

MIMAC Directional Detection of Dark Matter

Yi Tao Tsinghua Center for Astrophysics (THCA) Tsinghua University (THU) April 26th, 2019

Laboratoire de Physique Subatomique et de Cosmologie

Institute of High Energy Physics Chinese Academy of Sciences

WHY DIRECTIONAL DETECTION?

- Signature of galactic origin of any candidate signal
- Going beyond neutrino floor

Directional Detection: Principle

Angular Resolution Requirement: < 20°

R&D study for requirements: measurable tracks, measurable directionality, head-tail discrimination, ion/electron discrimination, Q_F , initial angle reconstruction, ...

Blind likelihood analysis in order to establish the galactic origin of the signal.

MIMAC (MIcro-tpc MAtrix of Chambers)

LPSC (Grenoble): D. Santos, F.Naraghi, N. Sauzet (CDD)

- -Technical Coordination, Gas circulation and detectors: **O. Guillaudin**
 - Electronics :
 - Data Acquisition:
 - Mechanical Structure :
 - COMIMAC (quenching):

- G. Bosson, J. Bouvier, J.L. Bouly, L.Gallin-Martel, F. Rarbi
- **T. Descombes**
- J. Giraud
- J-F. Muraz

IRFU (Saclay): P. Colas, I. Giomataris CCPM (Marseille): C. Tao, J. Busto Tsinghua University (Beijing-China): C. Tao, I. Moric (post-doc), Y. Tao (Ph.D) Prototype hosted in IHEP (Beijing-China): ZhiminWang, Changgen Yang

Neutron facility (AMANDE) : IRSN (Cadarache): V. Lacoste, B. Tampon (Ph. D.)

MIMAC: Detection Strategy

Flash Signal

MIMAC Bi-Chamber Module

Bi-chamber module 2 x (10.8 x 10.8 x 25 cm³)

- Energy Measurement
- 3D Track Reconstruction
- Target Can Be changed flexibly

LHI beam line Ion Beam

Muraz et al. NIM A 2016

COMIMAC – A Portable Quenching Facility

Target: ¹⁹F (but flexible to change)

Special Gas Mixture – MIMAC gas

- Mixture component:
 - -- 70% $CF_4 + 28\% CHF_3 + 2\% iC_4H_{10}$

-- reduce the electron drift velocity as well as keeping tracks long enough

• Operating at low pressure: 50 mbar

MIMAC: The only detector that has 3D-reconstructed keV tracks.

Fluorine 6.3 keV (~2 keVee)

Fluorine 26.3 keV (~9 keVee)

Energy Resolution < 15% (FWHM)

Angular Resolution: better than required 20 degree

Y. Tao et al., arXiv: 1903.02159

SRIM Simulation Results Drift Direction

SRIM (Stopping and Range of Ions in Matter)

Key Points: No external fields applied

Drift Velocity and Diffusion Coefficient Results from MAGBOLTZ Simulation

Conclusion: In the experimental range, simulation only give a few difference between transversal and longitudinal diffusion impact (But this difference will be enhanced if the drift distance is large enough)

Comparison with Simulation (SRIM + MAGBOLTZ)

Width X

Width Y

Depth Z

Large discrepancy !!

Molecular effect ?

RECENT PROGRESS

Cathode Signal Measurement

First Cathode Signals time distribution from the MIMAC bichamber background

(O. Guillaudin, D.S. et al. October 2018)

Chamber 1

Chamber 2

Measuring the time between the "event production" and the avalanche signal !! Covering the 26 cm drift distance (13 us x 20 um/ns) !!

3D event-localization in MIMAC

New MIMAC low background detector

$(\text{new 10 cm} \times 10 \text{ cm})$

 $(35 \text{ cm} \times 35 \text{ cm})$ under design

MIMAC 1m³ in preparation

Figure 5. The preliminary mechanical design of the demonstrator of MIMAC -1 m³.

Installation in 2019-2020 in LSM

MIMAC Chamber in Beijing (IHEP)

Plans for the Future

- Data Analysis from monoenergetic neutrons produced at Amande facility in Cadarache (France).
- Data Analysis from 5 years in LSM (Modane Underground Laboratory) with the previous prototype.
- Improve electron-nuclear recoil discrimination.
- MIMAC 1 m³ in LSM will be installed as soon as the 35×35 cm² bi-chamber module is working.

Summary

- Directional detection is an essential counter part for the major detection projects that are mainly focus on energy channel.
- A new directional detector of nuclear recoils at low energies (E > 100 eV) has been developed giving a lot of flexibility on targets, pressure, energy range... \longrightarrow MIMAC!
- Angular resolution and directional studies of 3D tracks have been performed experimentally with LHI facility, showing a promising result for future detection, while large discrepancies with respect to simulations!
- Cathode measurement allows us to fiducialize Z much better.
- The 1 m³ will be the validation of a new generation of a large DM high definition detector including directionality (a needed signature for DM discovery)

Thanks for your attention!

