Large v_2 with small cross section

Denes Molnar, Purdue University & Wigner RCP

Int. Workshop on "Partonic and Hadronic Transport Approaches for Relativistic Heavy Ion Collisions"

Dalian, China, May 11-12,2019

Office of

Science

Purdue University

- \rightarrow www.purdue.edu
- \sim 2 hrs to Chicago (QM2017)
- \sim 1 hr to Indianapolis (F1 racing)
 - \sim 50000 students
 - \sim 150 physics grad students
 - \sim 60 physics professors

High-E Nuclear Physics Group \rightarrow Fuqiang Wang, Wei Xie, DM

– Typeset by Foil $\rm T_{E\!X}$ – D. Molnar @ Dalian WS, May 11-12, 2019

Outline

- I. AMPT puzzle (hydro vs small cross sections)
- **II. Covariant transport and MPC**
- **III. Understanding AMPT through MPC comparisons**
- IV. Summary how small cross sections can work

A Multi-Phase Transport

Lin, Ko et al, PRC72 ('05)

full-fledged multicomponent event generator

 $\begin{array}{l} \textbf{AMPT} \approx \textbf{Lund string model (HIJING)} \\ \textbf{+} \ 2 \rightarrow 2 \ \textbf{parton cascade (ZPC)} \\ \textbf{+} \ \textbf{hadron transport (ART)} \end{array}$

version with "string melting":

- energy density in strings converted to quanta (quarks/antiquarks)
- ullet ightarrow fluctuating initial geometry (random nucleon positions)
- hadronization via coalescence

explains quite well a wide range of A+A observables

• using small ~ 3 mb partonic cross sections (!?)

[–] Typeset by Foil $\rm T_{E\!X}$ – D. Molnar @ Dalian WS, May 11-12, 2019

Parton opacity puzzle

DM & Gyulassy, NPA 697 ('02): $v_2(p_T,\chi)$ in Au+Au at RHIC

perturbative $\sigma_{gg \rightarrow gg} \approx 3$ mb gives $v_2 \approx 2\% \rightarrow \text{need } 15 \times \text{higher opacity}$ radiative $gg \leftrightarrow ggg$ helps (e.g., BAMPS)... but AMPT has pure elastic $2 \rightarrow 2$ quark v_2 from AMPT for 200-GeV Au+Au, b=8 fm

 $v_2 \approx 6\%$ with only $\sigma_{qq} = 3$ mb... yet $\sim 15\%$ hadron v_2 (30% centrality)

 v_2 amplified by coalescence

Ko, Lin, Voloshin, DM, Greco, Levai, Mueller, Fries, Bass, Nonaka, Asakawa ...

coalescence of comoving quarks: $q\bar{q} \implies ---$ M3a **≡** $\triangleright B$ DM & Voloshin, PRL91 ('03) $rac{dN_M(p_T)}{d\phi} \propto \left[rac{dN_q(p_T/2)}{d\phi}
ight]^2$ $rac{dN_B(p_T)}{d\phi} \propto \left[rac{dN_q(p_T/3)}{d\phi}
ight]^3$ 0.2squared/cubed probability \rightarrow amplified v_2 parton min.-bias v_2 (sketch) meson 0.15baryon $v_2^{hadron}(p_{\perp}) \approx n \times v_2^{quark}(p_{\perp}/n)$ 0.10.05 $3 \times$ for baryons 1 50% larger v_2 $2 \times$ for mesons \int for baryons $\rightarrow 5 \times$ for pentaguark, $6 \times$ for deuteron 2 3 0 1 5 6 4 p_{\perp} [GeV]

 \Rightarrow AMPT can get hadron v_2 with lower opacity... in principle

could we be in or near the hydro limit? \rightarrow No.

DM & Huovinen, PRL94 ('05)

- $2 \rightarrow 2$ parton kinetic theory is definitely not ideal hydro
- for large $\sigma \sim 40-50$ mb, viscous hydro is reachable <code>Huovinen & DM</code>, JPG35 ('08)

AMPT \neq **Hydro**

AMPT's v_2 comes from "anisotropic escape" He et al, PLB 753 ('15); Li et al, ...

DM et al ('15): AMPT v_2 vs Bjorken au

- for long time, still interacting partons carry nearly zero or even negative v_2
- ullet almost all v_2 is carried by frozen-out partons
- the combined parton v_2 rises than saturates as expected Ko, Zhang, Gyulassy ('99)

AMPT still gets $v_2 \sim 6\%$ for quarks with only 3 mb... but how?

