Search for Higgs Boson decaying to $b\bar{b}$ and a new resonance decaying to $\gamma\gamma$ with the ATLAS Detector

Changqiao LI[1] Ioannis NOMIDIS[2]

[1]University of Science and Technology of China [2]Laboratoire de Physique Nucléaire et de Hautes Energies

> 12th FCPPL at SJTU April 25, 2019

Overviews of the collaboration

- On the physics analysis
 - Search for H → bb̄ in VH production mode (denoted as H → bb̄)
 - Searches for diphoton resonances at low and high mass (denoted as Resonance)
- Involved in the related detector performance studies
 - B-jet tagging calibration JHEP 08 (2018) 089
 - Photon energy calibration JINST 14 (2019) P03017

LPNHE-Paris					
Kun LIU	Post-doc	H → bb̄			
Ilaria LUISE	PhD (3rd year)	H → bb̄			
Giovanni MARCHIORI	CRCN	H → bb̄			
Ioannis NOMIDIS	Post-doc	Resonance			
Lydia ROOS	DR2	Resonance			

USTC-Hefei					
Cheng CHEN	PhD (3rd year)	H → b̄b			
Asma HADEF	Post-doc	Resonance			
Changqiao LI	Post-doc	H → b̄b			
Yanwen LIU	Professor	Both			
Yufeng WANG	PhD (2nd year)	Resonance			

VH, H→ bb Analysis

- ► H→ b̄b:
 - Probe the Higgs coupling to bottom quarks
 - ► Largest branching ratio
 - Important to the total decay width
- ► VH production mode:
 - Lepton from W or Z to trigger
 - Better multi-jet background rejection
- ► Before Run-2
 - ► No observation of VH, H→ bb

,, _	$\sigma \cdot \mathrm{BR}$		
$\mu =$	$\sigma_{ m SM} \cdot { m BR_S}$ Signal strength	M Significance (expected)	Significance (observed)
CDF+DØ combination [1]	$1.9^{+0.8}_{-0.7}$	1.5σ	2.8σ $(3.1\sigma$ global)
ATLAS Run-I [2]	$0.52^{+0.40}_{-0.37}$	2.6σ	1.4σ
CMS Run-I [3]	$0.89^{+0.47}_{-0.44}$	2.5σ	2.1σ
ATLAS+CMS Run-I* [4]	$0.70^{+0.29}_{-0.27}$	3.7σ	2.6σ

*with sub-leading contribution from ttH, $H \rightarrow bb$

[1] Phys. Rev. Lett. **109** (2012) 071804 [2] JHEP01(2015)069 [3] Eur.Phys.J. C75(5), 212 (2015) + twiki [4] JHEP08(2016)045

O-lepton 1-lepton 2-lepton

- This analysis performed in 0-/1-/2- lepton channel
- To separate VH signal from V+jets/ttbar/Diboson, Boosted Decision Trees (BDT) trained
- Fit on BDT scores to extract the signal yields

Status of VH, H→ bb searches in ATLAS

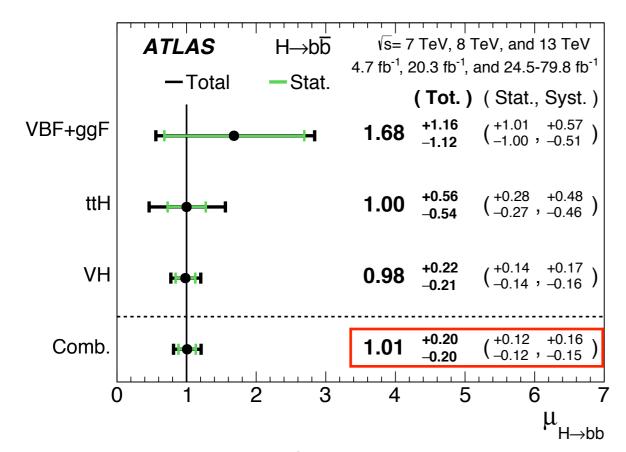
- Evidence of VH, H → bb̄ production with 36 fb⁻¹ JHEP 12 (2017) 024
- Observation of H → bb decays and VH production with 80 fb⁻¹
 - Phys. Lett. B 786 (2018) 59
 - H → bb̄ decays observed
 - VH production mode observed
- Measurement of VH, H→ bb̄ production as a function of the transverse momentum of the vector boson (arXiv:1903.04618, submitted to JHEP)
- Plan for the measurements with the full Run-2 dataset: 140 fb⁻¹
 - VH, H→ bb̄ continued to have a more accurate measurement
 - VH, H→ bb̄ in Boosted Regime
 (bb̄ reconstructed as one fat-jet instead of two separated jets)
- Current responsibilities:
 - Resolved analysis co-convenor (Kun LIU)
 - HL-LHC prospects contact (Changqiao LI)

