

JUNO Top Tracker

João Pedro Athayde Marcondes de André for the JUNO Collaboration

IPHC/IN2P3/CNRS

April 27th, 2019

The JUNO Collaboration

Country	Institute	Country	Institute	Country	Institute	
Armenia	Yerevan Physics Institute	China	IMP-CAS	Germany	U. Mainz	
Belgium	Universite libre de Bruxelles	China	SYSU	Germany	U. Tuebingen	
Brazil	PUC	China	Tsinghua U.	Italy	INFN Catania	
Brazil	UEL	China	UCAS	Italy	INFN di Frascati	
Chile	PCUC	China	USTC	Italy	INFN-Ferrara	
Chile	UTFSM	China	U. of South China	Italy	INFN-Milano	
China	BISEE	China	Wu Yi U.	Italy	INFN-Milano Bicocca	
China	Beijing Normal U.	China	Wuhan U.	Italy	INFN-Padova	
China	CAGS	China	Xi'an JT U.	Italy	INFN-Perugia	
China	ChongQing University	China	Xiamen University	Italy	INFN-Roma 3	
China	CIAE	China	Zhengzhou U.	Latvia	IECS	
China	DGUT	China	NUDT	Pakistan	PINSTECH (PAEC)	
China	ECUST	China	CUG-Beijing	Russia	INR Moscow	
China	Guangxi U.	China	ECUT-Nanchang City	Russia	JINR	
China	Harbin Institute of Technology	Czech R.	Charles University	Russia	MSU	
China	IHEP	Finland	University of Jyvaskyla	Slovakia	FMPICU	
China	Jilin U.	France	LAL Orsay	Taiwan-China	National Chiao-Tung U.	
China	Jinan U.	France	CENBG Bordeaux	Taiwan-China	National Taiwan U.	
China	Nanjing U.	France	CPPM Marseille	Taiwan-China	National United U.	
China	Nankai U.	France	IPHC Strasbourg	Thailand	NARIT	
China	NCEPU	France	Subatech Nantes	Thailand	PPRLCU	
China	Pekin U.	Germany	FZJ-ZEA	Thailand	SUT	
China	Shandong U.	Germany	RWTH Aachen U.	USA	UMD1	
China	Shanghai JT U.	Germany	TUM	USA	UMD2	
China	IGG-Beijing	Germany	U. Hamburg	USA	UC Irvine	
China	IGG-Wuhan	Germany	FZJ-IKP	= 77	members	

The JUNO Collaboration

J. P. A. M. de André for JUNO

Introduction to the Jiangmen Underground Neutrino Observatory

J. Phys. G 43 (2016) no.3, 030401

- JUNO located 53 km from Taishan and Yangjiang NPP
 - TAO@JUNO planned in Taishan NPP
- Baseline optimized for Neutrino Mass Ordering determination
 - many other topics in reach
- First experiment to see both Δm^2 from ν oscillations
- Data taking start: 2021

Introduction to the Jiangmen Underground Neutrino Observatory

J. Phys. G 43 (2016) no.3, 030401

- JUNO located 53 km from Taishan and Yangjiang NPP
 - TAO@JUNO planned in Taishan NPP
- Baseline optimized for Neutrino Mass Ordering determination

many other topics in reach

- First experiment to see both Δm^2 from ν oscillations
- Data taking start: 2021

The JUNO Detector

Top Tracker (TT)

- Precise μ tracker
- 3 layers of plastic scintillator
- ullet \sim 60% of area above WCD

Water Cherenkov Detector (WCD)

- 25 kton ultra-pure water
- 2.4k 20" PMTs
- High μ detection efficiency
- Protects CD from external radioactivity

→ Central Detector (CD) – $\bar{\nu}$ target

- Acrylic sphere with 20 kton liquid scint.
- 18k 20" PMTs + 25k 3" PMTs
- 3% energy resolution @ 1 MeV

Measuring Reactor $\bar{\nu}_e$

- $\bar{\nu}_e$ detected via IBD: $\bar{\nu}_e + p \rightarrow n + e^+$
 - IBD used since discovery of $\bar{\nu}$
 - ► Prompt+delayed signal ⇒ large background suppression
 - Expected event rate: 73/day (IBD-like in FV)

Measuring Reactor $\bar{\nu}_e$: μ -Induced Backgrounds Fast n μ_{1} Cosmogenic isotopes

Measuring Reactor $\bar{\nu}_e$: μ -Induced Backgrounds Fast n μ_1 Cosmogenic isotopes μ

71/day (IBD-like in FV)

J. P. A. M. de André for JUNO

J. Phys. G 43 (2016) no.3, 030401

JUNO μ Veto

- Goal: remove cosmogenic-induced IBD-like events
- Veto criteria:
 - **(1)** if μ tagged and direction known, reject events within 3 m of μ for 1.2 s
 - 2 if μ tagged in CD (WCD) but direction unknown, reject events for 1.2 s (1.5 ms)
- \Rightarrow Need to track μ well to avoid full detector veto!
 - ▶ 99% of μ expected to be in category **()**
 - ▶ If cannot reco. μ (ie, 100% in category 2) \Rightarrow 100% detector downtime
- Tracking μ going to rock also important to experimentally evaluate fast n rate

Selection	IBD efficiency	IBD	Geo- νs	Accidental	$^{9}\mathrm{Li}/^{8}\mathrm{He}$	Fast n	(α, n)
-	-	83	1.5	$\sim 5.7 imes 10^4$	84	-	-
Fiducial volume	91.8%	76	1.4		77	0.1	0.05
Energy cut	97.8%			410			
Time cut	99.1%	73	1.3		71		
Vertex cut	98.7%			1.1			
Muon veto	83%	60	1.1	0.9	1.6		
Combined	73%	60	3.8				

 Table 2-1: The efficiencies of antineutrino selection cuts, signal and backgrounds rates.

