Partonic model simulations of vorticity and spin polarization in heavy-ion collisions

Xu-Guang Huang Fudan University, Shanghai

May 12nd , 2019 @ Dalian

Motivation of the talk

 LETTER
 Quark-gluon plasma: "The most vortical fluid"

 doi:10.1038/nature23004

Global Λ hyperon polarization in nuclear collisions

The STAR Collaboration*

Motivation of the talk

• But: discrepancies between theory and experiments

3) Vector meson spin alignment

Experiment Refs:

STAR Collaboration, arXiv:1805.04400Niida, Quark matter 2018C. Zhou, Quark matter 2018B. Tu, Quark matter 2018Singh, Chirality 2019

Motivation of the talk

- To resolve the puzzle, from the theory side, we need to:
 - Understand the properties of fluid vorticity
 - Understand the magnetic field contribution, the feed-down contribution,
 - Find other observables which are always helpful: spinalignment at central collisions, the chiral vorticity effects (Sun-Ko 2018),
 - Understand how vorticity polarizes spin and how the spin polarization evolve: spin kinetic theory or spin hydrodynamics

Vorticity in heavy-ion collisions

Deng-XGH, arXiv: 1603.06117 (HIJING) Wei-Deng-XGH, arXiv: 1810.00151 (AMPT)

Fluid vorticity

Nonrelativistic: $\boldsymbol{\omega} = \nabla \times \boldsymbol{v} \sim \text{local angular momentum}$ **Relativistic:**

 $\omega^{\mu} = \epsilon^{\mu\nu\rho\sigma} u_{\nu} \partial_{\rho} u_{\sigma} \sim \text{local angular momentum + local boost}$

 $\varpi_{\mu\nu} = \frac{1}{2} [\partial_{\nu}(u_{\mu}/T) - \partial_{\mu}(u_{\nu}/T)] \sim \text{thermal vorticity}$

Angular momentum in HIC

(RHIC Au+Au 200 GeV, b=10 fm)

Vorticity by global AM

Vorticity in Au+Au@RHIC at b = 10 fm is $10^{20} - 10^{21}s^{-1}$

See also: Becattini etal 2015,2016; Jiang-Lin-Liao 2016; Pang-Petersen-Wang-Wang 2016; Xia-Li-Wang 2017,2018; Sun-Ko 2017;

Vorticity by global AM

Vorticity at mid-rapidity decreases with increasing \sqrt{S}

See also: Jiang-Lin-Liao 2016, Xia-Li-Wang 2017,

Vorticity due to expansion

Spin-vorticity coupling

Early consideration: Liang-Wang 2004; Voloshin 2004 $\frac{dN}{dp} \sim e^{-(H_0 - \boldsymbol{\omega} \cdot \boldsymbol{J})/T}$ $H = H_0 - \boldsymbol{\omega} \cdot \boldsymbol{J}$ $\mathsf{P} = \frac{N_{\uparrow} - N_{\downarrow}}{N_{\uparrow} + N_{\downarrow}} \sim \frac{\langle \omega \rangle}{T}$ (%) 4 4 4 Au+Au 20-50% A Nature 548, 62-65 (2017) A Nature 548, 62-65 (2017) A PRC76 024915 (2007) A PRC76 024915 (2007) з A STAR preliminary A STAR preliminary 2 STAR Possible magnetic-field contribution. A 1 way to measure B? n

STAR preliminary

10

STAR, Nature **548**, 62–65 (2017) $\sqrt{s_{NN}}$ (GeV)

 10^{2}

-1

$$H = H_0 - \boldsymbol{\omega} \cdot \boldsymbol{J} - \boldsymbol{m} \cdot \boldsymbol{B}$$

Spin-vorticity coupling

More careful examination: Becattini-Chandra-Grossi 2013; Fang-Pang-Wang-Wang 2016

$$S^{\mu}(x,p) = -\frac{s(s+1)}{6m}(1-n_F)\epsilon^{\mu\nu\rho\sigma}p_{\nu}\varpi_{\rho\sigma}(x) + O(\varpi)^2$$

where $n_F(p_0)$ is the Fermi-Dirac distribution function and $p_0 = \sqrt{\mathbf{p}^2 + m^2}$

Rest frame of particle:

$$oldsymbol{S}^* = oldsymbol{S} - rac{oldsymbol{p} \cdot oldsymbol{S}}{p_0(p_0+m)}oldsymbol{p}$$

Polarization in direction n:

$$P_n = \frac{1}{s} S^* \cdot n$$

Assumption used: thermal equilibrium. Is spin degree of freedom thermalized in HICs? Open question.

