Hadrons in medium

Su Houng Lee

- Few words on Confinement, chiral symmetry breaking and UA(1) effect from the 80's and 90's
- 2. Few words on QCD sum rule and Prof. Che-Ming Ko
- 3. K*, K1 meson
- 4. Conclusion

I: Few words on confinement, Chiral symmetry breaking and UA(1) effect

Understanding the mass of a composite object

Mass of an Atom

Nucleon: 99.95 % electron: 0.05 % EM binding< 0.00001 %

Nucleus

Nucleons: 99% Nuclear binding < 1 %

Nucleon

Quark < 5 %

The rest ??

Constituent quark model: confinement vs chiral symmetry restoration

4

Chiral symmetry restoration at finite T and ρ

W. Weise $\mathbf{T} = \mathbf{0}$ 30% reduction in nuclear matter 0.8 chiral in-medium $\langle \bar{\psi}\psi \rangle(\rho)$ dynamics 0.6 $\langle \bar{\psi}\psi \rangle (\rho = 0$ $m_{\pi} = 0.14 \, \text{GeV}$ 0.4 chiral limit $m_\pi \to 0$ leading order 0.2 0.1 0.15 0.2 0.25 0.3 $\rho \ [\mathrm{fm}^{-3}]$

Fig. 4. Density dependence of the chiral condensate in symmetric nuclear matter [13]. Dot-dashed curve: leading order term using $\sigma_N = 50$ MeV. Upper curve: full in-medium chiral dynamics result at three-loop order. Lower curve: chiral limit with vanishing pion mass.

→ What will happen to hadron masses : A bridge between QCD and experiment ?

- 1. Soft modes, scalar meson: Hatsuda, Kunihiro (85,87)
- 2. Pseudoscalar mesons: Bernard, Jaffe, Meissner (88), Klimt, Lutz, Vogel, Weise (90)
- 3. Brown-Rho: 91
- 4. Vector mesons: Hatsuda, Lee (92)
- → nuclear target provides a good environment to test effects of restoration

Confinement and Deconfinement at finite T

☞ Wilson Loops and potential

Manousakis, Polonyi PRL 1987

Local operators

OPE for Wilson lines: Shifman NPB73 (80) Dosch, Simonov PLB339 (88)

W(S-T) = 1- $\langle \alpha / \pi E^2 \rangle$ (ST)² +...

 $W(S-S) = 1 - \langle \alpha / \pi | B^2 \rangle (SS)^2 + \dots$

Morita, SHLee PRL 2008, PRD 2009

Confinement and Deconfinement at finite T

☞ Wilson Loops and potential

Manousakis, Polonyi PRL 1987

Local operators

OPE for Wilson lines: Shifman NPB73 (80) Dosch, Simonov PLB339 (88)

W(S-T) = 1- $\langle \alpha / \pi E^2 \rangle$ (ST)² +...

$$W(S-S) = 1 - \langle \alpha / \pi | B^2 \rangle (SS)^2 + \dots$$

SHLee PRD40 (89): ------Non-perturbative Gluon condensate above Tc

Morita, SHLee PRL 2008, PRD 2009

Chiral symmetry breaking (m >0) : order parameter

Quark condensate $SU(N_F)_L \times SU(N_F)_R \rightarrow SU(N_F)_V$ \Im $\langle \bar{q}q \rangle = \langle \bar{q}_L q_R + \bar{q}_R q_L \rangle = -\lim_{x \to 0} \langle Tr[S(x,0)] \rangle = -\lim_{x \to 0} \langle \frac{1}{2} Tr[S(x,0) - i\gamma^5 S(x,0)i\gamma^5] \rangle$ $q_L \longrightarrow q_R$ Chiral rotation $q \rightarrow \exp(i\gamma^5 \tau^a \alpha^a)q$

Solution Casher Banks formula: nontrivial zero mode ($\lambda = 0$) contribution

$$d\mu = dAe^{-S_{Glue}} \det \left[D + m \right] \longrightarrow i D \psi_{\lambda} = \lambda \psi_{\lambda} \quad \text{where} \quad \psi_{\lambda} \left(0 \right) = \left\langle 0 \mid \lambda \right\rangle$$

$$\left\langle \overline{q}\left(0\right)q\left(0\right)\right\rangle = \left\langle -\mathrm{Tr}\left[\left(0\left|\frac{1}{D+m}\right|0\right)\right]\right\rangle = \left\langle \int d\lambda \psi_{\lambda}^{+}\left(0\right)\psi_{\lambda}\left(0\right)\frac{m}{m^{2}+\lambda^{2}}\right\rangle \qquad \xrightarrow{m\to 0} \left\langle \pi\rho\left(\lambda=0\right)\right\rangle$$