Test: use parton transport MPC to check AMPT's partonic stage

1) dynamics - issue of parton subdivision

2) initconds - AMPT vs just minijets

focus on 200-GeV Au+Au at RHIC, fixed b = 8 fm impact parameter

Covariant transport

(on-shell) phase-space density $f(x, \vec{p}) \equiv \frac{dN(\vec{x}, \vec{p}, t)}{d^3x d^3p}$

transport equation (BTE):

 $p^{\mu}\partial_{\mu}f_{i}(x,p) = C^{i}_{2\to 2}[\{f_{j}\}](x,p) + C^{i}_{2\leftrightarrow 3}[\{f_{j}\}](x,p) + \cdots$

with, e.g.,

$$C_{2\to2}^{i} = \frac{1}{2} \sum_{jkl} \int_{234} (f_{3}^{k} f_{4}^{l} - f_{1}^{i} f_{2}^{j}) W_{12\to34}^{ij\to kl} \qquad \left(\int_{j} \equiv \int \frac{d^{3} p_{j}}{2E_{j}} , \quad f_{a}^{k} \equiv f^{k}(x, p_{a}) \right)$$

thermalizes (in box), fully causal and stable \rightarrow can derive hydro eqns e.g., Denicol, Rischke et al

handles both high or low opacities \rightarrow usable for fluid-to-particle conversion e.g., Teaney, Moore & Dusling; DM & Wolff, ...

hydro limit: transport coeffs & rel. times ($\eta \approx 1.2T/\sigma$, $\tau_{\pi} \approx 1.2\lambda_{tr}$...)

 \exists covariant transport codes: ZPC (Zhang), MPC (Molnar), BAMPS (Xu), ...

Parton subdivision

Nonlocal artifacts: due to action at distance $d < \sqrt{\frac{\sigma}{\pi}}$

subdivision: rescale $f \to f \cdot \ell$, $\sigma \to \sigma/\ell \Rightarrow d \propto \ell^{-1/2}$ local as $\ell \to \infty$

- ZPC could do subdivision, but AMPT runs it with $\ell = 1$
- high RHIC opacities: need subdivision $\ell \sim \mathcal{O}(100)$ to remove artifacts in v_2

Initial conditions (Au+Au at RHIC)

Molnar-Gyulassy study: boost-invariant fit to HIJING minijets

- massless gluons
- flat $dN_g/d\eta(b=0) = 1000 \Rightarrow dN/d\eta(b=8~{\rm fm}) \approx 240$
- locally thermal $T_0 = 0.7$ GeV, $f = N(\vec{x}_T)e^{-m_T\cosh(\eta-y)/T_0}$
- constant formation time $au_0=0.1~{
 m fm}~\sim 1/p_T$
- binary collision transverse profile for Au+Au at b=8 fm
- $d\sigma/dt \propto 1/(t-\mu_D^2)^2$, $\sigma_{gg}=9\pi \alpha_s^2/2\mu_D^2$, with $\mu_D=0.7~{\rm GeV}$

AMPT: v2.26t5d6

- almost massless u, d & massive s quarks
- enhanced $dN_q/d\eta \approx 2.5 \times dN_h/d\eta$ (string melting), nonuniform in η
- formation time distribution
- transverse profile close to wounded nucleons
- sizeable event-by-event fluctuations
- $\mu_D = 0.45$ GeV, $\alpha_s = 0.33 \Rightarrow \sigma = 3$ mb (quark Casimirs ignored)

[–] Typeset by Foil $\rm T_{E\!X}$ – D. Molnar @ Dalian WS, May 11-12, 2019

Au+Au, b=8 fm - AMPT pseudorapidity $dN/d\eta_p$

evidently not boost invariant, peak around $dN/d\eta_p \sim 650$

[–] Typeset by Foil $\rm T_{E\!X}$ – D. Molnar @ Dalian WS, May 11-12, 2019

Au+Au, b=8 fm - transverse profile dN/d^2x_T for $|\eta_p| < 1$

AMPT

minijets

AMPT: close to wounded nucleons (dashed); minijets: binary coll profile

Au+Au, b=8 fm - AMPT formation time $\tau = \sqrt{t^2 - z^2}$

broad distribution, peaks around $\tau \sim 0.2$ fm (average $\tau \approx 0.23$ fm)

[–] Typeset by FoilT $_{\! E\! X}$ – D. Molnar @ Dalian WS, May 11-12, 2019

Au+Au, b=8fm - AMPT coord rapidity - pseudorapity correlation $\xi \equiv \eta - \eta_p$

much sharper than boost-invariant thermal $\propto 1/\cosh^2 \xi$ correlation

Au+Au, b=8fm - AMPT total quark number in event

large event-by-event fluctuations, $\langle N_{quark} \rangle \approx 4200$

MPC v1.9 comparison strategy: go from simple to complicated

- take boost-invariant minijet study as baseline
- gradually include features of AMPT initconds
- use wounded nucleon profile, and the same $d\sigma/dt$ as AMPT