Hyperon polarization

Global spin polarization

- Mass ordering among $\Omega^{-}(sss)$, $\Xi^{0}(uss)$, and $\Lambda(uds)$.
- Magnetic moments μ_{Ω} : μ_{Ξ} : $\mu_{\Lambda} = 3:2:1$. Test magnetic contribution.

D.X.Wei-W.T.Deng-XGH, 1810.00151

The sign problem

• p_T , rapidity, and azimuthal dependence, theory vs expts.

- Theory consistent with experiments in p_T and rapidity dependence.
- Puzzle: opposite ϕ dependence in theory and experiment.

The sign problem

• Longitudinal sign problem:

• Transverse sign problem:

Data: STAR Collaboration Calculation: Wei-Deng-XGH 2018

Feed-down effect

Xia-Li-XGH-Huang, arXiv: 1905.03120

Motivations

(1) A large fraction of the Λ hyperon comes from decays of higher-lying hyperons

(2) The feed-down effect may provide a resolution to the "polarization sign problem". For example, EM decay, if Σ is polarization along the vorticity, its daughter Λ must be polarized opposite to the vorticity

$$\Sigma^0 \to \Lambda + \gamma \qquad \left(\frac{1}{2}\right)^+ \to \left(\frac{1}{2}\right)^+ 1^-$$

Spin transfer

TABLE I. Daughter angular distribution and polarization vector \mathbf{P}_D in different decay channels

	spin and parity	$(1/N)dN/d\Omega^*$	\mathbf{P}_D	$\langle \mathbf{P}_D \rangle / \mathbf{P}_P$
strong decay	$1/2^+ ightarrow 1/2^+0^-$	$1/(4\pi)$	$2\left(\mathbf{P}_{P}\cdot\hat{\mathbf{p}}^{*}\right)\hat{\mathbf{p}}^{*}-\mathbf{P}_{P}$	-1/3
strong decay	$1/2^- ightarrow 1/2^+0^-$	$1/(4\pi)$	\mathbf{P}_{P}	1
strong decay	$3/2^+ ightarrow 1/2^+0^-$	$3\left[1-2\Delta/3-(1-2\Delta)\cos^2\theta^*\right]/(8\pi)$	Eq. (40)	1
strong decay	$3/2^- ightarrow 1/2^+0^-$	$3\left[1-2\Delta/3-(1-2\Delta)\cos^2\theta^*\right]/(8\pi)$	Eq. (41)	-3/5
weak decay	1/2 ightarrow 1/2 ightarrow 0	$(1+\alpha P_P\cos\theta^*)/(4\pi)$	Eq. (28)	$(2\gamma + 1)/3$
EM decay	$1/2^+ \to 1/2^+1^-$	$1/(4\pi)$	$-\left(\mathbf{P}_{P}\cdot\hat{\mathbf{p}}^{*} ight)\hat{\mathbf{p}}^{*}$	-1/3

$$\mathbf{P}_{D} = \frac{-4\delta \left(\mathbf{P}_{P} \cdot \hat{\mathbf{p}}^{*}\right) \hat{\mathbf{p}}^{*} + \left[1 - 2\delta - (1 - 10\delta) \left(\hat{\mathbf{P}}_{P} \cdot \hat{\mathbf{p}}^{*}\right)^{2}\right] \mathbf{P}_{P}}{1 - 2\Delta/3 - (1 - 2\Delta) \left(\hat{\mathbf{P}}_{P} \cdot \hat{\mathbf{p}}^{*}\right)^{2}},$$
(40)

and

Spin transfer

TABLE II. The primordial yield ratio N_i/N_{Λ} , spin, parity, and decay channels of strange particles