VH, H \rightarrow bb results with 80 fb⁻¹ and from combination

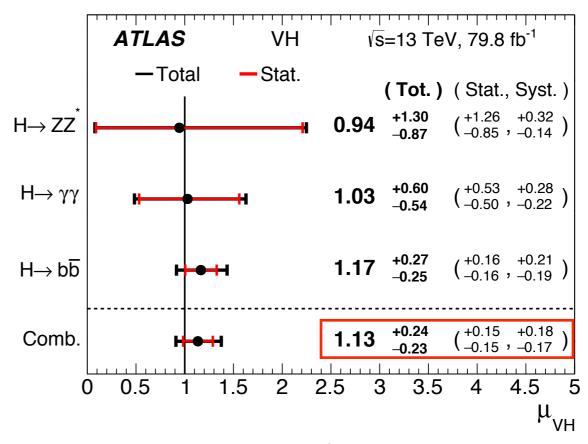
Signal strength

$$\mu_{\text{WH}} = 1.08^{+0.27}_{-0.27}(\text{stat.})^{+0.38}_{-0.34}(\text{syst.})$$
$$\underline{\mu_{\text{ZH}}} = 1.20^{+0.23}_{-0.23}(\text{stat.})^{+0.23}_{-0.20}(\text{syst.})$$
$$\underline{\mu_{\text{VH}}} = 1.16^{+0.16}_{-0.16}(\text{stat.})^{+0.21}_{-0.19}(\text{syst.})$$

- Expected significance: 4.3 σ
- Observed significance: 4.9 σ

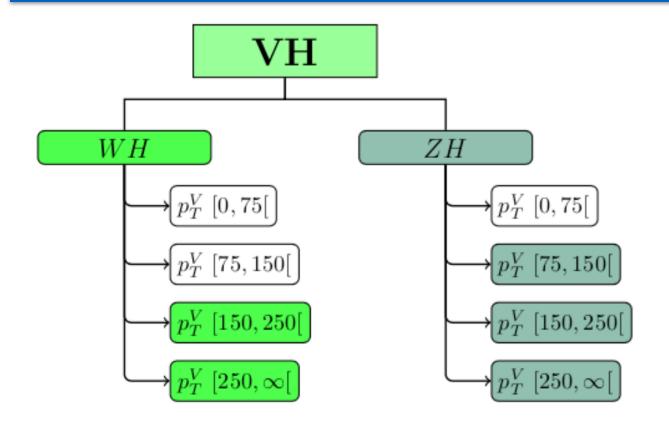

Combination with Run-1 Analysis: (correlate signal theory and b-jets)

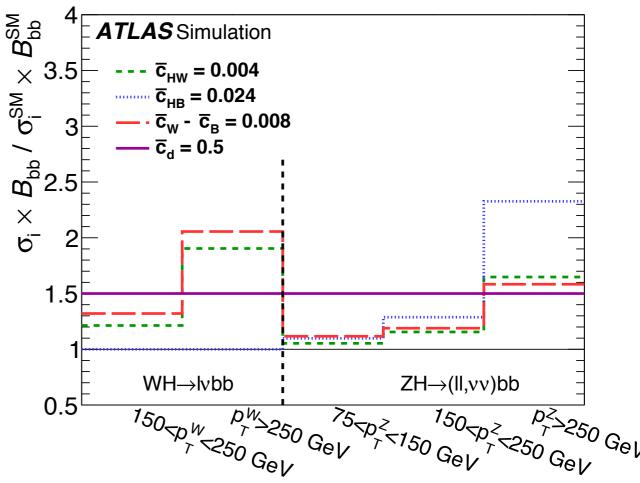
$$\mu_{\text{WH}} = 1.08^{+0.24}_{-0.23}(\text{stat.})^{+0.29}_{-0.27}(\text{syst.})$$

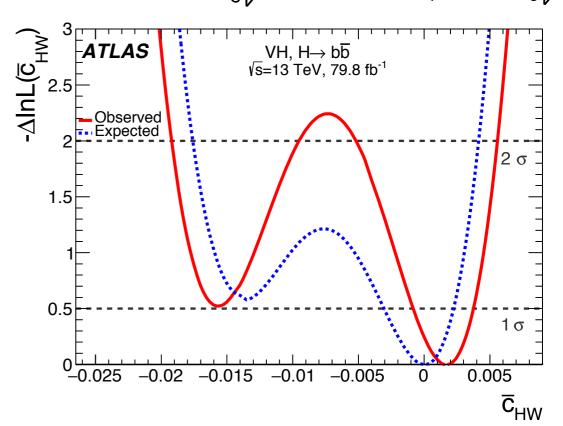

$$\mu_{\text{ZH}} = 0.92^{+0.21}_{-0.20}(\text{stat.})^{+0.19}_{-0.17}(\text{syst.})$$

$$\mu_{\text{VH}} = 0.98^{+0.14}_{-0.14}(\text{stat.})^{+0.17}_{-0.16}(\text{syst.})$$

