

Improvement for the open charm production in a multi-phase transport model

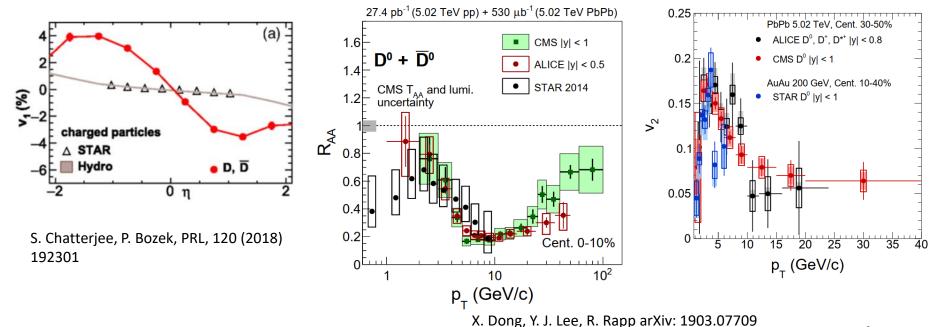
Speaker: Liang Zheng

China University of Geosciences (Wuhan)

In collaboration with: Chao Zhang (CCNU), Shusu Shi (CCNU), Ziwei Lin (ECU&CCNU)

International Workshop on Partonic and Hadronic Transport Approaches for Relativistic Heavy Ion Collisions 11-12 May, 2019, Dalian

Outline


- Open heavy flavor production
- Improvements in AMPT to describe HF production
- Results
 - Open charm production in pp
 - Open charm production in AA

Why heavy flavor

- Heavy mass
 - m_{Q} >> Λ_{QCD} , applicable in pQCD framework for a wide p_{T} range
 - $m_Q >> T_{QGP}$, short formation time, thermalization time comparable to the fireball life time
- Unique probe to the QGP medium
 - Low p_T region, Langevin process characterization
 - High p_T region, heavy quark energy loss

Extracting the medium information with HF probes

- Directed charm flow
- Nuclear modification factor RAA
- Anisotropic flow coefficient

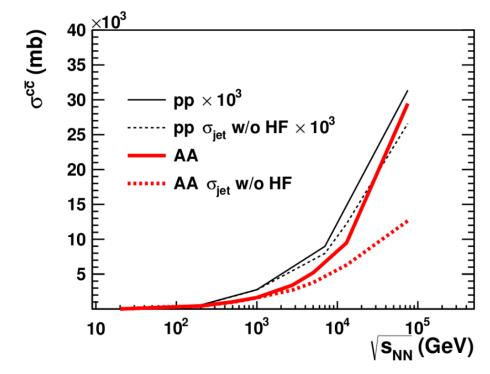
Studying HF production in AMPT

- Unified framework to explore the QGP evolution
 - Transport properties solved in the parton/hadron cascades
 - Different flavor components included with e-by-e fluctuations
- HF production channels
 - Pair production $q + \bar{q} \rightarrow Q + \bar{Q}$, $g + g \rightarrow Q + \bar{Q}$
 - Gluon splitting $g \rightarrow Q + \bar{Q}$
 - Flavor excitation $q+Q \rightarrow q+Q$ $g+Q \rightarrow g+Q$

$$\frac{d\sigma^{Q\bar{Q}}}{dp_{\rm T}^2 dy_1 dy_2} = K \sum_{a,b} x_1 f_a(x_1,\mu_F^2) x_2 f_b(x_2,\mu_F^2) \frac{d\sigma^{ab \to Q\bar{Q}}}{d\hat{t}}$$

Improvement for HF quark production in AMPT

- Modern nucleon and nuclear PDF
- Treatment to the transverse momentum cut in two component model for HF channels


$$\frac{d\sigma_{\text{jet}}}{dp_{\text{T}}^2 dy_1 dy_2} = K \sum_{a,b} x_1 f_a(x_1, \mu_F^2) x_2 f_b(x_2, \mu_F^2) \frac{d\sigma^{ab}}{d\hat{t}}$$
$$\sigma_{\text{jet}}(s) = \frac{1}{2} \int_{p_0^2}^{s/4} dp_{\text{T}}^2 dy_1 dy_2 \frac{d\sigma_{\text{jet}}^{\text{light}}}{dp_{\text{T}}^2 dy_1 dy_2} + \frac{1}{2} \int_0^{s/4} dp_{\text{T}}^2 dy_1 dy_2 \frac{d\sigma_{\text{jet}}^{\text{heavy}}}{dp_{\text{T}}^2 dy_1 dy_2}$$

