

12th France China Particle Physics Laboratory Workshop

Shanghai Jiao

April 24-27, 2019 Shanghai, China https://indico.ihep.ac.cn/event/9587 fcppl2019@ihep.ac.cn

Location:

Meeting Room 102, Haoran Hi-tech Building Shanghai Jiao Tong University No. 1954 Huashan Road, Xuhui District

Charmonium production in pp collisions using decays to hadronic final states at

Yanting Fan, Taras Fedorchuk, Jibo He, Jean-Philippe Lansberg, Hua-Sheng Shao, Andrii Usachov, Jingyi Xu, Qingnian Xu, Yixiong Zhou, Valeriia Zhovkovska, SB

 \Box Production of η_c using decays to pp \Box Production of χ_c and $\eta_c(2S)$ using decays to $\phi\phi$

Phenomenological studies

Contacts: Jibo He and Sergey Barsuk

Scientific Committee

Vincent Boudry (LLR) Anatael Cabrera (LAL)

Charling Tao (CPPM)

Manqi Ruan (IHEP) Daicui Zhou (CCNU)

TD17 千日1 叶完叶

Organization Committee

ocal Secretary

Fangying Qiu (SJTU)

□ Study of **charmonium production** provides powerful QCD tests

Michelangelo: 创建

Botticelli: 分娩

□ Comprehension of **quarkonia production mechanism**, predictive model robust against experimental verifications wanted, yielding simultaneous description of

- □ Hadroproduction and production in b-decays ;
- Different charmonia ;
- □ Production and polarization in the entire pT range.

 $\hfill\square$ Two scales of production:

hard process of $Q\bar{Q}$ formation and hadronization of $Q\bar{Q}$ at softer scales

Factorization:

$$d\sigma_{A+B\to H+X} = \sum_{n} d\sigma_{A+B\to Q\overline{Q}(n)+X} \times \langle \mathcal{O}^{H}(n) \rangle$$

Short distance: perturbative cross-sections + pdf for the production of a $Q\overline{Q}$ pair

Long distance matrix elements (LDME), non-perturbative part

 \Box <u>Colour-singlet model</u>: intermediate $Q\overline{Q}$ state is colourless and has the same J^{PC} quantum numbers as the final-state quarkonium

□ <u>NRQCD</u>: all viable colours and J^{PC} allowed for the intermediate QQ state, they are adjusted in the long-distance part with a given probability. Long-Distance Matrix Elements (LDME) from experimental data

□ Universality: same LDME for prompt production and production in b-decays

□ Heavy-Quark Spin-Symmetry (HQSS): links between colour-singlet (CS) and colour-octet (CO) LDME of different quarkonium states

Canonical charmonium states

LHCb detector: single-arm forward spectrometer

JINST 8 (2013) P08002, INT.J.MOD.PHYS.A30 (2015) 1530022

□ Forward peaked HQ production at the LHC

□ Forward region, ~4% of solid angle, but ~40% of HQ production x-section

Complementary cross-section measurements and overlap in rapidity
 Key detector systems for production measurements: vertex reconstruction (VELO), particle identification (Muon detector, RICHs), Trigger

VELO: Vertex LOcator

LHCb

2

New J. Phys. 15 (2013) 053021

Tagged mixed

Fit mixed

Fit unmixed

Tagged unmixed

□ 88 semi-circular **microstrip** Si sensors Double-sided, **R** and φ layout \Box 300 μ thick n-on-n sensors \Box Strip pitches from 40 to 120 μ

- □ First active strip at 8.2mm from the beam axis
- Moves away every fill and centers around the beam with self measured vertices

□ Vertex resolution allows to resolve fast ($x \sim 27$) B_sB_s oscillations

Quarkonia at LHCb

candidates / (0.1 ps)

400

200

٦ آ

decay time [ps] FCPPL workshop, Shanghai, 24-27.04.2019 LHCb: charged hadron ID with RICH

Production of n_c , $p\bar{p}$ final state

HISTORICAL: The $n_c(1S)$ production via decays to hadronic final states

Two good-quality tracks identified as protons, forming a good-quality vertex **EPJC 75 (2015) 311** √s = 7 TeV, jLdt ~ 1 fb⁻¹ √s = 8 TeV, jLdt ~ 2 fb⁻¹

Distinguish prompt production and production in b-decays
Use a rev, just a separation between pp-interaction vertex and charmonium decay vertex

