

Yaxian MAO (Yongzhen Hou)

for ALICE Collaboration

Central China Normal University

Probing hot QCD matter with hard probes

- Hard probes (jets) serve as calibrated probe (pQCD)
- Hard probes traverse through the medium and interact strongly with the hot QCD matter
- Suppression pattern provides density measurements
- <u>General picture</u>: parton energy loss through mediuminduced gluon radiation and collisions with medium constituents

$$Jet(E) \rightarrow Jet(E' = E - \Delta E) + soft particles(\Delta E)$$

• Quantify the medium effects with nuclear modification factor

Nuclear effects probed by jet production

- Disentangle initial and final state effects
- Characterize nuclear PDFs
- Significant increase in integrated luminosity allows more precise investigation of statistic hungry probes

Fragmentation function			Energy Lo	ss in Medium	
			Fragment	ation function	
systems	years	√s _{NN} (TeV)			L _{int}
Pb-Pb	2010-2011		2.76	~75 µb-1	
	2015		5.02	~250 µb ⁻¹	
	2018		5.02	~0.908 nb ⁻¹	
Xe-Xe	2017		5.44	~0.3 µb ⁻¹	
p-Pb	2013, 2016		5.02	~18 nb ⁻¹	
	2016		8.16	~25 nb ⁻¹	
p-p	2009-2013	0.9	9, 2.76, 7, 8	~200 µb ^{-1,} ~100 nb ⁻¹ ~1.5 pb ^{-1,} ~2.5 pb ⁻¹	
	2015, <mark>2017</mark>		5.02	~1.3 pb ⁻¹	
	2015-2018		13	~59 pb-1	

Jet measurements in ALICE

- Event selection and multiplicity categorization: SPD,V0
- Track and jet reconstruction: ITS, TPC, EMCal and DCal

Charged jet cross section in pp collisions

- Charged jets are reconstructed using different resolution parameters and down to very low pT (pTjet >5 GeV/c)
- Jet cross section is well described by POWHEG+PYTHIA8 predictions (NLO pQCD+parton shower+hadronization) within systematic uncertainties

Jet cross section ratio

- Jet cross section ratio measurements are the reflection of jet collimation
- Different jet cross section ratio is slightly increasing with jet $p_{T\!,}$ consistent with Monte Carlo simulation
- Jet cross section ratio is consistent with different \sqrt{s}

Charged jets in Pb-Pb collisions

- Charged jet spectra in different centrality intervals are measured in Pb-Pb collisions with different cone radii
- \bullet Centrality ordered jet production yield are observed after T_{AA} scaling

Jet modification in Pb-Pb collisions: RAA

- R_{AA} of different radius jets are consistent with systematic errors
- Theoretical models can describe the shape of R_{AA} but not absolute amplitude (LBT agrees data best)

Jet RAA comparisons

- Full jets and charged jets are suppressed similarly
- R_{AA} at 5.02 TeV similar to 2.76 TeV
 - "compensation" between increasing suppression and change of the shape of the spectra

Different or similar between HM pp and HI?

pp: MB Pp: high multiplicity Pb-Pb

- Charge particle density increases with \sqrt{s} for all collision systems
- High multiplicity pp events can have similar multiplicity as in pA/AA collisions
 - what happens for jets in high multiplicity events?

Charged jet cross section in pp 13 TeV

- Charged jets are reconstructed using different resolution parameters and down to low pt (ptjet >10 GeV/c)
- Jet cross section is well described by POWHEG+PYTHIA8 predictions (NLO pQCD+parton shower+hadronization) within systematic uncertainties

Multiplicity dependent charged jet productions

- Charged jets are reconstructed using different resolution parameters in different multiplicity percentile in pp collisions
- More jets are produced in high M bins compared to low M bins

Multiplicity dependent charged jets vs. inclusive one

- Compare the charged jet productions in different multiplicity percentile to the inclusive jet production in pp collision
- Jet cross section ratios are weakly depend on jet p_{T} and resolution parameters

Multiplicity dependent charged jet cross section ratio

- Compare the charged jet cross section ratio in different multiplicity percentile to the inclusive ones
- No strong multiplicity dependence in the jet cross section ratio

Cross section ratio from data and MC

- Data measurements show centrality independent jet cross section ratio while MC shows centrality dependence
 - Inclusive jet cross section can be reproduced by POWHEG calculation but not the centrality dependent cross section in pp collisions
 - Underlying event differences or other mechanism?

Semi-inclusive hadron-jet correlations

- New observables of recoil jet measurements:
 - pp: calculable via pQCD
 - AA: a good handle on the combinatorial background by varying $p_{T,trig} \rightarrow$ systematically well-controlled at low p_{Tjet} , large R
 - Trigger hadron close to surface, but no bias on recoil jets
 - Per trigger quantity \rightarrow no need for N_{coll}/N_{MPl} to compare event classes/centrality

Frigger hadron Recoi

100

16

Heavy-Quark (c-)jet tagging

• Charged jet containing a D meson as one of the constituents

- Invariant mass analysis to extract D-jet raw spectrum
 - Background spectrum from side bands
- Corrected jet p_T spectra with unfolding for detector effects and background fluctuations
- D⁰-tagged jets are measured down to 5 GeV/c
 - D⁰ mesons must come from hard scattering
 - Jets from charm quarks are measured selectively

Jet RAA: inclusive vs. tagged D⁰-jet

$$R_{AA} = \frac{1}{\langle N_{coll} \rangle} \frac{d^2 N_{AA} / dp_T d\eta}{d^2 N_{pp} / dp_T d\eta}$$

- Strong suppression of D⁰-tagged jets in most central collisions
 - Hints of more suppression at low pT D⁰-tagged jets than inclusive jets at higher pT
 - Similar to D meson RAA
 - Importance of collisional energy loss for heavy flavor jets
- Current data is not precise enough to draw conclusion without same kinematical range

Summary and outlook

- Inclusive jet productions have been studied in pp and Pb-Pb collisions
 - Inclusive jet cross sections can be well described by POWHEG+PYTHIA8 model calculations
 - Jet cross section ratios using different resolution parameters calculated, no collision system or energy dependent
 - Nuclear modification factor R_{AA} has been measured
 - Strong suppression in most central Pb-Pb collisions
 - Consistent results between charged jets and full jets
- Multiplicity dependent jet productions have been studied
 - No strong jet p⊤ dependent jet production ratio compared to inclusive one
 - Jet cross section ratios using different parameters can't be reproduced by POWHEG MC

More differential study using jet tagging with joint China-France effort ongoing! Stay tuned...

Thank you for your attention!