Hydrodynamic Collectivity in Proton + Proton Collisions and $v_2(p_T)$ and spectra at inter-medium p_T in p+Pb collisions

Wenbin Zhao

Peking University

May 11th 2019

Fluctuations and Correlations In Pb + Pb

• In heavy-ion collisions, hydrodynamics transform the initial state fluctuations to final state correlations.

Wenbin Zhao

• integrated v_2 {2} and v_2 {4}

• $v_n\{p_T\}$ for π , K and p

Wenbin Zhao

W. Zhao, H. j. Xu and H. Song, Eur. Phys. J. C 77, no. 9, 645 (2017).

Wenbin Zhao

Hydrodynamics in p+p & NCQ in p+Pb

May 11th 2019 5 / 48

Hydrodynamic model does a great job in describing the hydrodynamic behaviors of heavy-ion collisions, including :

• integrated 2- and 4- particle cumulants, differential v_n , mass ordering, the event-by-event v_n distributions, the event-plane correlations and Symmetric Cumulant, the nonlinear response coefficients.

p+Pb system

Collective flow? p-Pb experimental Observables

Collective flow? Hydrodynamcis simulations in p-Pb

Bozek, et al. Phys. Rev. Lett. 111, 172303 (2013).

 Hydrodynamics can well reproduce the 2- and 4-pariticle correlations and mass ordering in p-Pb system.

p+p system

Hydrodynamics in p+p & NCQ in p+Pb

May 11th 2019 10 / 48

Two-particle correlations in p-p

M. Aaboud et al. [ATLAS Collaboration], Phys. Rev. C 96, no. 2, 024908

• Two-particle correlations in p-p:

- Similar double ridge structure, but with smaller magnitudes in p-p collisions.
- Peripheral subtraction (CMS): $v_{n,n}^{peri} \approx 0$
- Template fit (ATLAS): $v_{n,n}^{cent} \approx v_{n,n}^{peri}$

Wenbin Zhao

Multi-particle correlation from CMS by standard method

$$\begin{array}{ll} \langle 2 \rangle & \equiv & \left\langle e^{in(\phi_1 - \phi_2)} \right\rangle, \langle 4 \rangle \equiv \left\langle e^{in(\phi_1 + \phi_2 - \phi_3 - \phi_4)} \right\rangle \\ c_n\{4\} & = & \left\langle 4 \right\rangle - 2 \cdot \left\langle 2 \right\rangle^2, v_n\{4\} = \sqrt[4]{-c_n\{4\}} \end{array}$$

V. Khachatryan et al. [CMS Collaboration], Phys. Lett. B 765, 193 (2017)

Wenbin Zhao

3-subevent

$$\langle \langle 4 \rangle \rangle_{3sub} = \langle \langle \cos n(\varphi_1 + \varphi_2 - \varphi_3 - \varphi_3) \rangle \rangle$$

$$\langle \langle 2 \rangle \rangle_{3sub}^2 = \langle \langle \cos n(\varphi_1 - \varphi_3) \rangle \rangle \langle \langle \cos n(\varphi_2 - \varphi_3) \rangle \rangle$$

$$\langle \langle 2 \rangle \rangle_{3sub}^2 = \langle \langle \cos n(\varphi_1 - \varphi_3) \rangle \rangle \langle \langle \cos n(\varphi_2 - \varphi_3) \rangle \rangle$$

$$c_n \{4\}_{3sub} = \langle \langle 4 \rangle \rangle_{3sub} - 2 \cdot \langle \langle 2 \rangle \rangle_{3sub}^2$$

 3 subevent cumulant can further suppress the non-flow effects.

M. Aaboud et al. [ATLAS Collaboration], Phys. Rev. C 97, no. 2, 024904 (2018).

Wenbin Zhao

Comparision between ATLAS and CMS results

results.

The ATLAS collaboration [ATLAS Collaboration], ATLAS-CONF-2017-002. V. Khachatryan *et al.* [CMS Collaboration], Phys. Lett. B **765**, 193 (2017).

