

Multi-phase transport model predictions of isobaric collisions with nuclear structures from density functional theory

Hanlin Li

Wuhan University of Science and Technology

Based on

H.L. Li*, H.-J. Xu*, J. Zhao*, Z.-W. Lin, H. Z. Zhang, X. Wang, C. Shen, and F. Wang*. Phys. Rev. C 98, 054907 (2018).

Jie Zhao*, Hanlin Li, F. Wang*, Eur. Phys. J. C 79, 168 (2019).

Dalian, China11 June- 12 June 2019

Outline

Introduction

Isobaric collisions

- ★ Nuclear densities
- ★ The AMPT model

Model predictions

- \star Multiplicity distribution
- ★ Glauber calculations
- ★ Particle production
- ★ Elliptic anisotropy

Summary

Chiral Magnetic Effect (CME)

Kharzeev, Pisarski, Tytgat, PRL 81, 512, (1998) ; Kharzeev, et al. NPA 803, 227, (2008)

Non-conservation of axial currents

$$\partial^{\mu} j_{\mu}^{5} = 2 \sum_{f} m_{f} \langle \bar{\psi}_{f} i \gamma_{5} \psi_{f} \rangle_{A} - \frac{N_{f} g^{2}}{16\pi^{2}} F_{\mu\nu}^{a} \tilde{F}_{a}^{\mu\nu}$$
$$Q_{w} = \frac{g^{2}}{32\pi^{2}} \int d^{4}x F_{\mu\nu}^{a} \tilde{F}_{a}^{\mu\nu}$$
$$(N_{L} - N_{R})_{t=\infty} = 2N_{f} Q_{w}$$

- Quark degree of freedom, Approx. chiral sym. restoration
- QCD vacuum fluctuations, Topological gluon field, Qw≠0.
- Local P, CP violations
- Strong magnetic field

Hanlin Li (Wuhan University of Science and Technology)

The Correlator & Background

Hanlin Li (Wuhan University of Science and Technology)

Background with AMPT

Dalian 2019

- Resonance background should be nearly zero at high mass
- CME at large mass may also be zero...

Isobaric collisions

Isobars are nuclides of different chemical elements that have the same number of nucleons.

• Examples: *Ru* and *Z*r

- Up to 10% variation in B field
- Flow(major source of background) magnitude will stay almost the same

Hanlin Li (Wuhan University of Science and Technology)

Nuclear Densities-WS and DFT

Woods-Saxon (WS) density

$$\rho(r,\theta) = \frac{\rho_0}{1 + \exp[(r - R_0 - \beta_2 R_0 Y_2^0(\theta)/a]]}$$

Density functional theory (DFT)

$$V_{Skyrme} = t_0(1+x_0P_{\sigma})\delta(\mathbf{r}_1-\mathbf{r}_2) + \frac{1}{2}t_1(1+x_1P_{\sigma})\left[\mathbf{k}^{\dagger 2}\delta(\mathbf{r}_1-\mathbf{r}_2)+\delta(\mathbf{r}_1-\mathbf{r}_2)\mathbf{k}^2\right] + t_2(1+x_2P_{\sigma})\mathbf{k}^{\dagger}\delta(\mathbf{r}_1-\mathbf{r}_2)\mathbf{k} + \frac{1}{6}t_3(1+x_3P_{\sigma})\delta(\mathbf{r}_1-\mathbf{r}_2)\rho^{\alpha}\left(\frac{\mathbf{r}_1+\mathbf{r}_2}{2}\right) + iW_0(\sigma_1+\sigma_2)\cdot\mathbf{k}^{\dagger}\times\delta(\mathbf{r}_1-\mathbf{r}_2)\mathbf{k},$$

E. Chabanat et al. Nucl. Phys. A, 643,1998.

Hanlin Li (Wuhan University of Science and Technology)

Nucleon Densities of Ru and Zr

H.L. Li, et al., PRC. 98, 054907, (2018)

Effective nuclear radius parameters (in fm)

		$^{96}_{44}\mathrm{Ru}$		$^{96}_{40}{ m Zr}$	
		charge	mass	charge	mass
$WS-R_Q$	R_0	5.085~[5]		5.020 [5]	
	$\sqrt{\langle r^2 angle}$	4.294		4.248	
DFT	$\sqrt{\langle r^2 angle}$	4.327	4.343	4.271	4.366
	$R_0 \equiv 1.183 \sqrt{\langle r^2 \rangle}$	5.119	5.138	5.053	5.165

Dalian 2019

 The overall mass radius (i.e. of all nucleons) of Ru is slightly smaller than that of Zr from DFT. The relative mass radii between Ru and Zr are opposite for WS.

