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Charged Lepton Flavor Violation 

(cLFV) 
• Flavor is mostly conserved, only 

violated by charged weak current: 
– Flavor mixing in quark sector 

• Beta decay 

– Flavor mixing in lepton sector 
• Neutrino oscillation 

• No fundamental physics behind flavor 
conservation. It’s actually natural to 
consider favor violation in new physics. 
– FCNC? -> cLFV! 

• So far the flavor structure is one of the 
biggest mystery in the SM 
– Any new phenomena of flavor violation 

would provide inspiration to new physics. 
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cLFV as a clean probe to new physics 

• cLFV in the SM 

– FCNC in lepton sector is suppressed by neutrino mass and GIM mechanism 

SM background free! 

Positive result = new physics! 

* 𝐵𝑟 = 𝛤𝐶𝐿𝐹𝑉/𝛤𝑐𝑎𝑝𝑡𝑢𝑟𝑒 

• cLFV in new physics models 

– Taking SUSY as an example, assuming natural energy scale and mixing 

angle 

Reachable with current technology! 



𝜇 − 𝑒 conversion 

• Signal signature:  

– Mono-energetic electron with 
energy of 105 MeV 

• Background signature: 

– No accidental background 

• Can utilize high luminosity 

– Beam background can be 
suppressed by pulsed beam 

– Physics background can be 
handled with current detector 
technology 
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𝜇 − 𝑒 conversion: neutrinoless 

muon nuclear capture 

Charged lepton flavor violated 
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Exloring high energy scale with 𝜇 − 𝑒 conversion 
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𝜅 ≪ 1 𝜅 ≫ 1 

Photonic process Four-Fermi process 

𝝁 → 𝒆𝜸 𝝁 − 𝒆 

 

Strong Sizable 

𝝁 → 𝒆𝜸 𝝁 − 𝒆 

 

None Strong 

Extend SM in effective field theory with Dim-6 operator: ℒ = ℒ𝑆𝑀 +  
𝐶𝑖𝑗

4+𝑛

Λ𝑛
𝒪4:𝑛𝑛≥1  

𝜇 − 𝑒 conversion can test two different processes. 

MEG 4.2 × 10;13 

MEGII 4 × 10;14 



Models for 𝜇 − 𝑒 conversion 
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Supersymmetry Heavy Z’ 

Compositeness 

Leptoquarks Second Higgs Doublet 

Heavy Neutrinos 

Photonic processes Four-Fermi processes 
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Reboot: 

a leap with 

4 orders of 

magnitude Pontecorvo in 1947 

Cosmic ray muon 

Accelerator muon 

x100 per decade 

cLFV experiment in the hisotry 



COherent Muon Electron Transition 

(COMET) at J-PARC 
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COMET experimental hall 

constructed in 2015 

COMET aims at a single event 

senstivity 

(S.E.S) = 2.6 × 10;17 

Current limit given by SINDRUM 

II experiment at PSI:  

7×10-13 (90% C.L.) 

4 orders of magnitude improvement 



Overview of the COMET experiment 
• To achieve 2.6 × 10;17 SES 

– 8 GeV, 56 kW pulsed proton beam 

– One year data taking: aiming to 
collect 8.5 × 1020 protons on target, 
yielding 2 × 1018 muons stopped in 
the stopping target 
• 1011 muon/sec! (108 @ 𝑃𝑆𝐼) 

• Requrements: 

– Improve the production and capture 
efficiency 
• Thick target with super conducting 

solenoid as capture magnet 

– Clean muon beam 
• Long beam line with momentum 

selection 

– Search for signal from secondary 
particles produced by 1020 protons 
• Background suppression and radaition 

hardness 
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Production target and the capture magnet 

• To improve the production and 
capture efficiency of muon: 

– Relatively high energy beam: 
favorable region is 2~8 GeV 

– Thick target with 1~2 hadron 
interaction length 
• High temperature resistance: W or C 

– Powerful capture magnet: 5 T SCS 
• Large inner bore to fit in the shielding 

• Adiabatic decreasing field: focusing and 
mirroring 
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Transportation solenoid 

• To improve the purity of the 
muon beam: 

– Use C shape curved solenoid 
• Charged particles drift vertically. The 

drift distance is proportional to its 
momentum. 

• Vertical magnetic field can pull back 
the wanted particles (~40 MeV 𝜇;) 
back to the horizontal plane. 

• Collimator placed in the end can reject 
unwanted particles. 
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Stopping target and detector system 
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• Stopping target 

• Thin disks of Al (to avoid energy loss) 

• Use another C-shape solenoid to select signal electron 

• Clean environment in detector system 

• Detector system 

• Straw tube detector with at least 5 stations. 4 

planes with different angles per station. 