• Other order parameters: V - A correlator + more

 $\square \nabla \nabla - \Pi^{AA} = \frac{1}{V} \int d^4 x \left[\left\langle \overline{q} \gamma^{\mu} \tau^a q(x), \overline{q} \gamma^{\mu} \tau^a q(0) \right\rangle - \left\langle \overline{q} \tau^a i \gamma^5 \gamma^{\mu} q(x), \overline{q} \tau^a i \gamma^5 \gamma^{\mu} q(0) \right\rangle \right]$ $= -\frac{1}{2} \operatorname{Tr} \left[\gamma^{\mu} \left(S(x,0) - i \gamma^5 S(x,0) i \gamma^5 \right) \gamma^{\mu} \left(S(0,x) - i \gamma^5 S(0,x) i \gamma^5 \right) \right] \propto \left\langle \rho^2 \left(\lambda = 0 \right) \right\rangle$ Lee, S. Cho 2013

$$\gamma^{\mu}\tau^{a}$$

9

U_A(1) effect : effective order parameter (Lee, Hatsuda 96)

$\mathrm{SU}(N_F)$	$)_L \times \mathrm{SU}(N_H)$	$_{r})_{R} \rightarrow \mathrm{SU}($	$(N_F)_{L+R=V}$
--------------------	-------------------------------	--------------------------------------	-----------------

Topologically trivial

$$Z = Z_{\nu=0} + \dots$$

$$q_L \longrightarrow v=0 \longrightarrow q_R$$

$$\langle \overline{q}q \rangle \propto \int dA e^{-S_{Glue}} \det \left[D + m \right] \left(\frac{1}{D + m} \right)$$

 $U_A(1)$ Breaking

Topologically non-trivial

$$Z = \dots + Z_{\nu = \pm 1} + \dots$$

$$\nu = \frac{\alpha_s}{4\pi} \int d^4 x \left(G \widetilde{G} \right) = n_R - n_L$$

$$\langle (\overline{u}u)(\overline{d}d)...\rangle$$

 $\propto \int dAe^{-S_{Glue}} \det [D+m] \left(\frac{1}{D+m}\right) \left(\frac{1}{D+m}\right)...$

 σ – η correlator : SU(2) case

•

$$\square \nabla = \Pi^{\sigma\sigma} - \Pi^{\eta\eta} = \frac{1}{V} \int d^4 x e^{ikx} \left[\left\langle \overline{q}q(x), \overline{q}q(0) \right\rangle - \left\langle \overline{q}i\gamma^5 q(x), \overline{q}i\gamma^5 q(0) \right\rangle \right]$$

• 't Hooft Interaction $V = 2c(\sigma^2 + \pi^2 - \eta^2 - \alpha^2)$

$$\Pi^{\sigma\sigma} - \Pi^{\eta\eta} \propto 4c$$

Solution Quark picture
$$\det[\overline{q}_R q_L] = (\overline{u}_R u_L \times \overline{d}_R d_L - \overline{u}_R d_L \times \overline{d}_R u_L)$$

 $\Pi^{\sigma\sigma} - \Pi^{\eta\eta} \propto$

SU(3)

Few Important points to note about hadron masses :

- 1. Changes at 1) finite temperature, 2) finite density, 3) Chiral symmetric limit of QCD are all different
- 2. However, changes that only depend on order parameters are universal
- 3. $\langle \overline{q}q \rangle$ can not be directly related to physical observable in a model independent way

 \rightarrow Comparison of whole spectrum is not needed

(Glozeman: Chiral symmetry is restored for excited states)

→ Ground states should have small intrinsic width to be experimentally observable

II: QCD sum rules and Prof. Che-Ming Ko

$\Pi(\varpi,q) = i \int d^4x e^{iqx} \langle J(x)J(0) \rangle \text{ where } J = \overline{\psi} \Gamma \psi, \ \psi \psi \psi$

- Correlation can be calculated directly from QCD at large Q²
- How are they used?

Traditionally: Imaginary part of the vector correlator

• Dispersion relation

$$\Pi(q) = \int ds \frac{\rho(s)}{s - q^2} \quad \text{where} \quad \rho(s) = \frac{1}{\pi} \operatorname{Im}\Pi(s)$$

iii) Matching: QCD sum rule for pole

Borel transformed Dispersion relation

$$B.T[\Pi(q)] = \mathrm{M}^{OPE}(M^2) = \sum_{n} \frac{C_n(m, M)}{n! (M^2)^n} \langle G^n \rangle = \int ds e^{-s/M^2} \rho(s)$$

Predicted $\Delta = M_{J/\psi} - M_{\eta_c} \approx 100$ MeV before experiment \rightarrow non trivial result

Contribution from Prof. Ko : light vector meson

1. Vector meson sum rule: Hatsuda and Lee (1992) PRC 46 (1992) r34

- 2. Importance of new structure in medium: M. Asakawa, C.M. Ko NPA560 (1993) 399
 - → Very important as chiral symmetry restoration effect only affects vacuum change
 → Future work, how will this affect chiral order parameter ?

$$8\pi \operatorname{Im} \Pi_{L}(s) = F' \frac{S(s)}{s} \theta(s_{0} - s) + \left(1 + \frac{\alpha_{s}}{\pi}\right) \theta(s - s_{0}).$$

Contribution from Prof. Ko : Heavy vector meson

1. Inclusion of D meson loop effects in Charmonium sum rules in the medium

SHLee, C.M. Ko PRC 67 (2003) 038202

2. QCD sum rules for heavy quark system in medium

 \rightarrow Can be searched for in future anti proton – nuclear target experiment