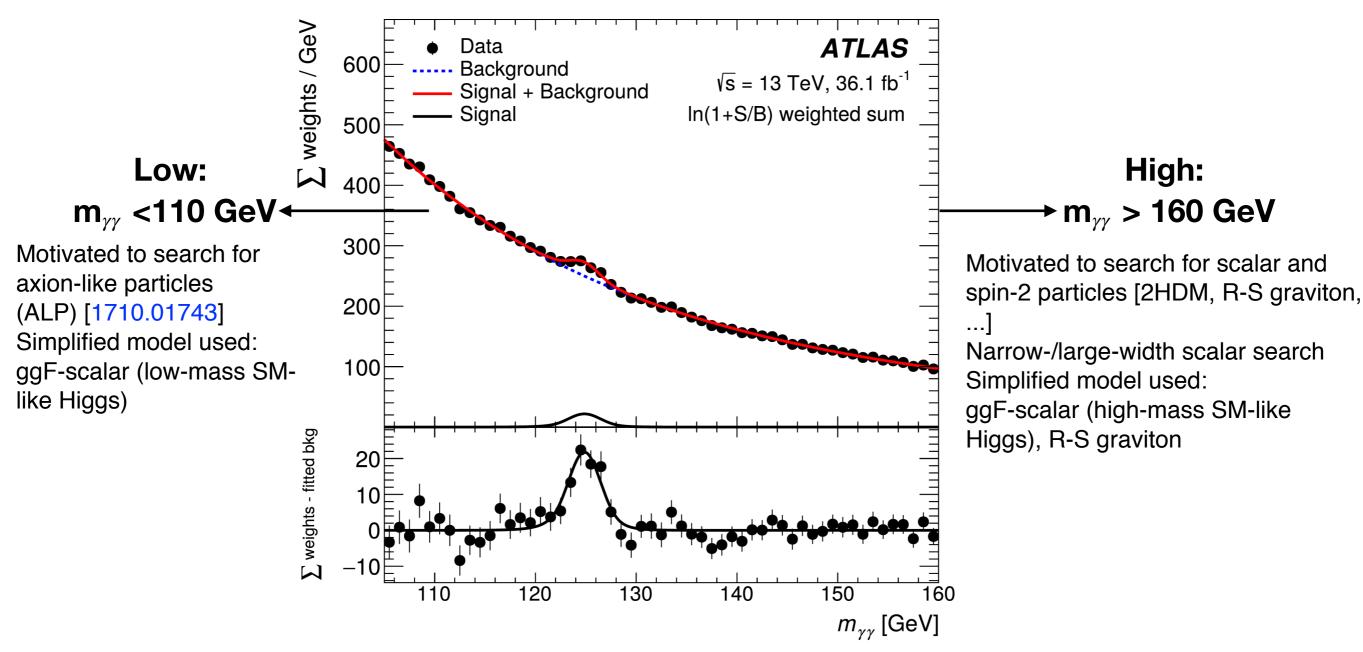
- Expected significance: 5.1 σ
- Observed significance: 4.9 σ




- Exp. significance = 5.5σ
- ► Obs. significance = 5.4σ
- ► H → bb observed


- Exp. significance = 4.8σ
- ► Obs. significance = 5.3σ
- ▶ VH observed

Differential cross-section of VH measurement with H → bb

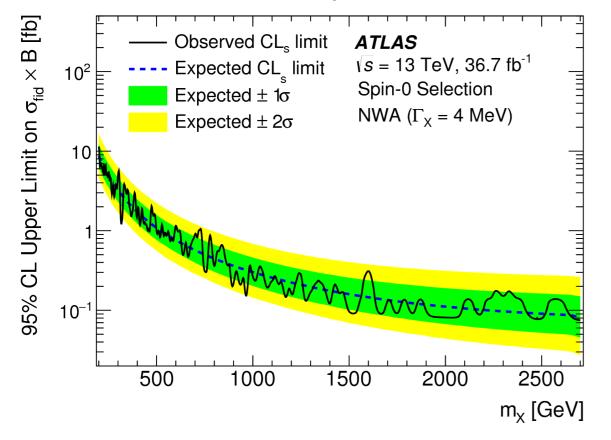


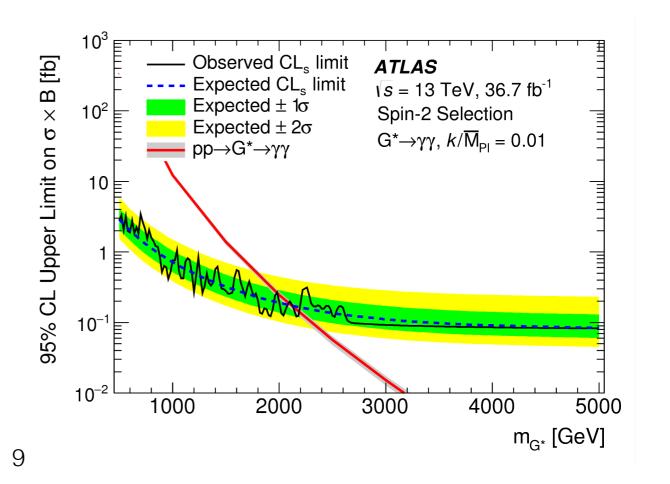
- ► Differential XS instead of inclusive signal strength
 - Providing more information for VH production
 - ► High pTV is more sensitive to new physics
- Same analysis strategy to VH, H → bb̄:
 - Classification for the events
 - ► Same discriminant variables for fit
 - Signal theory uncertainties re-evaluated
- ► 5 XS measured: compatible with SM prediction
- Coefficients of the operators in the new physics are constrained

Search for new resonance decaying to $\gamma\gamma$ in low/high m $\gamma\gamma$

- Low/high mass regions are studied separately because:
 - different event selections are used
 (e.g. looser cuts and more sophisticated background estimations needed at low mass)
 - different baseline models are used
 (e.g. no motivation for spin-2 graviton search at low mass)