Wenbin Zhao

Hydrodynamics in p+p & NCQ in p+Pb

May 11th 2019 14 / 48

Hydrodynamic simulations in p+p Collisions at 13 TeV

Collaborators: **Huichao Song**, Haojie Xu, You Zhou and Weitian Deng Based on : Phys. Lett. B **780**, 495 (2018).

iEBE-VISHNU hybird model

• Hydrodynamics simualtions:

C. Shen, Z. Qiu, H. Song, J. Bernhard, S. Bass and U. Heinz. Comput. Phys. Commun. **199**, 61 (2016)

Wenbin Zhao

VISHNU hybrid model

• In hydrodynamics part, VISHNU solves $T^{\mu\nu}$, $\pi^{\mu\nu}$ and Π :

$$\begin{aligned} \partial_{\mu} T^{\mu\nu}(x) &= 0, \qquad T^{\mu\nu} = e u^{\mu} u^{\nu} - (p + \Pi) \Delta^{\mu\nu} + \pi^{\mu\nu}, \\ \dot{\Pi} &= -\frac{1}{\tau_{\Pi}} \bigg[\Pi + \zeta \theta + \Pi \zeta T \partial_{\mu} \big(\frac{\tau_{\Pi} u^{\mu}}{2\zeta T} \big) \bigg], \end{aligned} \tag{1}$$
$$\Delta^{\mu\alpha} \Delta^{\nu\beta} \dot{\pi}_{\alpha\beta} &= -\frac{1}{\tau_{\pi}} \bigg[\pi^{\mu\nu} - 2\eta \nabla^{\langle \mu} u^{\nu \rangle} + \pi^{\mu\nu} \eta T \partial_{\alpha} \big(\frac{\tau_{\pi} u^{\alpha}}{2\eta T} \big) \bigg], \end{aligned}$$

• Switch from hydrodynamics to hadron cascade (Cooper-Frye formula):

$$E\frac{d^3N_i}{d^3p}(x) = \frac{g_i}{(2\pi)^3}p \cdot d^3\sigma(x) f_i(x,p)$$
(2)

• Hadron cascade simulated by UrQMD by:

$$\frac{df_i(x,p)}{dt} = C_i(x,p) \tag{3}$$

H. Song, S. A. Bass and U. Heinz, PRC 83, 024912 (2011).
C. Shen, Z. Qiu, H. Song, J. Bernhard, S. Bass and U. Heinz, Comput. Phys. Commun. 199, 61 (2016)

Wenbin Zhao

HIJING initial condition

- In HIJING initial model, the produced jets pairs and excited nucleus are treated as independent strings, and these strings break into partons and quickly form hot spots for succeeding hydrodynamics.
- The center positions of strings (x_c, y_c) are sampled by Saxon-Woods distribution, and positions of partons within the strings are sampled by, exp (- (x-x_c)²+(y-y_c)²/(2\sigma_R²))
- HIJING constructs energy density by energy decompositions of individual partons via a Gaussian smearing:

$$\epsilon = K \sum_{i} \frac{E_i^*}{2\pi\sigma^2\tau_0 \Delta\eta_s} \exp\left(-\frac{(x-x_i)^2 + (y-y_i)^2}{2\sigma^2}\right),$$

Set-up

- iEBE-VISHNU + HIJING
- No initial flow, No bulk viscosity.

Table: Four sets parameters in iEBE-VISHNU + HIJING simulation of the pp 13 TeV.

	σ_R	σ_0	$ au_0$	η/s	$T_{ m sw}({ m MeV})$
Para-I	0.2	0.7	0.6	0.01	147
Para-II	0.8	0.4	0.4	0.08	148
Para-III	0.4	0.2	0.2	0.24	148
Para-IV	0.6	0.4	0.4	0.05	148

W. Zhao, Y. Zhou, H. Xu, W. Deng and H. Song, Phys. Lett. B 780, 495 (2018)

2-particle correlation

- In general, iEBE-VISHNU + HIJING can describe the v_2 {2}, v_3 {2} and v_4 {2}, from ATLAS and CMS.
- iEBE-VISHNU + HIJING fail to fit the v₂{2} data with "peripheral subtraction" in low multiplicity.
- W. Zhao, Y. Zhou, H. Xu, W. Deng and H. Song, Phys. Lett. B 780, 495 (2018)

Differential elliptic flow

- iEBE-VISHNU + HIJING can describe the v₂(p_T) from ATLAS and CMS well.
- Hydrodynamics can reproduce mass ordering of experimental data.