• High momentum resolution 

• High geometrical acceptance (~50%) 

• Electromagnetic calorimeter 

• Providing trigger, TOF and PID 



To control the background 
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• Intrinsic physics background 

– Mostly from muon decay in orbit (DIO) 

• Calculated by Czarnecki with radiative 

correction. Branching ratio drops with 

order-5 function near end point. 

• Momentum resolution required to be better 

than 200 keV/c 

• Beam related background 

– Energetic particles in beam with 

E>100MeV 

• Mostly prompt. Can be suppressed by a 

delayed measurement window (~700 ns) 

• Some due to leaked proton. Proton 

extinction factor required to be < 10;10。 

• Other background 
– Cosmic ray: cover the system with cosmic ray 

veto detectors. 

– False tracking: control the tracking quality. 

DIO Signal 



Proton beam at J-PARC 
• J-PARC proton pulse after RCS 

and MR forms pulsed structure 

with 100 ns pulse width and 585 

ns pulse separation. 

– We can form 1.17 us pulse 

separation by skipping one bucket. 

• The operation period of MR is 

2.48 second with 0.8 second 

beam on time. DF = 0.32. 

• J-PARC current beam power 

reached >500 kW. COMET 

adopts slow extraction (SX)  to 

get 56 kW proton beam. 
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Proton beam at J-PARC 
• To make the proton extinction factor < 10;10 

– Shift the kicker phase by half period to avoid residual protons in the empty bucket. 
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• Tested in early 2018, proton extinction factor < 6 × 10;11 

K1 K2 K3 K4 K1 K2 K3 K4 



Possible physics output from COMET 
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• If signal is found: 
• Direct proof to new physics! 

• Scan the branching ratio with 

different targets to further study 

the property of new physics.  

• If signal is not found: 
• Strong restriction to the 

parameter spaces of new physics 

models. 

• Toward higher sensitivity! 

• Beside 𝜇 − 𝑒 convesion: 
• Precise measurements: 

• Radiative nuclear capture of 

𝜇, 𝜋. 𝜇 decay in orbit. 

• Other cLFV processes:  

• μ;𝑁𝑧 → 𝑒:𝑁𝑍;1 , μ;𝑒; →
e;𝑒;,  μ; → 𝑒;𝑋. 

Vector1 
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Staged plan of COMET 
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COMET Phase-I, 5 months data taking 

• Study the muon beam with Phase-II 

detectors. 

• Search for 𝜇 − 𝑒  conversino with 

cylindrical detector (CyDet) with 

S.E.S. = 3 × 10;15 (2 orders of 

magnitude improvement). 

COMET Phase-II, One year data taking 

• Search for 𝜇 − 𝑒 convresion with S.E.S. 

= 2.6 × 10;17 (4 orders of magnitude 

improvement) 

8GeV, 0.4mA, 3.2 kW 8GeV, 7mA, 56 kW 



Phase-I detector (CyDet) 
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• Specially designed for Phase-I. Consists of: 

• Cylindrical trigger hodoscope: 
• Two layers: plastic scintillator for t0 and Cerenkov counter for PID. 

• Cylindrical drift chamber: 
• All stereo layers: z information for tracks with few layers’ hits. 

• Helium based gas: minimize multiple scattering. 

• Large inner bore: to avoid beam flash and DIO electrons. 



Monte Carlo study of COMET Phase-I 
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• The optimization of COMET Phase I is 
finished. Detailed performance is 
estimated with Monte Carlo studies. 
TDR was published on arXiv last 
month. 

– Sensitivity: 
• Total acceptance of signal is 0.041 

• Can reach 3 × 10;15 SES in 150 
days. 

– Background: 
• With 99.99% CRV total expected 

background is 0.032 

– Trigger rate: 
• Average trigger rate ~10kHz (after 

trigger with drift chamber hits) 



Status of the COMET facility 
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Transportation solenoid 

Finished in 2015 

Prototype for stopping target 

Winding of CS 

Detector solenoid 

Inside the experimental hall 

B line in Jan 2018 

To be finished in 2019 

COMET 
High-p 

CRV design fixed 



Status of Phase-II detector (StrEcal) 
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• Straw tube detector 
• Finished vacuum test with 20 

um straw tubes. 

• Tested with 100 MeV electron 
beam. 150 um spatial resolution 
achieved. 

• Electromagnetic calorimeter 
• Tested GSO and LYSO. 

Preliminary resolutions are 
5.7% and 4.6% for each. LYSO 
chosen as final option. 

• Front end electronics 
• Finished designing 

(ROESTI/EROS) based on 
DRS4 with GHz sampling rate. 

• Radiation tests results published. 

Straw tube prototype 

ECal prototype 

Front end electronics: ROESTI/EROS 



Status of Phase-I detector (CyDet) 
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• Cylindrical Drift chamber (CDC) 
– Prototype tests finished in 2015. 150 um 

spatial resolution and 99% hit efficiency 
were achieved. 

– Construction of the chamber was finished 
in 2016. 