Contribution from Prof. Ko: Heavy quark Finite temperature potential

Controversy on potential at finite temperature: Lee, Morita, Song, C.M. Ko PRD 89 (2014) 094015

Method 1: Solve Schrodinger equation

$$\left[2m - \frac{1}{m}\nabla^2 + V(r,T)\right]\Psi(r,T) = M_{J/\psi}\Psi(r,T)$$

Method 2: From QCD sum rule

Summary by V. Metag (PPNP97 (2017)199)

Downward mass shift at nuclear matter

Width increase at nuclear matter

- Lesson from experiment
 - 1. Look at small width hadrons (<100 MeV)
 - 2. Can look at excitation energy
- Lesson from Theory
 - 1. Look chiral partners

III: K* and K1 in nuclear medium

K* and K1

R

J ^{PC} =1	Mass	Width	J ^{PC} =1 ⁺⁺	Mass	Width
ρ	770	150.	a ₁	1260	250-600
ω	782	8.49	f_1	1285	24.2
φ	1020	4.266	f_1	1420	54.9
K*(1⁻)	892	50.3	$K_1(1^+)$	1270	90

 \blacksquare (ρ , a_1) are chiral partners but have too large vacuum width

$$\rho \to \left(\overline{q}_R \gamma_\mu \tau q_R + \overline{q}_L \gamma_\mu \tau q_L\right) \qquad a_1 \to \left(\overline{q}_R \gamma_\mu \tau q_R - \overline{q}_L \gamma_\mu \tau q_L\right)$$

Coupling to quark currents

$$\omega \to \left(\overline{u} \gamma_{\mu} u + \overline{d} \gamma_{\mu} d\right) \quad \phi \to \left(\overline{s} \gamma_{\mu} s\right) \qquad K^* \to \left(\overline{q} \gamma_{\mu} s\right), \quad \left(\overline{s} \gamma_{\mu} q\right)$$

 \rightarrow What about quark content of K₁?

Solution Are (K^*, K_1) chiral partners ?

K1(1270) sum rules in medium (Song, Hatsuda, Lee, PLB792 (2019) 160)

$$K^* \rightarrow (\overline{u} \gamma_{\mu} s)$$

 $K_1(1270) \rightarrow (\overline{u} \gamma_{\mu} \gamma^5 s)$

• Chiral Partner ?

Chiral partner

$$\Pi^{\rho\rho} - \Pi^{a_{1}a_{1}} = \left\langle \left(\overline{u}_{R}\gamma_{\mu}u_{R}\right)\left(\overline{u}_{L}\gamma_{\mu}u_{L}\right) - \left(\overline{u}_{R}\gamma_{\mu}u_{R}\right)\left(\overline{d}_{L}\gamma_{\mu}d_{L}\right)\right\rangle \propto \left\langle \overline{q}q\right\rangle^{2} \sim \left(m_{a_{1}} - m_{\rho}\right) \approx 490 \text{ MeV}$$

$$= -\frac{1}{2}\text{Tr}\left[\gamma^{\mu}\left(S_{q,s}\left(x,0\right) - i\gamma^{5}S_{q,s}\left(x,0\right)i\gamma^{5}\right)\gamma^{\mu}\left(S_{q}\left(0,x\right) - i\gamma^{5}S_{q}\left(0,x\right)i\gamma^{5}\right)\right]$$

$$\Pi^{K^{*}K^{*}} - \Pi^{K_{1}K_{1}} = \left\langle \left(\overline{u}_{R}\gamma_{\mu}s_{R}\right)\left(\overline{s}_{L}\gamma_{\mu}u_{L}\right)\right\rangle \qquad \propto \left\langle \overline{q}q\right\rangle\left\langle \overline{s}s\right\rangle \sim \left(m_{K_{1}} - m_{K^{*}}\right) \approx 378 \text{ MeV}$$
Smaller mass splitting

 \square Distinct spectral density \rightarrow can understand how chiral symmetry restoration is realized in nature

• Expected mass shift from sum rules

$$\mathbb{S} \quad \text{current} \quad K_1^- \to \left(\overline{u} \gamma_\mu \gamma^5 s\right) \quad K_1^+ \to \left(\overline{s} \gamma_\mu \gamma^5 u\right) \qquad K^{*-} \to \left(\overline{u} \gamma_\mu s\right) \quad K^{*+} \to \left(\overline{s} \gamma_\mu u\right)$$

Hence, mass shift at nuclear matter

$$\Delta m(K_1^-) \approx -208 \text{ MeV} \qquad \Delta m(K_1^+) \approx +32 \text{ MeV}$$

 \rightarrow K1 excitation energy measurement at Jparc

Summary

- 1. Prof. Che-Ming Ko also made important contributions in QCD sum rules at finite temperature and density
- 2. K* K_1 are chiral partners could be done at J-PARC

Prof. Che-Ming Ko congratulations on your impressive 50 years of research and looking forward to your insights and idea in future collaboration