W. Zhao, Y. Zhou, H. Xu, W. Deng and H. Song, Phys. Lett. B 780, 495 (2018)

4-particle correlation by hydrodynamic simulations in p-p

• iEBE-VISHNU + HIJING cann't get the negative c_2 {4}.

W. Zhao, Y. Zhou, H. Xu, W. Deng and H. Song, Phys. Lett. B 780, 495 (2018)

c_2^{v} {4} and ε_2 distributions

- The initial condition with large $\langle \varepsilon_2 \rangle$ combined with the large fluctuation, σ_{ε} .
- For positive initial $c_2^{\varepsilon}\{4\}$ always get positive final $c_2^{v}\{4\}$.
- For Para-III with small negative initial c^ε₂{4}, non-linear response leading to the positive final c^ν₂{4}.
- W. Zhao, Y. Zhou, H. Xu, W. Deng and H. Song, Phys. Lett. B 780, 495 (2018)

from c_2^{ε} {4} to c_2^{v} {4} in p + p system

Cubic response: $|v_2| = 0.115 |\varepsilon_2| + 0.080 |\varepsilon_2|^3$

- Cubic response is important in large ε_2 .
- Cubic response increases the elliptic flow fluctuations in proton + proton systems, leading some deviations between $p(v_2/\langle v_2 \rangle)$ and $p(\varepsilon_2/\langle \varepsilon_2 \rangle)$ that reverse the sign of c_2 {4}.

iEBE-VISHNU +HIJING simulation of p-p

- Using iEBE-VISHNU + HIJING with four forms of QGP transport coefficients, we could well describe the 2-particle correlaions, $v_2(p_T)$ and mass ordering in p-p system.
- However we can't describe the 4-particle cumulants within the framework of HIJING initial condition.

Calculate c_2 {4} in other initial models

$p(arepsilon_2)$ of HIJING , super-MC and TRENTo

• The three typical $p(\varepsilon_2)$ of HIJING , super-MC and TRENTo initial models .

HIJING: Zhao, Zhou, Xu, Deng, Song, Phys. Lett. B **780**, 495 (2018) super-MC: Welsh, Singer, Heinz, Phys. Rev. C **94**, no. 2, 024919 (2016)

TRENTo: J. S. Moreland, J. E. Bernhard and S. A. Bass, arXiv:1808.02106 [nucl-th].

$v_2\{2\}$ calculated by HIJING , super-MC and TRENTo

 With properly turned parameters in initial condition as well as in the VISHNU,iEBE-VISHNU + HIJING, super-MC and TRENTO can well describe the v₂{2} at high multiplicity in p-p system.

c_2 {4} calculated by HIJING , super-MC and TRENTo

• None parameter sets of HIJING, super-MC and TRENTo initial conditions can get the negative $c_2\{4\}$.

- For Pb + Pb system, hydrodynamics does a great job in describing hydrodynamic behaviors of Exp. data.
- For p + Pb system, hydrodynamics semi-quantitatively reproduce these Exp. data of 2- and 4- particle correlations, v_2 mass ordering .
- iEBE-VISHNU + HIJING can well describe the v₂{2}, v₂(p_T) for all charge hadron and mass ordering. However fail to reproduce the negative c₂{4} in p+p collisions. The description of negative c₂{4} requires the further investigations on initial model as well as QGP evolutions in p-p system.

$v_2(p_T)$ and spectra at intermedium p_T in p+Pb 5.02 TeV

Collaborators: Huichao Song, Guangyou Qin and Che-Ming Ko

Coalescence and fragmentation at intermedium p_T

- Fragmentation: Leading parton with p_T leads to hadrons of $p_h = zp_T$ with z < 1.
- Coalescence: partons are already there, p_h = np_T, n=2,3. Quark need close in phase space. Partonic hydro behavior shifted to higher pT.