 $p_0^{pp}(s) = -1.71 + 1.63 \ln(\sqrt{s}) - 0.256 \ln^2(\sqrt{s}) + 0.0167 \ln^3(\sqrt{s})$

 $p_0^{AA} = p_0^{pp} A^{q(s)}$ q(s) 0 to 0.16, starting at Vs=200 GeV Applicable in central AA collisions principally

Improvement for HF quark production in AMPT

- Including HF sector to the σ_{jet} estimation in two component model

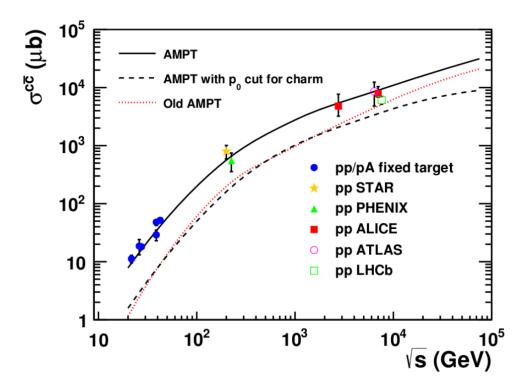
Improvement for HF hadron production in AMPT

Coalescence procedure for charm/bottom hadron

 $D, D^*, D_s, D_s^*, \Lambda_c, \Sigma_c, \Xi_c, \Xi_c, \Xi_{cc}, \Omega_c, \Omega_{cc}, \Omega_{ccc}$

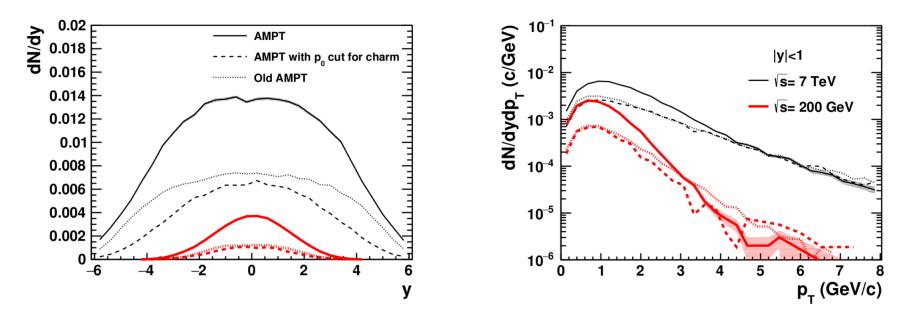
 $B, B^*, B_s, B_s^*, B_c, B_c^*, \Lambda_b, \Sigma_b, \Xi_b, \Xi_b, \Xi_{bc}, \Xi_{bc}, \Xi_{bb}, \Omega_b, \Omega_{bc}, \Omega_{bc}', \Omega_{bb}, \Omega_{bbc}, \Omega_{bbc}, \Omega_{bbc}$