	N_i/N_{Λ}	spin and parity	decay channel
Λ	1	$1/2^+$	-
$\Lambda(1405)$	0.236	$1/2^{-}$	$\Sigma^0 \pi$
Λ(1520)	0.265	$3/2^{-}$	$\Sigma^0 \pi$
A (1600)	0.098	$1/2^{+}$	$\Sigma^0 \pi$
Λ(1670)	0.061	$1/2^{-}$	$\Sigma^0 \pi$, $\Lambda \eta$
Λ(1690)	0.112	$3/2^{-}$	$\Sigma^0 \pi$
Σ^0	0.686	$1/2^{+}$	Λγ
Σ^{*0}	0.533	$3/2^{+}$	$\Lambda\pi$
Σ^{*+}	0.535	$3/2^+$	$\Lambda\pi, \Sigma^0\pi$
Σ^{*-}	0.524	$3/2^+$	$\Lambda\pi, \Sigma^0\pi$
$\Sigma(1660)$	0.068	$1/2^{+}$	$\Lambda\pi, \Sigma^0\pi$
$\Sigma(1670)$	0.125	$3/2^{-}$	$\Lambda \pi, \Sigma^0 \pi$
Ξ^0	0.343	$1/2^{+}$	$\Lambda\pi$
Ξ_	0.332	$1/2^{+}$	$\Lambda\pi$
Ξ^{*0}	0.228	$3/2^{+}$	$\Xi\pi$
Ξ *	0.224	$3/2^+$	$\Xi\pi$

Decay contribution

• Assuming the primordial particles are polarized the same :

Conclusion: Feed-down decays suppress 10% the primordial polarization, but it does not solve the sign problem

Sign problem is still there. Any suggestions, comments, are welcome.

See also: Becattini-Cao-Speranza, arXiv:1905.03123

Dissipative spin hydrodynamics

Hattori-Hongo-XGH-Mameda-Matsuo-Taya, arXiv:1901.06615

• Ideal spin hydro: (Florkowski etal 2017)

$$\partial_{\mu}T^{\mu\nu} = 0 \qquad T^{\mu\nu} = (\varepsilon + P)u^{\mu}u^{\nu} - Pg^{\mu\nu}$$
$$\partial_{\lambda}S^{\lambda,\mu\nu} = 0 \qquad S^{\lambda,\mu\nu} = \frac{wu^{\lambda}}{4\zeta}\omega^{\mu\nu}$$

• Why dissipation is important?

Spin configuration entropy decrease: The polarization process must be dissipative so that the total entropy increase.

- Go beyond the naïve picture of spin polarization by vorticity
- Consider collective dynamics of spin: spin hydrodynamics

Energy-momentum conservation: Angular-momentum conservation:

$$\frac{\partial_{\mu}\Theta^{\mu\nu}=0}{\partial_{\mu}J^{\mu\alpha\beta}=0}$$

$$J^{\mu\alpha\beta} = (x^{\alpha}\Theta^{\mu\beta} - x^{\beta}\Theta^{\mu\alpha}) + \Sigma^{\mu\alpha\beta}$$

Orbital

$$Orbital$$

$$Spin$$

$$\partial_{\mu}\Sigma^{\mu\alpha\beta} = -2\Theta^{\alpha\beta}_{(a)}$$

$$\Theta^{\mu\nu} = \Theta^{\mu\nu}_{s} + \Theta^{\mu\nu}_{a}$$

Identify the hydrodynamic variable: T and u^{μ} (4 for translation), $\omega^{\mu\nu}$ (3 for rotation, 3 for boost)

Express $\Theta^{\mu\nu}$ and $J^{\mu\rho\sigma}$ in terms of hydro variables and make derivative expansion

• We have

$$\Theta^{\mu\nu} = eu^{\mu}u^{\nu} + p\Delta^{\mu\nu} + \Theta^{\mu\nu}_{(1)} \qquad \Theta^{\mu\nu}_{(1s)} = 2h^{(\mu}u^{\nu)} + \tau^{\mu\nu}$$
$$\Sigma^{\mu\alpha\beta} = u^{\mu}S^{\alpha\beta} + \Sigma^{\mu\alpha\beta}_{(1)} \qquad \Theta^{\mu\nu}_{(1a)} = 2q^{[\mu}u^{\nu]} + \phi^{\mu\nu}$$