Coalescence model

Mesons and baryons' momentum distributions by recombining of quarks:

$$\frac{dN_M}{d^3 \mathbf{P}_M} = g_M \int d^3 \mathbf{x}_1 d^3 \mathbf{p}_1 d^3 \mathbf{x}_2 d^3 \mathbf{p}_2 f_q(\mathbf{x}_1, \mathbf{p}_1) f_{\bar{q}}(\mathbf{x}_2, \mathbf{p}_2) \\
\times W_M(\mathbf{y}, \mathbf{k}) \delta^{(3)}(\mathbf{P}_M - \mathbf{p}_1 - \mathbf{p}_2),$$
(4)

and

$$\frac{dN_B}{d^3 \mathbf{P}_B} = g_B \int d^3 \mathbf{x}_1 d^3 \mathbf{p}_1 d^3 \mathbf{x}_2 d^3 \mathbf{p}_2 d^3 \mathbf{x}_3 d^3 \mathbf{p}_3 f_{q_1}(\mathbf{x}_1, \mathbf{p}_1) \\
\times f_{q_2}(\mathbf{x}_2, \mathbf{p}_2) f_{q_3}(\mathbf{x}_3, \mathbf{p}_3) W_B(\mathbf{y}_1, \mathbf{k}_1; \mathbf{y}_2, \mathbf{k}_2) \\
\times \delta^{(3)}(\mathbf{P}_B - \mathbf{p}_1 - \mathbf{p}_2 - \mathbf{p}_3),$$
(5)

 $f_{q,\bar{q}}(\mathbf{x}_1, \mathbf{p}_1)$ is the phase-space distribution of (anti)quarks, normalized as $\int d^3 \mathbf{x} d^3 \mathbf{p} f_{q,\bar{q}}(\mathbf{x}, \mathbf{p}) = N_{q,\bar{q}}$, K. C. Han, R. J. Fries and C. M. Ko, Phys. Rev. C **93**, no. 4, 045207 (2016).

NCQ scaling

- quark's elliptic flow: $f_a(\mathbf{p}_T) = \overline{f}_a(p_T) (1 + 2v_{2,q}(p_T) \cos 2\phi)$
- the meson's elliptic flow: $v_2^M(p_T) = \frac{2v_{2,q}(p_T/2)}{1+2v_2^2} \sim 2v_{2,q}(p_T/2)$
- the baryon's elliptic flow: $v_2^B(p_T) = \frac{3v_{2,q}(p_T/3)}{1+6v_{2,q}^2(p_T/3)} \sim 3v_{2,q}(p_T/3)$

 NCQ scaling is a very clean signal of deconfinement of quark and gluons in system.

framework of hydro+ jet

1. Get the thermal hadrons from hydro by the Cooper-Frye.

2. Get the thermal parton with 1.6 < P_T <4 GeV from hydro and the hard parton from Pythia8, then suffered with energy loss by LBT with α =0.15. Coalescence the quarks, the remnant hard quarks subjected to fragmentation in Pythia8.

3. All hadrons feed to the UrQMD model.

spectra

• Hydro + jet with coalescence and fragmentation hadronization mechanism, our model can well describe spectra at low and inter-medium p_T .

Wenbin Zhao

hydro, coal. and frag.'s contributions to spectra

• Coalescence is important at high multiplicity at inter-medium p_T . It has negligible contribution at low multiplicity.

 $v_2(p_T)$

 Hydro + jet with coalescence and fragmentation hadronization mechanism, our model can well describe v₂(p_T) at low and inter-medium p_T.

NCQ scaling of $v_2(p_T)$

 We can get the approximately NCQ scaling of v₂(p_T) at high multiplicity of p+Pb system.

Summary

- For p-p system, hydrodynamics can well describe the $v_2\{2\}$, $v_2(p_T)$ for all charge hadron and mass ordering. However fail to reproduce the negative $c_2\{4\}$.
- NCQ scaling is a very clean signal of deconfinement of quark and gluons in heavy-ion collisions.
- Within the framework of hydro+ jet with coalescence and fragmentation hadronization mechanism, we can reproduce the spectra as well as the $v_2(p_T)$, and get the approximately NCQ scaling at high multiplicity of p+Pb system.

Thanks

Back up

More details on c_2 {4} calculations

- minimize multiplicity fluctuation:
 - Cut the multiplicity class with the number of all charged hadrons N_{ch}^{Sel} within 0.3 $< p_T <$ 3.0 GeV, $|\eta| <$ 2.4
 - Calculate $c_2{4}$ with the same N_{ch}^{Sel} to minimize multiplicity fluctuation.
 - Combined $c_2{4}$ to several N_{ch}^{Sel} .
 - Map N_{ch}^{Sel} to the event activity measure N_{ch} with $p_T > 0.4$ GeV, $|\eta| < 2.4$.
- Check standard method, 2-, 3-subevent in simulations