[–] Typeset by Foil $\rm T_{E\!X}$ – D. Molnar @ Dalian WS, May 11-12, 2019

1) set $dN/\eta_p \approx 650$ to match AMPT (at midrapidity), use AMPT $d\sigma/dt$

2.7 imes larger density, but only gets v_2 to $\approx 3.5\%$... (need 5 imes more opacity)

2) match formation time to AMPT average, $\langle \tau_0 \rangle = 0.22$ fm

3) decrease parton subdivision, down to $\ell = 1$

modest $\leq 10\%$ effect on $v_2(p_T)$, for short $\tau_0 = 0.1$ fm

[–] Typeset by FoilT $_{\! E\! X}$ – D. Molnar @ Dalian WS, May 11-12, 2019

same, but now match $\langle \tau_0 \rangle$ from AMPT

less than 5% distortion in $v_2(p_T)$, removable with subdivision $\ell = 5$

[–] Typeset by FoilT $_{E}X$ – D. Molnar @ Dalian WS, May 11-12, 2019

So far we...

- matched initial $dN/d\eta$, formation time, transverse profile, interactions
- ruled out too low parton subdivision

(effectively, AMPT runs at subdivision ~ 10 relative to $\sigma \sim 30$ mb, and another factor of ~ 5 would be sufficient)

still, v_2 is too small.

what if we use the exact same initial conditions?

4) MPC with full AMPT initial conditions (same \vec{p} , \vec{x} , t for each parton)

MPC with $\sigma = 3$ mb ($\ell = 1$) reproduces the elliptic flow from AMPT!

Missing link: momentum distribution

- for thermal minijets, $\langle p_T \rangle = 3\pi T/4 \approx 1.6$ GeV for $T_0 = 0.7$ GeV

$$\frac{dN}{d^2 p_T dy} = E \frac{dN}{d^3 p} = p_\mu d\sigma^\mu f \propto m_T \tau \,\cosh \xi \, e^{-m_T \cosh \xi/T}$$

- for AMPT quarks, $\langle p_T \rangle \approx 0.54 \text{ GeV} \Rightarrow T_{eff} = 0.23 \text{ GeV}$ only

at lower temperature, the cross section is more isotropic (with μ_D fixed) \Rightarrow more effective v_2 generation

$$\sigma_{tr} = 4\sigma_{TOT} z (1+z) \left[(2z+1) \ln \left(1 + \frac{1}{z} \right) - 2 \right] , \qquad z \equiv \frac{\mu^2}{s} \approx \frac{\mu^2}{18T^2}$$

so $\frac{\sigma_{tr} (T = 0.23 \,\text{GeV})}{\sigma_{tr} (T = 0.7 \,\text{GeV})} \approx 2.6$ (!)

– Typeset by Foil $T_{E}X$ – D. Molnar @ Dalian WS, May 11-12, 2019

initial parton spectrum in Au+Au at RHIC, b=8 fm ($|\eta_p| < 1$)

T = 0.7 GeV captures minijet tail, but string melting plasma is $3 \times$ colder

4) now set T_{eff} to AMPT $\langle p_T \rangle$

[–] Typeset by FoilT $_{E}X$ – D. Molnar @ Dalian WS, May 11-12, 2019

same comparison but for higher $\tau_0 = 0.6$ fm

even $2.5 \times$ later formation time works, v_2 practically doubles

[–] Typeset by FoilT $_{E}X$ – D. Molnar @ Dalian WS, May 11-12, 2019

Summary

Using the covariant transport solver MPC (Molnar's Parton Cascade), we investigated how AMPT generates enough elliptic flow (v_2) in Au+Au at RHIC with only 3-mb cross sections. Two ingredients play the most important role: i) about $2.5 \times$ higher parton densities via string melting, and ii) cold initial plasma with effective temperature $T_{eff} \sim 0.2 - 0.25$ GeV, comparable to μ_D (makes forward-peaked partonic cross sections more isotropic).

The partonic stage of AMPT approximates well solutions of the covariant Boltzmann transport equation. Artifacts due to lack of parton subdivision were below 5% for $v_2(p_T)$ in Au+Au at RHIC. Compared to studies that generated high opacities with large $\sigma \sim 30$ mb, AMPT effectively incorporates a subdivision $\ell \sim 10$ already.

With 3 mb cross section, AMPT still generates $2 - 3 \times$ smaller partonic v_2 than that of hadrons. But it makes up for the difference with quark coalescence - the algorithm of which needs to be tested in detail.

Next steps:

- include fluctuations in τ_0 , N_{quark} , initial profile
- check v_2 distribution, not just its event average

[–] Typeset by FoilT $_{E}$ X – D. Molnar @ Dalian WS, May 11-12, 2019