Pixel Vertex Detector Prototype MOST 2018

项目负责人: João Guimarães da Costa

中国科学院高能物理研究所

Institute of High Energy Physics Chinese Academy of Sciences

CEPC CDR baseline conceptual detector

Task 2: Research Goal

- Produce a world class vertex detector prototype
 - Spatial resolution 3~5 μm (pixel detector)
 - Radiation hard (>1 MRad)
- Preliminary design of prototype
 - Three layer, module ~ 1 cm $\times 6-12$ cm²

Typical tracker

Typical module

Resolution

ATLAS/CMS upgrade $(15 \mu m)$

> Alice upgrade $(8~10 \mu m)$

World

leading This project (3~5 µm)

Task 2: Technical route and schedule

Use CMOS image sensor technology

Optimize pixel circuitry, reduce size

Special design and latest technology

CMOS imaging sensor

Gantry

Use carbon fiber, polyamide, graphene, and other light materials for mechanical structure

Robot automatic mechanical assembly

Low mass

High accuracy

Data acquisition R&D
Prototype assembly
Beam testing

Sensor design, fabrication
第一年 第二年 第三年 第四年 第五年

Title	Effort	T-1y	T day	T+1y	T+2y	T+3y	T+4y	T+5y
▼ 1) Mechanics design	182w		▼					
• 1.1) Module structure design	57w							
◆ 1.2) Fabricated Module support structure								
• 1.3) Finish the design for pixel detector prototype	125w							
◆ 1.4) Manufacture support structure for detector prototype								
▼ 2) CMOS sensor	172w 2d		•					
 2.1) sensor and frontend electronics functional block design 	19w							
◆ 2.2) First MPW run								
• 2.3) Integrate all functional block	65w							
◆ 2.4) Second MPW								
 2.5) Debug and optimize frontend electronics 	38w 2d							
◆ 2.6) The third MPW		1						
• 2.7) Fiinsh design for full area, fully functionality chip	50w							
◆ 2.8) First engineering run								
▼ 3) DAQ	233w		•					
• 3.1) readout board for MPW runs	119w							
• 3.2) the design of DAQ for pixel detector prototype	114w							
◆ 3.3) Implement the DAQ design for prototype								
▼ 4) Module	203w		•					
• 4.1) Electronics design for module	52w	1						
• 4.2) Assembly procedure	151w							
◆ 4.3) Produce the modules								
▼ 5) Test beam and irradiation	150w							
• 5.1) Testing for MPW runs	123w							
• 5.2) beam test and data analysis	27w							
◆ 5.3) Publish paper and finish the final report								

第一年(2018.5-2019.4)

Main Milestones

- Task 1:
 - Low-field dipoles: physical and structural design of various small prototypes
 - Preliminary design of vacuum box and bellows, and electrostatic separator
 - Parameter selection of polarization working mode
- Task 2:
 - Preliminary designs of mechanics, readout electronics and ASIC
 - First ASIC MPW submitted
- Task 3:
 - Design of calorimeter prototype, and parameters optimized
 - Batch production of scintillator unit studied and started
 - Design front-end electronics

Outcome

Annual report

第二年(2019.5-2020.4)

Main Milestones

- Task 1:
 - Manufacture the high-precision low field dipole magnet small experimental prototype
 - Finish engineering design of vacuum box and bellows, and electrostatic separator
 - Simulation program for storage ring polarization is developed
- Task 2:
 - Engineering designs of mechanics structure
 - Second ASIC MPW submitted
- Task 3:
 - Simulate whole HCAL prototype and develop software framework
 - Carry out production of scintillator units
 - Prototype absorber and supporting structure are designed.

Outcome

Mid-term report

第三年(2020.5-2021.4)

Main Milestones

- Task 1:
 - Smal prototype of magnet fully tested
 - Design of magnet complete
 - Processing of the vacuum tube, the coating experiment device and the shielding bellows are completed
- Task 2:
 - Mechanical structure completed
 - Second ASIC MPW tested
 - ASIC design optimized and completed
- Task 3:
 - Batch production of readout electronics, development of data acquisition system
 - Development of beam test platform and cosmic ray test platform

Outcome

Annual report

第四年(2021.5-2022.4)

Main Milestones

- Task 1:
 - Completed the formal prototype of the dipole magnet and measurement system
 - Prototypes of vacuum tube and RF bellows completed
 - High pressure experiment was carried out on the electrostatic separator
- Task 2:
 - Silicon wafer processing of large area sensor submitted
 - Assembling and installing the prototype
- Task 3:
 - Integrated calorimeter prototype.
 - Carry out the cosmic ray test of the prototype

Outcome

Annual report

第五年(2022.5-2023.4)

Main Milestones

- Task 1:
 - Complete the performance test of dipole prototype
 - Complete tests of prototypes of vacuum tube, RF bellows and electrostatic separator
 - High pressure experiment was carried out on the electrostatic separator
- Task 2:
 - Test beam and data analysis
 - Finish assembling of prototype
- Task 3:
 - Test beam and data analysis
 - Finish assembling of prototype

Outcome

• Final report, paper and experimental equipment