed by pulsed beam
- Physics background can be handled with current detector technology

Exloring high energy scale with $\mu - e$ conversion

Extend SM in effective field theory with Dim-6 operator: $\mathcal{L} = \mathcal{L}_{SM} + \sum_{n \ge 1} \frac{C_{ij}^{4+n}}{\Lambda^n} \mathcal{O}^{4+n}$

 $\mu - e$ conversion can test two different processes.

Models for $\mu - e$ conversion

Photonic processes

Four-Fermi processes

cLFV experiment in the hisotry

COherent Muon Electron Transition (COMET) at J-PARC

COMET experimental hall constructed in 2015

COMET aims at a single event senstivity (S.E.S) = 2.6×10^{-17} Current limit given by SINDRUM II experiment at PSI: 7×10^{-13} (90% C.L.) 4 orders of magnitude improvement

Overview of the COMET experiment

- To achieve 2.6×10^{-17} SES
 - 8 GeV, 56 kW pulsed proton beam
 - One year data taking: aiming to collect 8.5×10^{20} protons on target, yielding 2×10^{18} muons stopped in the stopping target
 - 10^{11} muon/sec! ($10^8 @ PSI$)
- Requrements:
 - Improve the production and capture efficiency
 - Thick target with super conducting solenoid as capture magnet
 - Clean muon beam
 - Long beam line with momentum selection
 - Search for signal from secondary particles produced by 10²⁰ protons
 - Background suppression and radaition hardness

Production target and the capture magnet

- To improve the production and capture efficiency of muon:
 - Relatively high energy beam: favorable region is 2~8 GeV
 - Thick target with 1~2 hadron interaction length
 - High temperature resistance: W or C
 - Powerful capture magnet: 5 T SCS
 - Large inner bore to fit in the shielding
 - Adiabatic decreasing field: focusing and mirroring

Transportation solenoid

Stopping target and detector system

DIO Blocker

To control the background

Intrinsic physics background

- Mostly from muon decay in orbit (DIO)
 - Calculated by Czarnecki with radiative correction. Branching ratio drops with order-5 function near end point.
 - Momentum resolution required to be better than 200 keV/c
- Beam related background
 - Energetic particles in beam with E>100MeV
 - Mostly prompt. Can be suppressed by a delayed measurement window (~700 ns)
 - Some due to leaked proton. Proton extinction factor required to be $< 10^{-10}$.
- Other background
 - Cosmic ray: cover the system with cosmic ray veto detectors.
 - False tracking: control the tracking quality.

Proton beam at J-PARC

- J-PARC proton pulse after RCS and MR forms pulsed structure with 100 ns pulse width and 585 ns pulse separation.
 - We can form 1.17 us pulse separation by skipping one bucket.
- The operation period of MR is 2.48 second with 0.8 second beam on time. DF = 0.32.
- J-PARC current beam power reached >500 kW. COMET adopts slow extraction (SX) to get 56 kW proton beam.

Proton beam at J-PARC

- To make the proton extinction factor $< 10^{-10}$
 - Shift the kicker phase by half period to avoid residual protons in the empty bucket.

• Tested in early 2018, proton extinction factor $< 6 \times 10^{-11}$

16

Possible physics output from COMET

- If signal is found:
 - Direct proof to new physics!
 - Scan the branching ratio with different targets to further study the property of new physics.
- If signal is not found:
 - Strong restriction to the parameter spaces of new physics models.
 - Toward higher sensitivity!
- Beside μe convesion:
 - Precise measurements:
 - Radiative nuclear capture of μ, π . μ decay in orbit.
 - Other cLFV processes:
 - $\mu^- N_Z \rightarrow e^+ N_{Z-1}$, $\mu^- e^- \rightarrow e^- e^-$, $\mu^- \rightarrow e^- X$.

Staged plan of COMET

8GeV, 7mA, 56 kW

COMET Phase-I, 5 months data taking

- detectors.
- Search for μe conversion with cylindrical detector (CyDet) with S.E.S. = 3×10^{-15} (2 orders of magnitude improvement).