Status of $X \rightarrow \gamma \gamma$ searches in ATLAS

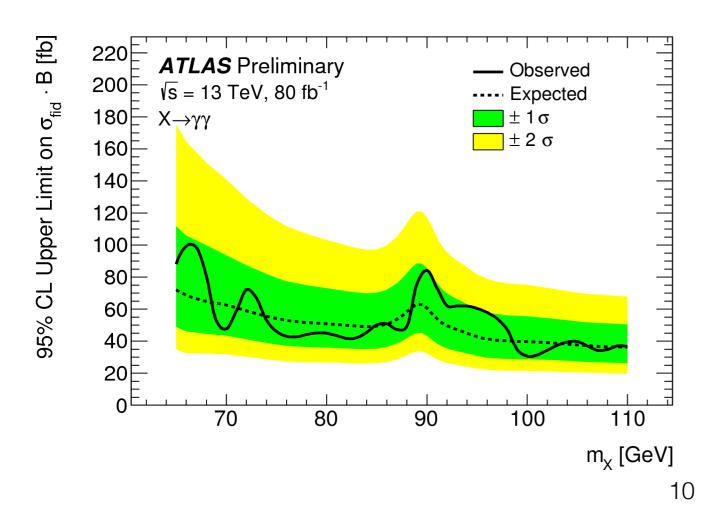

- Last published measurements: 36 fb⁻¹, Run-2
 - High-mass research, Phys. Lett. B 775 (2017) 105
- Last public measurements: 80 fb⁻¹
 - Low-mass research, ATLAS-CONF-2018-025
- Plan for the measurements with the full Run-2 dataset: 140 fb-1
 - High mass search: Publication/CONF-conversion for summer conferences, targeting EPS (Mid July)
 - Low/very-low mass search: Publication to arrive in fall 2019
- Current responsibilities:
 - Analysis coordination of the resonance search group (loannis)
 - Software coordination of the framework for $H \rightarrow \gamma \gamma$ analyses (loannis)

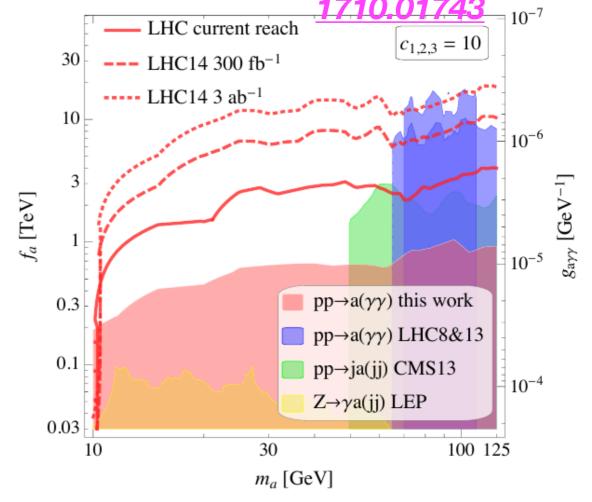

High mass search

- Lessons from the previous results: More data (usually) better than less data
 - The 3-4 σ excess seen by ATLAS+CMS in 2015 data proven to be a statistical fluctuation with x10 more data; last measurement with 36.7 fb-1

Planning to improve limits on spin-0/spin-2 resonances and push to higher masses with the full Run-2 data

- Scalar search: the limits are on fiducial cross-section
 - · model-independent, no assumption on the production mode
- Graviton search: the limits are on the total cross section
 - focus is on a simplified model