• Vector to pseudo-vector meson ratio

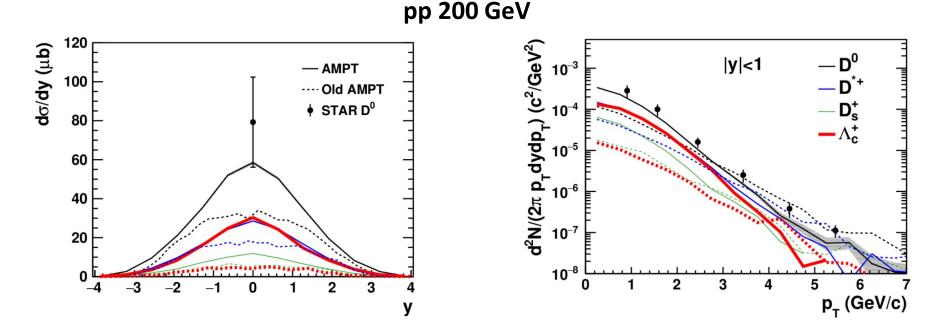

 ρ/π =0.3 K^*/K =0.5 D^*/D or B^*/B =2.0

 Charm baryon to meson formation probability tuning in coalescence

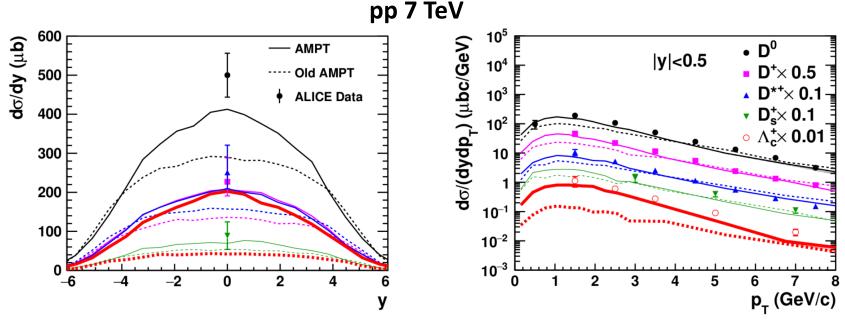
 $r_{BM} (u/d/s) = 0.53$ $r_{BM} (c/b/t) = 1.00$


Charm quark production in pp

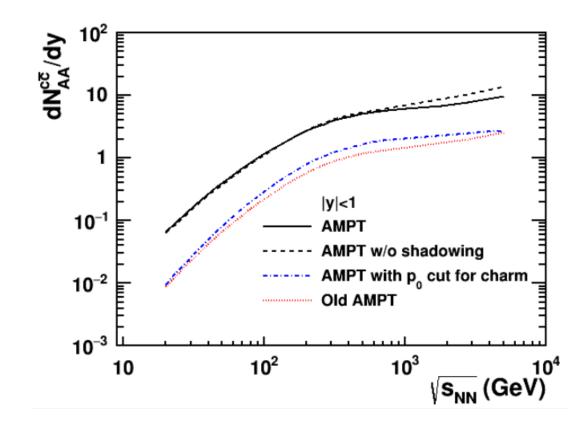
- Old AMPT produces similar cross section to the case with p_0 cut
- Removal of p_0 enhances the total cross section significantly


Charm quark production in pp

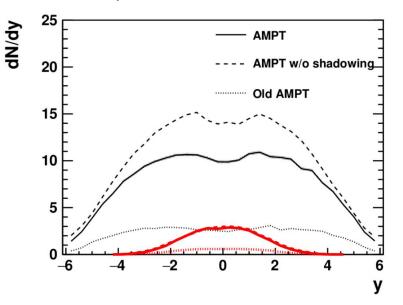
- Changes without p₀ generates a wider rapidity width compared to the old AMPT results
- p_0 change dominates in the region of mid-rapidity and low $p_{\rm T}$

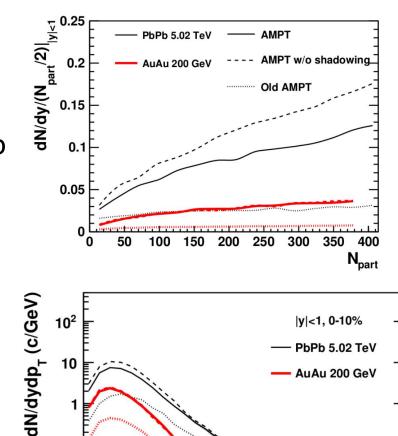

Charm hadron yield in pp

- D⁰ hadron yield in the new model setup is slightly below STAR data with a reasonable p_T spectra
- Hadron specie ratio very different in the new and old model


Charm hadron yield in pp

- Agreement roughly with the data in a wide range of hadron species for charm particles
- D^{*} similar in both versions while D⁰ and D⁺ much higher than the old AMPT results
- D* is still underestimated especially in low $p_{\rm T}, \Lambda_c$ agrees after our $r_{\rm BM}$ tuning


Charm quark production in AA


- p₀ cut impact is similar in AA and pp
- Shadowing starts to become important in very high energy

Charm quark production in AA

- Impact parameter shadowing matters for the charm yield at LHC energies
- Significant increase compared to the old AMPT results
- Enhancement originates from low p_T region