Structure of AMPT (String Melting version)

Hanlin Li (Wuhan University of Science and Technology)

Multiplicity distribution

- The ratio curves up at large Nch because of the larger Nch tail in Ru+Ru.
- The trend of the ratio in the WS-RQ case is the opposite to the DFT case.
- The tail behavior in the ratio is mainly due to the ordering of the nuclear mass radii.

10

Dalian 2019

Centrality definition and Glauber calculations

9	$^{96}_{44}$ Ru $+^{96}_{44}$ R	lu	$^{96}_{40}$ Zr $+^{96}_{40}$ Zr			
$N_{ m ch}$	centrality $(\%)$	$\langle b \rangle$	$N_{\rm ch}$	centrality $(\%)$	$\langle b \rangle$	
≥ 212	5.00435	2.095	≥ 211	4.98866	2.11069	
$\geq \! 178$	9.92037	3.32115	≥ 176	10.0649	3.35135	
≥ 149	14.9416	4.32574	≥ 147	15.0739	4.34139	
≥ 124	20.0382	5.1304	≥ 123	19.9426	5.13831	
≥ 103	25.0442	5.81943	≥ 102	24.9148	5.83246	
≥ 85	30.0407	6.44451	≥ 84	29.8998	6.46081	
≥ 70	34.8805	7.00435	≥ 68	35.0934	7.0268	
≥ 56	40.1972	7.52659	≥ 55	40.0845	7.54891	
≥ 45	45.1559	8.01665	≥ 44	45.0859	8.04133	
≥ 36	49.9678	8.47616	≥ 35	49.9973	8.50228	
≥ 28	55.1087	8.9218	≥ 27	55.266	8.91942	
≥ 22	59.7911	9.33582	≥ 21	60.1423	9.33993	
$\geq \! 17$	64.5643	9.71121	≥ 16	65.174	9.74612	
≥ 12	70.6648	10.0552	≥ 12	70.2675	10.0967	
≥ 9	75.433	10.3561	≥ 9	75.1182	10.4052	
≥ 7	79.3739	10.5931	≥ 7	79.1434	10.6457	
≥ 5	84.2846	10.803	≥ 5	84.1244	10.8654	
≥ 3	90.4985	11.0287	≥ 3	90.4189	11.0974	
≥ 2	93.9489	11.1898	≥ 2	93.8873	11.2625	
≥ 0	100	11.3118	≥ 0	100	11.3952	

H.L. Li, et al., PRC. 98, 054907, (2018)

• The two WS density distributions give similar ratios. The DFT density gives quite different eccentricities for Ru+Ru and Zr+Zr;

Hanlin Li (Wuhan University of Science and Technology)

Dalian 2019¹¹

Particle production

Two-component model

- The fit parameters are n_{pp}≈2.1 and x≈9% for both Ru+Ru and Zr+Zr.
- The m_{inv} distributions are nearly identical.

Hanlin Li (Wuhan University of Science and Technology)

Dalian 2019

12

Elliptic anisotropy

Hanlin Li (Wuhan University of Science and Technology)

Summary

- 1. We make predictions of isobaric collisions using the stringmelting version of the AMPT model with the nuclear density distributions calculated by the density functional theory.
- For the reason of relative mass radii of the isobaric nuclei, the ratio of the N_{ch} distributions in Ru+Ru to Zr+Zr collisions curves up at large N_{ch}, opposite to the trend obtained using the common Woods-Saxon(WS) densities.
- 3. With the same radii, the centrality dependence of the v_2 ratio in Ru+Ru to Zr+Zr collisions can decisively determine whether DFT density is more realistic than WS or not.

Hanlin Li (Wuhan University of Science and Technology)

Dalian 2019¹⁴