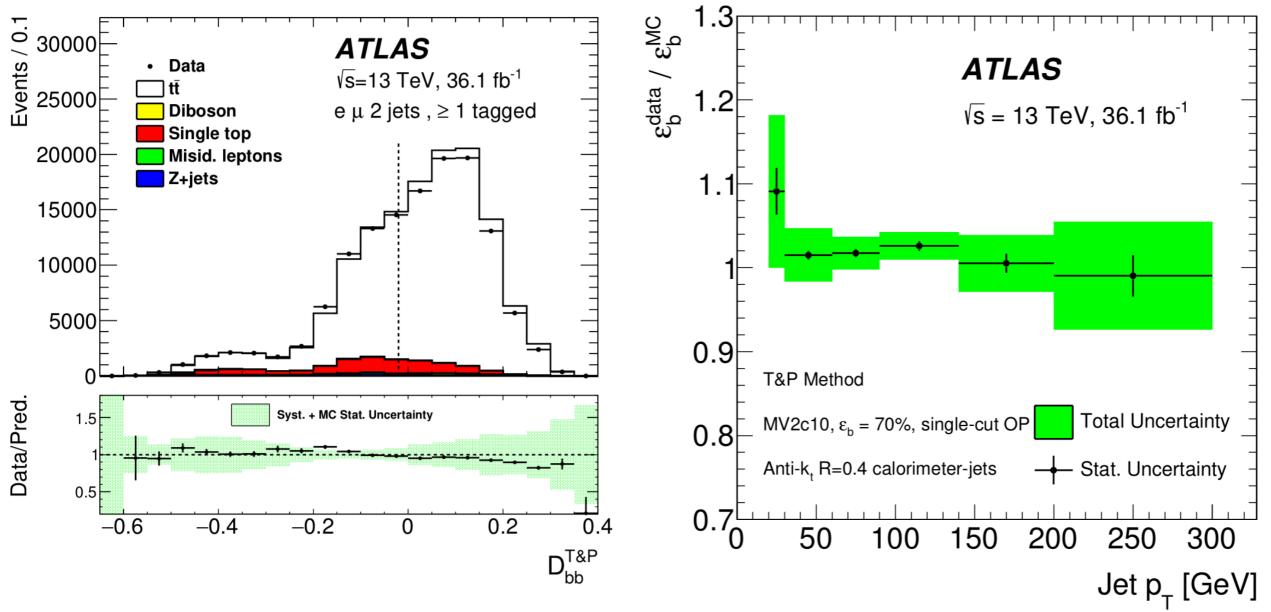




Low mass search

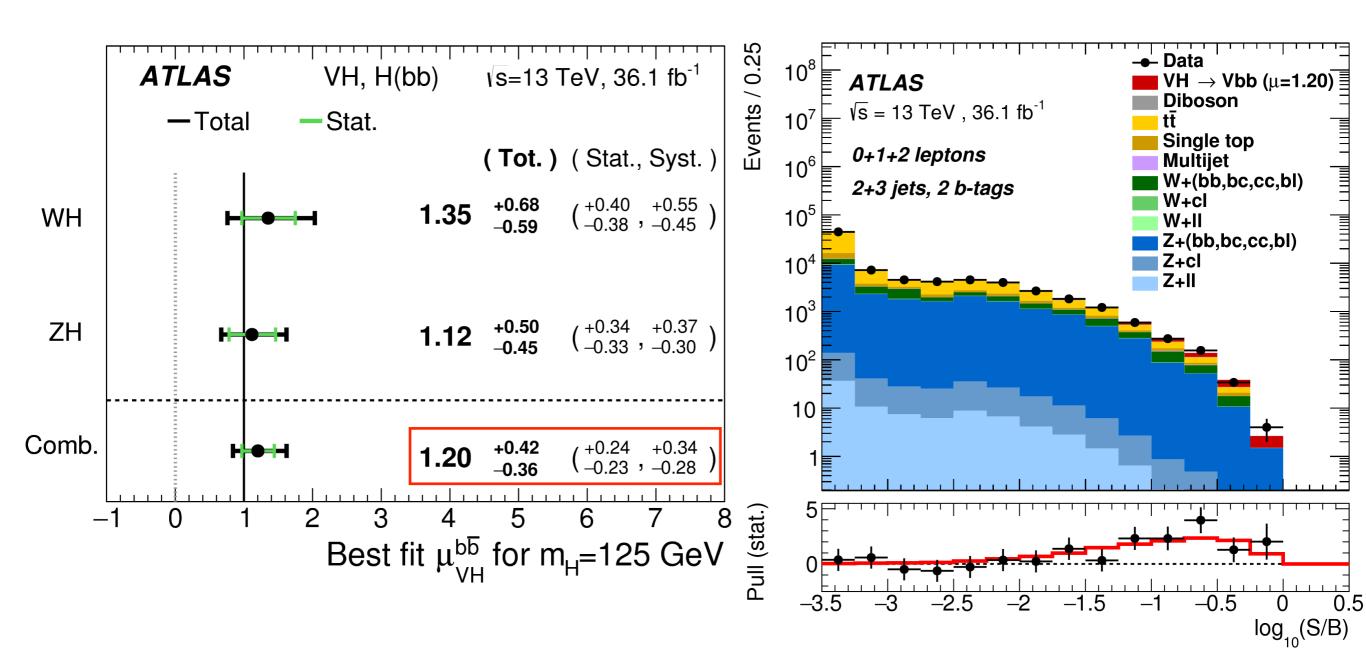
- Low mass search is as exciting and challenging as the high mass
 - CMS observes 3 σ excess at 95 GeV (PAS HIG-17-013),
 - No hints in ATLAS (though not excluded yet)
- Studied 65-110 GeV range; important to constrain background Z→ee→fake photons at ~
 90 GeV
- Preliminary result was limited by systematics from background modelling, aiming to reduce by a factor of two to publish
- Attempt to extend to very low mass (< 60 GeV); no direct searches in this region by any experiment

• Trigger is a limitation; studying feasibility with Run-2 and potential strategies for Run-3



Summary

- LPNHE-Paris and USTC-Hefei have successful collaborations in
 - Search for H → bb̄ in VH production mode
 - one paper in 2017 and one paper in 2018
 - 1/2 paper/conference-note in preparation for 2019 fall
 - Searches for diphoton resonances at low and high mass
 - High mass research: Publication/CONF-conversion for summer conferences, targeting EPS (Mid July)
 - Low/very-low mass: Publication to arrive in fall 2019


Backup

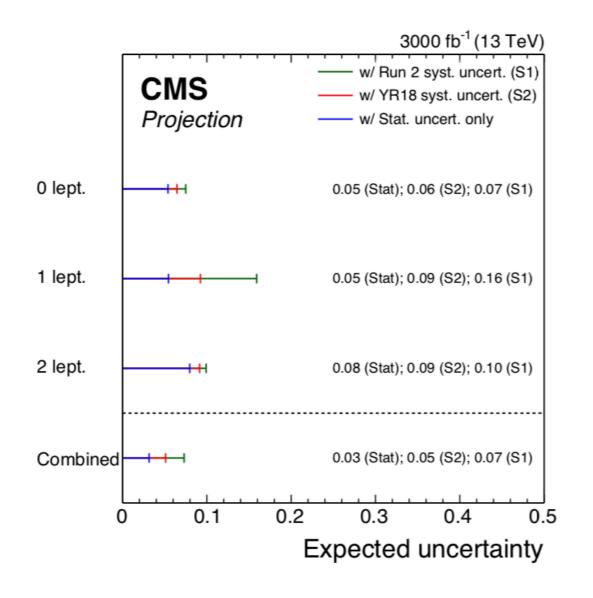
Measurements of b-jet tagging efficiency