 J. P. A. M. de André for JUNO
 FCPPL@SJTU
 April

JUNO Top Tracker (TT): Overview

- TT refurbished from OPERA Target Tracker
 - $\blacktriangleright~62$ walls measuring (6.7 $\times~6.7)~m^2$ of plastic scintillator available
 - ▶ Walls distributed in 3×7 horizontal grid in 3 layers \rightarrow cover \sim 60% of surface above WCD
 - Monitoring of aging of detector essential
 - Upgrades needed on several systems: electronics, mechanical structure, ...
- Very precise μ tracking
 - Detector granularity 2.6 \times 2.6 cm^2 in X–Y
 - 3 Layers separated by 1.5 m
 - \Rightarrow 0.2° median resolution for μ tracks!

TT Modules Already Delivered at Detector Site!

TT Mechanical Structure

- TT modules are flexible
- In OPERA modules placed vertically
 → no supporting structure needed
- In JUNO, horizontal placement requires strong structure to avoid sagging
- Easy access to electronics needed

- Final design review completed
 - TT wall supporting structure
 - TT chimney structure
 - TT bridge
- Tender ongoing
- TT review in Strasbourg, FR (Oct. 2018)

TT Mechanical Structure

Supporting structure above Chimney

TT Electronics: Schematic View

Front-End Board (FEB): PMT interface and part of the PMT readout.

Read-Out Board (ROB): slow control, power supply, and finish PMT readout.

- Charge readout by FEB/ROB takes 8-15 μ s
- Permanent Fast OR Trigger

Concentrator Board: gathers hits related to each wall, and create L1 trigger. Also time-stamps of all hits with a nanosecond precision.

Coincidence Board: combine information from all L1 triggers to produce a L2 trigger.

TT Trigger Overview

From ⁴⁰K, ²³²Th, ²³⁸U dcy chains 90E Preliminary 80 FFB Above Chimney Entripe 48 70E Mean 44 94 Std Dev 4.878 60 Top Laver FFB 320 Entries 50 Mean 49.99 Std Dev 4.947 40 Middle Laver FEB Mean 42 13 30 Std Dev 4.953 ower Laver FEB 20 ntries Mean 36.1 10Ē 4.287 Std Dev 30 35 60 65 40 50 Hit Rate sent to Concentrator Card per PMT (kHz)

- Natural radioactivity @JUNO site is 100× larger than @OPERA site
- Need to quickly reject radiation (but not μ!) to reduce dead time

- L1 trigger: acts at "wall" level, looks for X–Y coincidences
 - Other algorithms under consideration
 - \blacktriangleright XY coincidence rate \approx 40 kHz/wall
- L2 trigger: looks at the whole detector (looks for global alignment)
 - \blacktriangleright 3 walls aligned, TT rate \approx 13 kHz

J. P. A. M. de André for JUNO

J. P. A. M. de André for JUNO

J. P. A. M. de André for JUNO

TT Electronics: Schedule

• Front End Board and Read Out Board

- At final design and verification stages
- Electronics cards for TT prototype to be ready a month from now
- Scheduled final design review for July @ Beijing
- Start production by fall this year
 - ★ MAROC3 already produced and encapsulated
- Concentrator Board
 - 1st prototype delivered in 2018
 - Currently working on 2nd version of prototype
 - Final board prototype expected for beginning 2020
- Coincidence Board
 - Implementation options of L2 trigger under consideration now
 - Detailed design to be started after final review of FEB/ROB

TT Monitoring in PMT Testing Hall

TT event 1160223050: XZ projection (front view)

- Use old electronics to take atm. μ data from TT modules in containers during storage
- No significant aging observed up to now

TT Prototype

- TT prototype in Strasbourg
 - build with a quarter of a TT wall
 - 4 X Y layers (instead of 3 as in TT@JUNO)
- Perfectly adapted to test new TT Electronics Cards
 - FEB & ROB tested in with close to real conditions
 - Testing of some L1 & L2 trigger algorithms in small scale also possible
- Expect to equip prototype with 8 new TT Electronics Boards by end of next month

TT Global Schedule

- End 2018: final mechanical design \checkmark
 - Tender ongoing
- Mid 2019: final design of Front End and Read Out Boards
 - MAROC chips already available
 - 2019-2020: production of 1200 FEB and ROB
- End 2019: Test full electronics chain on TT prototype
- 2020: produce 80 Concentrator cards
- Beginning 2021:
 - all electronics cards ready
 - final preparation of cables and remaining systems
- April October 2021: TT installation and commissioning
 - Will happen at same time as filling and commissioning of CD

Summary

- JUNO Top Tracker is a part of the JUNO Veto system
 - Precise μ tracking is essential for rejection of cosmogenic background
 - \star also allows to study cosmogenic background spectrum
 - Fast n background measurement
 - To be used for calibration also
- TT monitoring shows no significant aging since OPERA
- Top Tracker preparation is well on schedule
 - Already completed design of mechanical components
 - Close to completed review of FEB and ROB
 - Large progress in Concentrator card in this past year
 - Gearing up to test all electronics system on TT prototype starting end of next month
- TT modules already at JUNO site!
- TT will be ready for installation in JUNO as planned in 2021