– Cosmic ray test is under data taking phase. 

• Front end electronics 
– Based on RECBE boards from BELLE-II 

– Finished the production and mass tests of 
108 boards. 

– Radiation tests are published / to be 
published. 

• Trigger system 
– Cylindrical trigger hodoscope (CTH) 

under mechanical design. 

– Trigger logic and trigger board design 
finished. Communication tests with FCT-
FC7 trigger system is on going. 

CDC 

Front end CTH 

Trigger and DAQ 



The COMET collaboration 
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~200 members, 

41 institutes from 17 countries 

Jan 2018, COMET collaboration at Osaka University 

Chinese group: IHEP, Nanjing University, Peking University, Sun Yat-sen University 



Outlook to future cLFV experiments 
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Reaction Current Limit Future Limit Location 

τ → μγ 4.4 × 10;8 < 10;9 Flavor factory 

τ → 𝑒γ 3.3 × 10;8 < 10;9 Flavor factory 

τ → μμμ 2.1 × 10;8 < 10;9 ~10;10 Flavor factory 

τ → 𝑒𝑒𝑒 2.7 × 10;8 < 10;9 ~10;10 Flavor factory 

τ → μ𝑒𝑒 1.5 × 10;8 < 10;9 ~10;10 Flavor factory 

μ → 𝑒γ 4.3 × 10;13 4 × 10;14 MEG II 

μ → 𝑒𝑒𝑒 1 × 10;12 10;15~10;16 mu3e/MuSIC 

μN → 𝑒N (Au) 7 × 10;13 < 10;18 PRISM/Mu2e II 

μN → 𝑒N (Al) − − 10;15/10;17 COMET/Mu2e 

μN → 𝑒N (Ti) 4.3 × 10;12 < 10;18 PRISM/Mu2e II 

μ;N → 𝑒:N (Al) 4.3 × 10;12 ? COMET 

μ:𝑒; → μ;𝑒: 8.3 × 10;11 ? COMET 

• CLFV in tau sector: 
• Belle II and LHCb: 1~2 

orders improvement 

• CLFV in muon sector: 
• Many-body final state, DC 

beam 

• μ → 𝑒γ: 1 order 

• μ → 𝑒𝑒𝑒: 3~4 orders 

• Single-body final state, 

pulsed beam 
• μN → 𝑒N: 4~6 orders 

• τ  intensity: 

• Now 2/sec 

• Expected in future 

100/sec 

• μ intensity: 

• now 108/sec 

• future 1011~1012/sec 

 



𝜇 − 𝑒 conversion search in the future: 

PRISM/PRIME 
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Challenges for PRISM/PRIME 

• Proton source 
– MW level, super short pulse (10ns level) 

• Capture system 
– Cooling of the target (jet or waterfall) 

– Cooling of the magnet (large inner bore) 

 

• Transportation system 
– Longer transportation beamline:  

– FFAG(Fixed Field Alternating gradient) 

muon storage ring 

• Tested at Osaka University 
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Synergy with 

neutrino 

factory and 

muon collider 



Summary 

• cLFV is an extremely clean probe for new physics probe for new 
physics. The required FCNC process can be found in many new 
physics models. 

• The simple event signature of 𝜇 − 𝑒 conversion search makes a 4~6 
orders of magnitude improvement in sensitivity possible with the 
help of high luminosity pusled proton source. Both photonic and 
four-fermi processes can be tested together. 

• COMET at J-PARC aims at S.E.S = 2.6 × 10;17 (4 orders of 
magnitude improvement) and plans to take data from 2022 for one 
year.  

– COMET Phase-I will search with S.E.S = 3 × 10;15 (2 orders of 
magnitude improvement) and directly measure the muon beam. 

– The proton beam and detector systems will be ready by 2019. 

• The next phase of𝜇 − 𝑒 conversion search (PRISM) is under 
discussion. 
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Back up 
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Selection of the production target 

• Stable and strong in high temperature 

– Carbon with 3.2 kW beam power. No cooling 

system needed. 

– Tungsten with 56 kW beam power. Needs cooling. 

– Jet or waterfall target? (~MW) 

• Centralize the production region of pions 

– For the consideration of collection efficiency 

– Dense target with narrow beam preferred. 
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Proton energy 

• Tries to optimize pion production 

yield 

– 3 GeV might be better… 

– Highly depends on models. 

– Lack of data for low energy pion. 

• COMET Phase-I! 

• Should avoid anti-proton 

production 

– <8 GeV 
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K4 rear end leakage 

33 

Within 0.1 

second 

Found rear end leakage in the test in ealry 2018 

• Shadow K4: proton extinction rate < 10;10 

• Solve from accelerator side: proton extinction rate ~6 × 10;11 



FFAG 

• Time structure to energy structure 

– Need narrow pulse: ~10ns 
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Before rotation 

After rotation 