• Apply the 2nd law of thermodynamics can give the constitutive relations at $O(\partial)$:

$$h^{\mu} = -\kappa (Du^{\mu} + \beta \partial_{\perp}^{\mu} T) \qquad q^{\mu} = -\lambda \left(-Du^{\mu} + \beta \partial_{\perp}^{\mu} T - 4\omega^{\mu\nu} u_{\nu} \right)$$

$$\tau^{\mu\nu} = -2\eta \partial_{\perp}^{\langle \mu} u^{\nu \rangle} - \zeta \theta \Delta^{\mu\nu} \qquad \phi^{\mu\nu} = -2\gamma \left(\partial_{\perp}^{[\mu} u^{\nu]} - 2\Delta_{\rho}^{\mu} \Delta_{\lambda}^{\nu} \omega^{\rho\lambda} \right)$$

Transport coefficients: thermal conductivity κ , viscosities η , ζ , and new transport coefficients: boost heat conductivity λ and rotational viscosity γ . They are all semipositive.

• This completes the construction of spin hydro at $O(\partial)$

• Possible consequences: (1) New collective modes

$$\begin{split} & \omega = -2iD_s, \\ & \omega = -2iD_b, \\ & \omega = \begin{cases} -2iD_s - i\gamma'k_z^2 + \mathcal{O}(k_z^4), \\ -i\gamma_\perp k_z^2 + O(k_z^4), , \end{cases} & \leftarrow & \text{Longitudinal spin damping} \\ & \leftarrow & \text{Longitudinal boost damping} \\ & \leftarrow & \text{Transverse spin damping} \\ & \leftarrow & \text{Shear viscous damping} \\ & \omega = \begin{cases} \pm c_s k_z - i\frac{\gamma_{\parallel}}{2}k_z^2 + \mathcal{O}(k_z^3), \\ -2iD_b - 2ic_s^2\lambda'k_z^2 + \mathcal{O}(k_z^4). \end{cases} & \leftarrow & \text{Sound and bulk viscous damping} \\ & \leftarrow & \text{Transverse boost damping} \end{cases}$$

• (2) Partonic simulation of spin transport coefficients

boost heat conductivity $\lambda \sim \lim_{\omega \to 0} \lim_{p \to 0} \frac{\partial}{\partial \omega} G_R^{T^{[0i]}T^{[0i]}}(\omega, p)$ rotational viscosity $\gamma \sim \lim_{\omega \to 0} \lim_{p \to 0} \frac{\partial}{\partial \omega} G_R^{T^{[ij]}T^{[ij]}}(\omega, p)$

New insight to QCD matter!

Thank you and congratulations to Prof. Che Ming Ko for the 50-year scientific career!

• Discussion

- 1) Can we formulate spin hydrodynamics with a symmetric energy momentum tensor?
- 2) To form a causal and numerically stable set of equations, we need to consider the second order spin hydrodynamics
- 3) Calculation of the new transport coefficients of QCD: rotational viscosity and boost heat conductivity
- 4) Derive spin hydrodynamics from kinetic theory, Wigner function, etc (early trials: Becattni etal 2018, Florkowski etal 2018)
- 5) Applications: Numerical spin hydrodynamics

Main message:

1. Global AM induces strong vorticity in HICs

: $\omega \approx 10^{21} - 10^{22} \, s^{-1}$

2. Inhomogeneous expansion: quadrupoles in both xy and xz planes

Velocity field in partonic model

To calculate the vorticity, we need to know the velocity

Definition of velocity field in HIJING or AMPT model

$$\begin{split} v_1^a(x) \ &= \ \frac{1}{\sum_i \Phi(x, x_i)} \sum_i \frac{p_i^a}{p_i^0} \Phi(x, x_i) = \frac{J^a}{J^0} \quad \sim \text{Particle flow velocity} \\ v_2^a(x) \ &= \ \frac{\sum_i p_i^a \Phi(x, x_i)}{\sum_i [p_i^0 + (p_i^a)^2/p_i^0] \Phi(x, x_i)} = \ \frac{T^{0a}}{T^{00} + T^{aa}} \quad \sim \text{Energy flow velocity} \end{split}$$