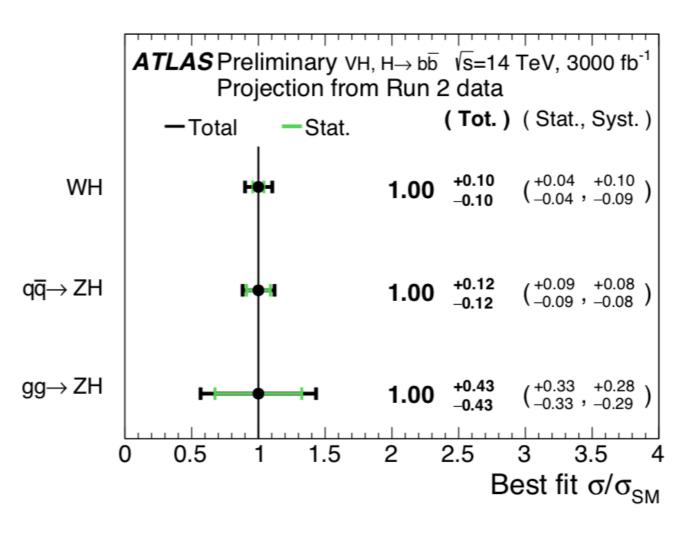
- ▶ Left: so-called Purity BDT is used to separate events with two b-jets from the events with other jet combinations, cut on output of Purity BDT can further improve the b-jet purity
- ► Right: calibration results as the ratio of the efficiency in measured in MC over the one measured in data, shown with the uncertainties

VH, H → bb results with 36 fb⁻¹

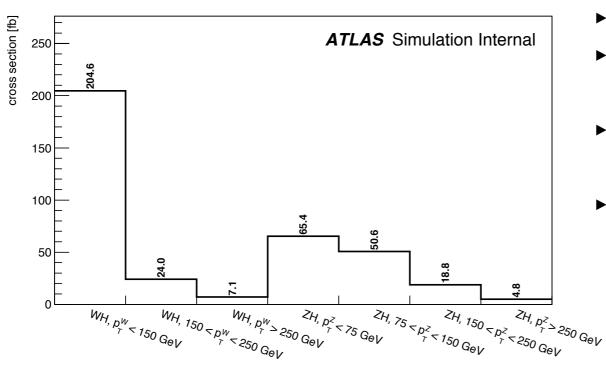
2 signal strengths (μ WH, μ ZH) and the inclusive signal strength μ VH

Expected significance: 3.0σ

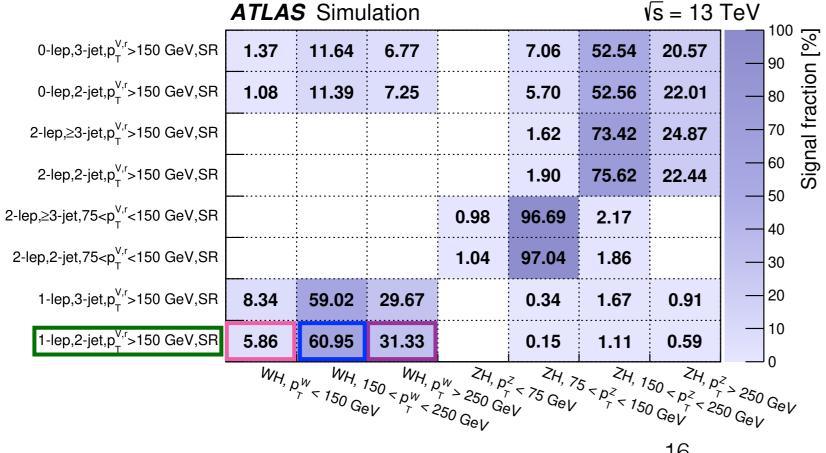

Observed significance: 3.5σ

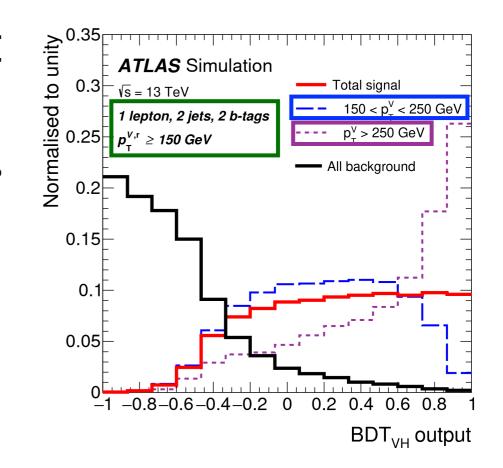

HL-LHC prospects

- "Yellow Report" in preparation for input to European Update of Particle Physics Strategy
- VH, H→bb̄ extrapolation based on the 80 fb⁻¹ analysis, luminosity: 80 fb⁻¹ → 3000 fb⁻¹
- ► Object reconstruction performance assumed similar in Run-2 and HL-LHC
- ► For the systematic uncertainties, two scenarios are considered:

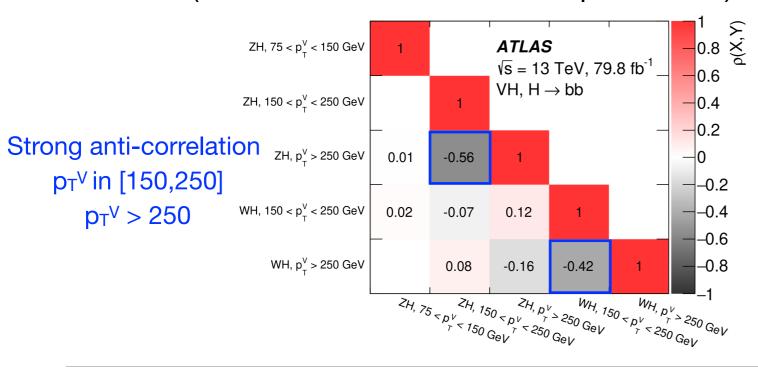

arxiv.1902.00134

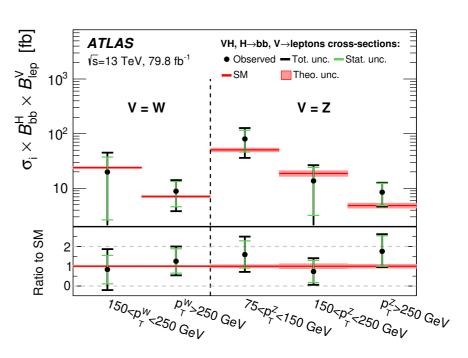
- ► Scenario-1 (S1): same values as "observation" analysis
- ► Scenario-2 (S2): reduction according to potential improvements





Expected signal yield in each SR


- XS for template bins predicted by SM
- ► Signal with different p_T survived mainly in the corresponding p_TV,r region
- ► Small migration with p_TV to p_TV,r due to the resolution
- ▶ p_T 150-250 and >250 survived in the same region $p_T^{V,r} > 150$
 - Separated by BDT classifier $(p_T^{V,r} used in training)$



Measurement of 5XS

- ► Theory prediction uncertainty on XS of measure bins removed
- Systematics from high-granularity regions merged to 5-POI
- ▶ 5-POI (each XS normalised to SM prediction) simultaneous measured

Measurement region	SM prediction		Result		Stat	. Unc.	nc. S		Syst. Unc. [fb]					
$(y_H < 2.5, H \to b\bar{b})$		[fb]			[fb]			[fb]	Th	. Sig.	Th	Bkg.	E	Exp.
$W \to l \nu, 150 < p_{\rm T}^V < 250 \text{ GeV}$	24.00	±	1.06	19.9	±	25.0	±	17.3	±	1.6	±	13.2	±	9.4
$W \to l\nu, p_{\mathrm{T}}^V > 250 \mathrm{GeV}$	7.08	±	0.34	8.8	±	5.2	±	4.4	±	0.5	±	2.5	±	0.9
$Z \rightarrow ll, \nu\nu, 75 < p_{\mathrm{T}}^{V} < 150 \text{ GeV}$	50.61	±	4.09	80.5	±	45.2	±	34.7	±	10.1	±	20.8	±	19.3
$Z \rightarrow ll, \nu\nu, 150 < p_{\mathrm{T}}^{V} < 250 \text{ GeV}$	18.80	±	2.37	13.7	±	12.7	±	10.6	±	1.4	±	6.1	±	3.3
$Z \rightarrow ll, \nu\nu, p_{\mathrm{T}}^{V} > 250 \text{ GeV}$	4.85	±	0.50	8.5	±	4.0	±	3.7	±	0.8	±	1.2	±	0.6

Most of measurement limited by statistics

EFT interpretation

- ▶ Beyond Standard Model (BSM) prediction constrained by the STXS measurement
- Effective Field Theory (EFT) parametrising the effects from BSM
- ► Leading effect on BSM from Dimension 6 operators

$$\mathcal{L}_{EFT} = \mathcal{L}_{SM} + \sum_{i} c_i^{(6)} O_i^{(6)} / \Lambda^2$$

► Focus on four operators affecting Higgs interaction with W (O_{HW}, O_W) and Z (all four)

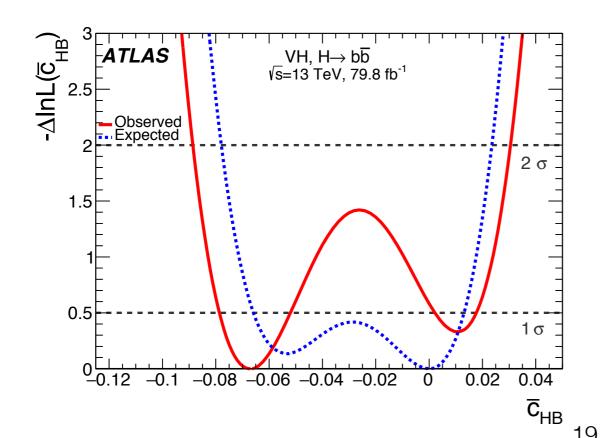
$$\begin{split} O_{HW} &= i \left(D^{\mu} H \right)^{\dagger} \sigma^{a} \left(D^{\nu} H \right) W_{\mu\nu}^{a}, \\ O_{HB} &= i \left(D^{\mu} H \right)^{\dagger} \left(D^{\nu} H \right) B_{\mu\nu}, \\ O_{W} &= \frac{i}{2} \left(H^{\dagger} \sigma^{a} \overset{\leftrightarrow}{D^{\mu}} H \right) D^{\nu} W_{\mu\nu}^{a}, \\ O_{B} &= \frac{i}{2} \left(H^{\dagger} \overset{\leftrightarrow}{D^{\mu}} H \right) D^{\nu} B_{\mu\nu}, \end{split}$$