COMET Phase-II, One year data taking

Search for $\mu - e$ convresion with S.E.S. $= 2.6 \times 10^{-17}$ (4 orders of magnitude improvement)

Phase-I detector (CyDet)

- Specially designed for Phase-I. Consists of:
 - Cylindrical trigger hodoscope:
 - Two layers: plastic scintillator for t0 and Cerenkov counter for PID.
 - Cylindrical drift chamber:
 - All stereo layers: z information for tracks with few layers' hits.
 - Helium based gas: minimize multiple scattering.
 - Large inner bore: to avoid beam flash and DIO electrons.

Monte Carlo study of COMET Phase-I

- The optimization of COMET Phase I is finished. Detailed performance is estimated with Monte Carlo studies. TDR was published on arXiv last month.
 - Sensitivity:
 - Total acceptance of signal is 0.041
 - Can reach 3×10^{-15} SES in 150 days.
 - Background:
 - With 99.99% CRV total expected background is 0.032
 - Trigger rate:
 - Average trigger rate ~10kHz (after trigger with drift chamber hits)

Event selection	Value
Online event selection efficiency	0.9
DAQ efficiency	0.9
Track finding efficiency	0.99
Geometrical acceptance + Track quality cuts	0.18
Momentum window ($\varepsilon_{\rm mom}$)	0.93
Timing window $(\varepsilon_{\text{time}})$	0.3
Total	0.041

Type	Background	Estimated events
Physics	Muon decay in orbit	0.01
	Radiative muon capture	0.0019
	Neutron emission after muon capture	< 0.001
	Charged particle emission after muon capture	< 0.001
Prompt Beam	* Beam electrons	
	* Muon decay in flight	
	* Pion decay in flight	
	* Other beam particles	
	All (*) Combined	≤ 0.0038
	Radiative pion capture	0.0028
	Neutrons	$\sim 10^{-9}$
Delayed Beam	Beam electrons	~ 0
	Muon decay in flight	~ 0
	Pion decay in flight	~ 0
	Radiative pion capture	~ 0
	Anti-proton induced backgrounds	0.0012
Others	$Cosmic rays^{\dagger}$	< 0.01
Total		0.032

† This estimate is currently limited by computing resources.

Status of the COMET facility

Status of Phase-II detector (StrEcal)

- Straw tube detector
 - Finished vacuum test with 20 um straw tubes.
 - Tested with 100 MeV electron beam. 150 um spatial resolution achieved.
- Electromagnetic calorimeter
 - Tested GSO and LYSO. Preliminary resolutions are 5.7% and 4.6% for each. LYSO chosen as final option.
- Front end electronics
 - Finished designing (ROESTI/EROS) based on DRS4 with GHz sampling rate.
 - Radiation tests results published.

Front end electronics: ROESTI/EROS

Status of Phase-I detector (CyDet)

- Cylindrical Drift chamber (CDC)
 - Prototype tests finished in 2015. 150 um spatial resolution and 99% hit efficiency were achieved.
 - Construction of the chamber was finished in 2016.
 - Cosmic ray test is under data taking phase.
- Front end electronics ٠
 - Based on RECBE boards from BELLE-II
 - Finished the production and mass tests of 108 boards.
 - Radiation tests are published / to be published.
- Trigger system
 - Cylindrical trigger hodoscope (CTH) under mechanical design.
 - Trigger logic and trigger board design finished. Communication tests with FCT-FC7 trigger system is on going.

The COMET collaboration

~200 members, 41 institutes from 17 countries

Chinese group: IHEP, Nanjing University, Peking University, Sun Yat-sen University

Outlook to future cLFV experiments

- CLFV in tau sector:
 - Belle II and LHCb: 1~2 orders improvement
- CLFV in muon sector:
 - Many-body final state, DC beam
 - $\mu \rightarrow e\gamma$: 1 order
 - $\mu \rightarrow eee: 3 \sim 4 \text{ orders}$
 - Single-body final state, pulsed beam
 - $\mu N \rightarrow e N: 4 \sim 6 \text{ orders}$
- τ intensity:
 - Now 2/sec
 - Expected in future 100/sec
- μ intensity:
 - now 10^8 /sec
 - future $10^{11} \sim 10^{12}$ /sec