Smearing function Phi

$$\Phi_{\rm G}(x,x_i) = \frac{K}{\tau_0 \sqrt{2\pi\sigma_{\eta}^2} 2\pi\sigma_r^2} \exp\left[-\frac{(x-x_i)^2 + (y-y_i)^2}{2\sigma_r^2} - \frac{(\eta-\eta_i)^2}{2\sigma_{\eta}^2}\right]$$

Parameters are so chosen that with hydro, it is consistent with elliptic data (Pang-Wang-Wang 2012)

Other sources of vorticity

1) Jet

2) Magnetic field

Einstein-de-Haas effect

Spin transfer

Consider the decay process

$$P \to D + X$$

• The parent P is spin-polarized along z, the daughter D moves along p* in P's rest frame

Density matrix

$$\rho_{\lambda_D\lambda_X;\lambda'_D\lambda'_X}^{f}(\theta^*,\phi^*) = \sum_{M_P,M'_P} H_{\lambda_D\lambda_X;M_P} \rho_{M_P;M'_P}^{i} H_{M'_P;\lambda'_D\lambda'_X}^{\dagger}$$

$$|f\rangle = |\theta^*\phi^*\lambda_D\lambda_X\rangle \qquad |i\rangle = |S_PM_P\rangle$$
The spin polarization of D:

$$P_D = \operatorname{tr}_D\left(\widehat{\mathbf{P}}\rho_{\lambda_D;\lambda'_D}^D\right)/\operatorname{tr}_D\left(\rho_{\lambda_D;\lambda'_D}^D\right)$$

$$\rho_{\lambda_D;\lambda'_D}^{D} = \operatorname{tr}_X\left(\rho_{\lambda_D\lambda_X;\lambda'_D\lambda'_X}^{f}\right)$$

Spin transfer

• For example, consider the EM decay $1/2^+ \rightarrow 1/2^+ 1^-$:

Initial density
$$\rho^i_{M_P;M_P'} = \operatorname{diag}\left(\frac{1+P_P}{2},\frac{1-P_P}{2}\right)$$
 matrix:

$$\rho_{\lambda_D \lambda_X; \lambda'_D \lambda'_X}^f = \frac{1}{8\pi} \begin{pmatrix} 1 + P_P \cos \theta^* & 0 & 0 & -P_P \sin \theta^* \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ -P_P \sin \theta^* & 0 & 0 & 1 - P_P \cos \theta^* \end{pmatrix}$$

$$\rho_{\lambda_D;\lambda_D'}^D = \frac{1}{8\pi} \left(\begin{array}{cc} 1 + P_P \cos \theta^* & 0\\ 0 & 1 - P_P \cos \theta^* \end{array} \right)$$

$$\mathbf{P}_D = -\left(\mathbf{P}_P \cdot \hat{\mathbf{p}}^*\right) \hat{\mathbf{p}}^*$$

First derived by Gatto 1958

Main decay channels

• Main decay channels contributing to Λ spin polarization:

Strong decay:
$$\Sigma^{*0} \to \Lambda + \pi^0$$
, $\Sigma^{*+} \to \Lambda + \pi^+$, $\left(\frac{3}{2}\right)^+ \to \left(\frac{1}{2}\right)^+ 0^-$
EM decay: $\Sigma^0 \to \Lambda + \gamma$, $\left(\frac{1}{2}\right)^+ \to \left(\frac{1}{2}\right)^+ 1^-$
Weak decay: $\Xi^0 \to \Lambda + \pi^0$, $\Xi^- \to \Lambda + \pi^-$, $\left(\frac{1}{2}\right)^+ \to \left(\frac{1}{2}\right)^+ 0^-$

Summary

- Most vortical fluid created in HICs.
- Global polarization can be understood: vorticity induced by global AM
- Inhomogeneous expansion leads to quadrupolar vortical structure in transverse plane and reaction plane
- Sign problem in the azimuthal-angle dependence of both transverse and longitudinal polarizations
- Resonance decays don't solve sign problem
- New observables: rapidity dependent spin harmonic flows, spin alignment in central collisions