Backup Slides

Event Display

Event Display — GUI Tool

Event Display — GUI Tool

Features:

- 1. Cross-platform
- 2. Offline event display
- 3. Fully integrated with MIMAC data analysis (fixed structured ROOT files)
- 4. Adjustable cut-off on key physical observables (real-time simple event filter)
- 5. Multiple information presented
- 6. Different mode choices
- 7. Support for ID selection (after complicated event filters)

Future Plan:

- Multi-threading
- Yet to be developed and improved...

Filter Setting					
	MIN			MAX	
Event ID	0	0	00	62231	
Event Time [s]	0	0	00	381	
Energy [ADC]	424	0		3271	
RiseTime [20ns]	0	0	00	200	
Offset [ADC]	0	0	00	4096 0)
N Pixel	1	0	00	30000 0)
Length(CD) [μm]	554	0	0-0	20000 🗘)
Length(LB) [μm]	0	0	00	50000 🗘	

Cancel

Apply

Direction Reconstruction

Energy Measurement

If 0 channel in ADC is equivalence or very close to 0 in deposit energy. The Quenching Factor (IQF) is:

```
\frac{5.91[\text{keV}]}{1000[\text{ADC}]} \times 50.721[\text{ADC/keV}]
= 0.299761
\simeq 0.3
```

 In consistence with what we expected.
 (Two calibration source (only ⁵⁵Fe for now) or more, the quenching factor value will be more correct to determine.)

Quenching Factor: Measurement and Simulation

Track Example

Weight: number of pixels for each time slice

Comparison of Various Direction Reconstructed Algorithms

- * Upper: Mean Angle Reconstruction
- * Lower: Angular Resolution

Conclusion: We finally apply the barycenter algorithm with weight, based on: 1) its stability on direction reconstruction and 2) its better angular resolution result.

Estimation of Uncertainty (Error Bar) for Angular Resolution

$$(\Delta \theta_{total})^2 = (\Delta \theta(x, y, z))^2 + (\Delta \theta_{statistics})^2 \qquad \Delta \theta_{statistics} = \frac{\sigma(\theta)}{\sqrt{N}}$$

$$\Delta\theta(x, y, z)\Big|_{\theta = \langle\theta\rangle} = \frac{1}{z} \frac{1}{1 + \tan^2 \langle\theta\rangle} \sqrt{\Delta_{XY}^2 + \tan^2 \langle\theta\rangle} \cdot [V_{drift}^2 \Delta^2(t) + t^2 \Delta^2(V_{drift})]$$

where,

MC Simulation (SRIM + MAGBOLTZ)

Comparison with SRIM + MAGBOLTZ

Width v.s. Ion Energy

Depth v.s. Ion Energy

5 cm Drift Example

Simulation Result — Detection Efficiency Effect / Gain

Cathode Measurement

MIMAC-Cathode Signal Drift velocity measurements

C. Couturier, Q. Riffard, N. Sauzet, O. Guillaudin, F. Naraghi, and D. Santos. Journal of Instrumentation, 12(11):P11020, 2017b.

Figure 4. Measure of the time differences (TAC) between the grid signal and the delayed cathode signal in the "START Grid" configuration, as a function of the distance of the α source from the anode (green points); error bars correspond to the standard deviation of the mean. A linear fit of these points is superimposed in red and provides the values of the drift velocity and the additional delay.

Ionization Energy distribution of the events recorded with the Cathode Signal

Energy range: 1-60 keV

D. Santos (LPSC Grenoble)

Neutron Data Analysis (Preliminary)

Energy Spectrum

565 keV Neutron

Correlation Matrix: Before Event Filters

- 0.0

0.0

Correlation Matrix: After Event Filters

0.0

Difference of Correlation Matrix

Experimental Set-up

- Target: Fluorine (mass 19)
- Beam Line (Source): LHI
- MIMAC detector: Micromegas 10.8 $\times 10.8 \ \text{cm}^2$
- Gas: MIMAC gas (70%CF₄ + 28%CHF₃ + 2%iC₄H₁₀)
- Drift Distance: 5 cm
- Sampling Time: 20 ns
- HV: Cathode: 1320 V Grid/Mesh: 570 V
 - => Drift Field: 150 V/cm => Drift Velocity: 22.87 um/ns
- Avalanching Gap: 512 um
- Calibration Source: 55 Fe X-ray
- Kinetic Energy of Fluorine (keV):

6.32, 9.32, 11.32, 13.82, 16.32, 18.82, 21.32, 23.82, 26.32