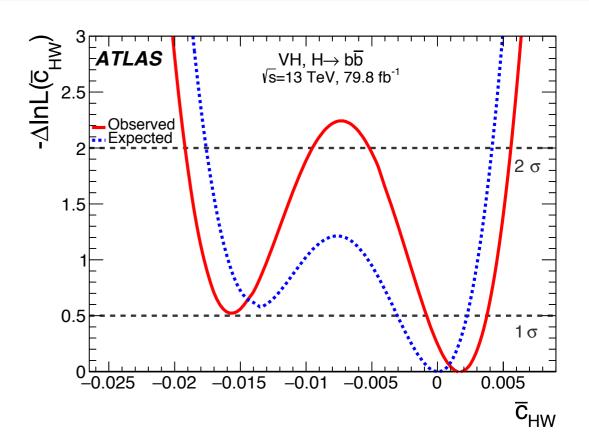
Dimensionless coefficients

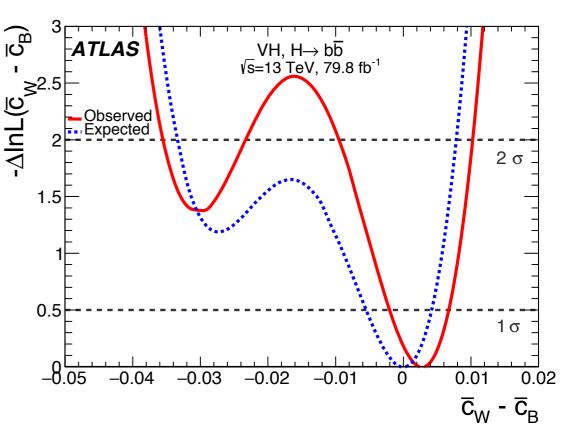
$$\mathrm{cHW} = \frac{m_W^2}{g} \frac{c_{HW}}{\Lambda^2}, \quad \mathrm{cHB} = \frac{m_W^2}{g'} \frac{c_{HB}}{\Lambda^2}, \quad \mathrm{cWW} = \frac{m_W^2}{g} \frac{c_W}{\Lambda^2}, \quad \mathrm{cB} = \frac{m_W^2}{g'} \frac{c_B}{\Lambda^2},$$

- ► The impact on the XS include
 - ► Interference between SM and BSM (linear terms)

$$\frac{\sigma_{EFT}}{\sigma_{SM}} = 1 + \sum_{i} A_{i} \bar{c_{i}} + \sum_{ij} B_{ij} \bar{c_{i}} \bar{c_{j}}$$


- BSM only (quadratic terms)
- Relationship between 5 XS and coefficients


Cross section region	$\sum_i A_i \bar{c_i}$
$q\bar{q} \rightarrow Hl\nu \ (150 \le p_{\mathrm{T}}^{V} \le 250) \ \mathrm{GeV}$	50cHW + 74cWW
$q\bar{q} \to H l \nu (p_{\mathrm{T}}^{V} \ge 250) \text{ GeV}$	170cHW + 200cWW
$q\bar{q} \rightarrow Hll \ (75 \le p_{\mathrm{T}}^{V} \le 150) \ \mathrm{GeV}$	13сНW + 38сWW + 3.9сНВ + 10.5сВ
$q\bar{q} \rightarrow Hll \ (150 \le p_{\mathrm{T}}^{V} \le 250) \ \mathrm{GeV}$	37сНW + 61сWW + 11сНВ + 18сВ
$q\bar{q} \to Hll \ (p_{\mathrm{T}}^{V} \ge 250) \ \mathrm{GeV}$	130сны + 150сым + 38сны + 46сы


Cross section region	$\sum_{ij} B_{ij} \bar{c}_i \bar{c}_j$			
$q\bar{q} \rightarrow Hlv \ (150 \le p_{\mathrm{T}}^V \le 250) \ \mathrm{GeV}$	$839\text{cHW}^2 + 1555\text{cWW}^2 + \text{cHW}(900\text{cWW})$			
$q\bar{q} \to H l \nu \ (p_{\mathrm{T}}^{V} \ge 250) \text{ GeV}$	14000 cHW $^2 + 16000$ cWW $^2 +$ cHW(30000 cWW)			
$q\bar{q} \rightarrow Hll \ (75 \le p_{\mathrm{T}}^{V} \le 150) \ \mathrm{GeV}$	$85\text{cHW}^2 + 400\text{cWW}^2 + 8\text{cHB}^2 + 35\text{cB}^2$			
	+cHW(150cWW + 20cHB + 42cB)			
	+cHB(44cWW + 12cB) + cWW(140cB)			
$q\bar{q} \rightarrow Hll \ (150 \le p_{\mathrm{T}}^{V} \le 250) \ \mathrm{GeV}$	$462cHW^2 + 982cWW^2 + 41cHB^2 + 86cB^2$			
	+сНW(1255сWW + 277сНВ + 358сВ)			
	+cHB(373cWW + 105cB) + cWW(587cB)			
$q\bar{q} \to Hll \ (p_{\mathrm{T}}^{V} \ge 250) \ \mathrm{GeV}$	$8000\text{cHW}^2 + 9600\text{cWW}^2 + 720\text{cHB}^2 + 850\text{cB}^2$			
	+cHW(17000cWW + 4800cHB + 5100cB)			
	+cHB(5100cWW + 1500cB) + cWW(5700cB)			

5-POI → coefficients

- Strong constrain on S = cWW + cB from precise electroweak data, S assumed as 0
- Thus constrain set on the coefficients: cHW, cHB, cWW-cB
- ► 5-POI parametrised with the above coefficients in linear and quadrature terms
- Maximum likelihood fits with POIs as cHW, cHB, cWW-cB
- One-dimensional fit performed