Wenbin Zhao

summary

Including pre-equilibrium effects

summary

Symmetric cumulant by 3-subevent (ATALS)

45 / 48

Other initial models

• In super-MC the entropy density is:

$$s(\mathbf{r}) = \frac{\kappa_s}{\tau_0} \sum_{k=1}^3 \gamma_k^{(i)} \, \frac{e^{-(\mathbf{r} - \mathbf{r}_k^{(i)})^2 / (2\sigma_g^2)}}{2\pi\sigma_g^2},\tag{6}$$

where γ_k is sampled from Γ distribution, $\mathbf{r}_k^{(i)}$ is quark's positions, σ_g is width of gluons.

• In TRENTo the initial entropy density is:

$$s = s_0 \left(\frac{\tilde{T}_A^{\rho} + \tilde{T}_B^{\rho}}{2}\right)^{1/\rho},\tag{7}$$

where $\tilde{T}(x, y) \equiv \int dz \frac{1}{n_c} \sum_{i=1}^{n_c} \gamma_i \rho_c (\mathbf{x} - \mathbf{x_i} \pm \mathbf{b}/2)$, n_c is the number of

the independent constituents and $\rho_c(\mathbf{x}) = \frac{1}{(2\pi v^2)^{3/2}} \exp\left(-\frac{\mathbf{x}^2}{2v^2}\right)$,

HIJING: Zhao, Zhou, Xu, Deng, Song, Phys. Lett. B **780**, 495 (2018) super-MC: Welsh, Singer, Heinz, Phys. Rev. C **94**, no. 2, 024919 (2016)

TRENTo: J. S. Moreland, J. E. Bernhard and S. A. Bass, arXiv:1808.02106 [nucl-th].

Wigner function

To guarantee positive value of Wigner function for stable Monto Carlo sampling, the Wigner function replaced by the overlap of hadron Wigner function W_M with parton's Wigner function, $W_{q,\bar{q}}$:

$$\overline{W}_{M}(\mathbf{y}, \mathbf{k}) = \int d^{3}\mathbf{x}_{1}' d^{3}\mathbf{k}_{1}' d^{3}\mathbf{x}_{2}' d^{3}\mathbf{k}_{2}'$$

$$\times W_{q}(\mathbf{x}_{1}', \mathbf{k}_{1}') W_{\bar{q}}(\mathbf{x}_{2}', \mathbf{k}_{2}') W_{M}(\mathbf{y}', \mathbf{k}'). \qquad (8)$$

Using harmonic oscillator for wave functions of excited stated of hadrons,

$$\phi_n(x) = \left(\frac{m\omega}{\pi\hbar}\right)^{1/4} \frac{1}{\sqrt{2^n n!}} H_n(\xi) e^{-\xi^2/2},$$
(9)

 $\xi = \sqrt{\frac{m\omega}{\hbar}}x$, $H_n(\xi)$ are Hermite polynomials, ω is the oscillator frequency. K. C. Han, R. J. Fries and C. M. Ko, Phys. Rev. C **93**, no. 4, 045207 (2016).

summary

The quark wave function to be Gaussian wave packet, the wigner function of a meson in n-th excited state is

$$\overline{W}_{M,n}(\mathbf{y},\mathbf{k}) = \frac{v^n}{n!} e^{-v}.$$
(10)

with

$$\mathbf{v} = \frac{1}{2} \left(\frac{\mathbf{y}^2}{\sigma_M^2} + \mathbf{k}^2 \sigma_M^2 \right). \tag{11}$$

Similarly, the Gaussian smeared Wigner function for baryon is:

$$\overline{W}_{B,n_1,n_2}(\mathbf{y}_1,\mathbf{k}_1;\mathbf{y}_2,\mathbf{k}_2) = \frac{v_1^{n_1}}{n_1!}e^{-v_1} \cdot \frac{v_2^{n_2}}{n_2!}e^{-v_2},$$
(12)

with

$$\mathbf{v}_i = \frac{1}{2} \left(\frac{\mathbf{y}_i^2}{\sigma_{B_i}^2} + \mathbf{k}_i^2 \sigma_{B_i^2} \right), \quad i = 1, 2.$$
(13)

K. C. Han, R. J. Fries and C. M. Ko, Phys. Rev. C 93, no. 4, 045207 (2016).

Wenbin Zhao