10⁻¹

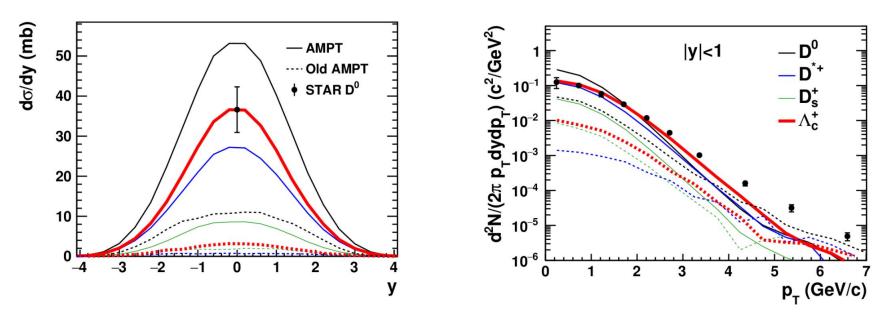
10⁻²

10⁻³

2

3

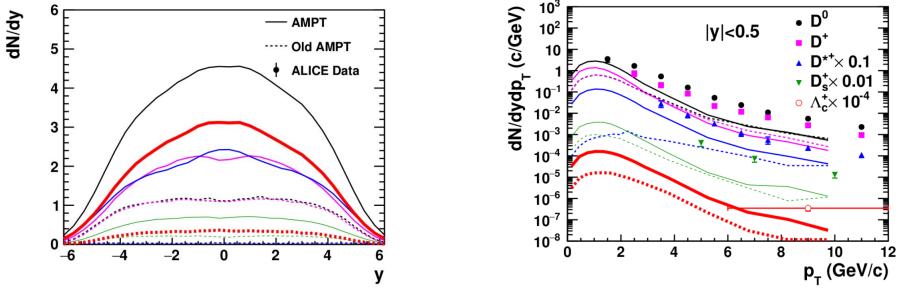
5


6

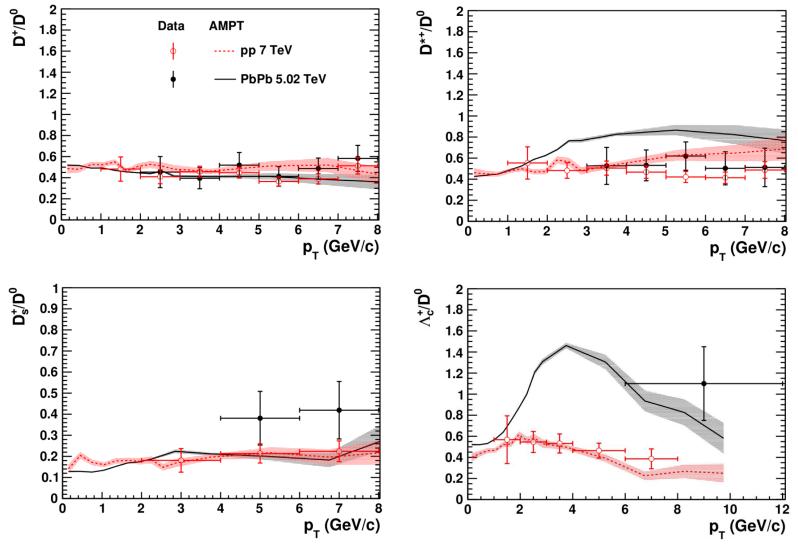
7

p_T (GeV/c)

Charm hadron production in AA


- D⁰ production a bit higher than the STAR data
- Different slope compared to the data trend
- Charm hadron shows mass dependence in the $\ensuremath{p_{\text{T}}}$ distribution

AuAu 200 GeV


Charm hadron production in AA

- Updated AMPT results underestimate the LHC data for all hadron species especially in the high p_{τ} region
- Possible improvement may come from the final state parton scattering strength tuning
- Missing flavor excitation could be another source

PbPb 5.02 TeV

Charm hadron production in AA

Summary

- AMPT model provides a well established framework to study the heavy quark transport effects
- Treatment to the p₀ cut in the heavy quark production is important to get reasonable charm productions
- With well tuned parameters we are capable of describing the charm hadron production data
- A foundation for the future heavy flavor studies in the AMPT framework