Reaction	Current Limit	Future Limit	Location
$\tau \to \mu \gamma$	4.4×10^{-8}	< 10 ⁻⁹	Flavor factory
$ au ightarrow e\gamma$	3.3×10^{-8}	< 10 ⁻⁹	Flavor factory
$\tau \to \mu \mu \mu$	2.1×10^{-8}	$< 10^{-9} \sim 10^{-10}$	Flavor factory
$\tau \rightarrow eee$	2.7×10^{-8}	$< 10^{-9} \sim 10^{-10}$	Flavor factory
$\tau \rightarrow \mu e e$	1.5×10^{-8}	$< 10^{-9} \sim 10^{-10}$	Flavor factory
$\mu ightarrow e \gamma$	4.3×10^{-13}	4×10^{-14}	MEG II
$\mu \rightarrow eee$	1×10^{-12}	$10^{-15} \sim 10^{-16}$	mu3e/MuSIC
$\mu N \rightarrow e N (Au)$	7×10^{-13}	$< 10^{-18}$	PRISM/Mu2e II
$\mu N \rightarrow e N (Al)$		$10^{-15}/10^{-17}$	COMET/Mu2e
$\mu N \rightarrow e N (Ti)$	4.3×10^{-12}	< 10 ⁻¹⁸	PRISM/Mu2e II
$\mu^- N \rightarrow e^+ N (Al)$	4.3×10^{-12}	?	COMET
$\mu^+ e^- \to \mu^- e^+$	8.3×10^{-11}	?	COMET

$\mu - e$ conversion search in the future: PRISM/PRIME

Challenges for PRISM/PRIME

- Proton source
 - MW level, super short pulse (10ns level)
- Capture system
 - Cooling of the target (jet or waterfall)
 - Cooling of the magnet (large inner bore)
- Transportation system
 - Longer transportation beamline:
 - FFAG(Fixed Field Alternating gradient) muon storage ring
 - Tested at Osaka University

Synergy with neutrino factory and muon collider

Summary

- cLFV is an extremely clean probe for new physics probe for new physics. The required FCNC process can be found in many new physics models.
- The simple event signature of µ e conversion search makes a 4~6 orders of magnitude improvement in sensitivity possible with the help of high luminosity pusled proton source. Both photonic and four-fermi processes can be tested together.
- COMET at J-PARC aims at S.E.S = 2.6×10^{-17} (4 orders of magnitude improvement) and plans to take data from 2022 for one year.
 - COMET Phase-I will search with S.E.S = 3×10^{-15} (2 orders of magnitude improvement) and directly measure the muon beam.
 - The proton beam and detector systems will be ready by 2019.
- The next phase of μe conversion search (PRISM) is under discussion.

Back up

Selection of the production target

- Stable and strong in high temperature
 - Carbon with 3.2 kW beam power. No cooling system needed.
 - Tungsten with 56 kW beam power. Needs cooling.Jet or waterfall target? (~MW)
- Centralize the production region of pions
 - For the consideration of collection efficiency
 - Dense target with narrow beam preferred.

Selection of the Target Material

- DIO $E_{endpoing}$ extends to the $E_{\mu-e}$
 - · Recoil energy
 - Muon binding energy
- Select the target material with high $E_{\mu-e}$ and avoid using the material with larger $E_{endpoint}$ around the target
 - When the target is made of aluminium, we should avoid using materials from Z=5 to Z=12.
 - $\cdot\,$ He (Z=2) is OK to use around the target
- · Lifetime of muon in muonic atoms
 - Shorter in larger Z because of the larger nuclear muon capture rate

Proton energy

- Tries to optimize pion production yield
 - 3 GeV might be better...
 - Highly depends on models.
 - Lack of data for low energy pion.
 - COMET Phase-I!
- Should avoid anti-proton production

K4 rear end leakage

Found rear end leakage in the test in ealry 2018

- Shadow K4: proton extinction rate $< 10^{-10}$
- Solve from accelerator side: proton extinction rate $\sim 6 \times 10^{-11}$

FFAG

Before rotation • Time structure to energy str After rotation 10 - Need narrow pulse: ~10ns -300 -200 -100 0 100 200 300 time(ns) High Energy Advanced Phase Narrow Energy Energy Energy Spread Low Energy Delayed Phase Phase Phase