Subtract cross-feed

Next: Measure n_c(1S) prompt production

□ Verify NRQCD prediction of different p_T spectra for J/ψ and $n_c(1S)$

Maltoni, Polosa, **PRD 70 (2004) 054014** Petrelli et al., **Nucl. Phys. B514 (1998) 245** Kuhn, Mirkes, **PRD 48 (1993) 179**

Quarkonia at LHCb

HISTORICAL: The n_c(1S) prompt production EPJC 75 (2015) 311

16

PT [GeV]

Results are described by CS NLO, below expected CO contribution

PT [GeV]

10

14 16 18

PT [GeV]

12 14

PT [GeV]

THEORY: The $\eta_c(1S)$ AND J/ ψ prompt production

Quarkonia at LHCb

THEORY: The $n_c(1S)$ AND J/ ψ prompt production

Quarkonia at LHCb

Zhang, Sun, Sang, Li PRL 114 (2015) 092006

LDMEs from the fit

\Box **Predictions** for J/ ψ production

ALMOST PUBLIC: $n_c(1S)$ ($\rightarrow p\bar{p}$) prompt production at $\int s=13$ TeV

Technique 1: Distinguish prompt and b-decay charmonium via t_z distribution fit $(J/\psi \text{ analysis} - \text{like}).$

$$t_z = \frac{z_{SV} - z_{PV}}{p_z} M_{p\overline{p}}$$

 \square Simultaneous integral χ^2 fit of t_z distributions constructed using η_c and J/ψ yields from mass fit in pT bins

Quarkonia at LHCb

ALMOST PUBLIC: $n_c(1S)$ ($\rightarrow p\bar{p}$) prompt production at $\int s=13$ TeV

Technique 2: Distinguish prompt and b-decay charmonium via t_z and proton IP based selection requirements (run I $\eta_c(15)$ analysis - like).

Simultaneous fit in pT bins

Extract prompt and from b-decays components from measured yields and determined efficiencies and cross-feeds

Two techniques consistent and yield similar precision

ALMOST PUBLIC: $n_c(1S)$ ($\rightarrow p\bar{p}$) prompt production at $\int s=13$ TeV

□ Integral x-section in LHCb fiducial region:

$$\sigma_{\eta c} = : D_{stat} + 0.10_{syst} + 0.16_{BR} \mu b$$

$$Vu-Feng, Hua-Sheng et al.:$$

$$\sigma_{\eta c} = 1.56^{+}_{-}0.83^{+}_{-}0.38^{+}_{-}0.17 \text{ cT14NLO}$$

□ Absolute x-section nicely reproduced.

□ Energy dependence of the n_c(1S) production with 2015-2016 data.

□ BR(b → n_c(1S) X) is consistent with the result at 7, 8 TeV and gives better stat. precision

ALMOST PUBLIC: Also pT-differential production

Good description of pT-differential x-section

□ Interesting to measure next pT bin when enough sensitivity

ALMOST PUBLIC: J/ψ and $n_c(1S)$ mass difference

□ Mass measurement using topological triggers

 $M_{J/\psi}$ - M_{η} , MeV/c²

PREVIEW: $\eta_c(2S)$ ($\rightarrow p\bar{p}$) prompt production at $\sqrt{s=13}$ TeV

Motivated by theory calculations
 Dedicated LHCb trigger in 2018

Prompt and b-decay production distinguished via selection cuts

Production of χ_c and $\eta_c(25)$ in b-decays, $\varphi\varphi$ final state

Quarkonia at LHCb

Charmonia production in b-decays study using decays to $\phi\phi$ at $\sqrt{s} = 7,8 TeV$

Charmonia production in b-decays study using decays to $\phi\phi$ at $\sqrt{s} = 7,8 TeV$

EPJC 77 (2017) 609

 \sqrt{s} = 7 and 8 TeV, $\int Ldt \sim 3 fb^{-1}$

□ First or most precise measurements:

$$\begin{aligned} \frac{\mathcal{B}(b \to \chi_{c0} X)}{\mathcal{B}(b \to \eta_c(1S) X)} &= 0.615 \pm 0.095 \pm 0.047 \pm 0.149, \\ \frac{\mathcal{B}(b \to \chi_{c1} X)}{\mathcal{B}(b \to \eta_c(1S) X)} &= 0.562 \pm 0.119 \pm 0.047 \pm 0.131, \\ \frac{\mathcal{B}(b \to \chi_{c2} X)}{\mathcal{B}(b \to \eta_c(1S) X)} &= 0.234 \pm 0.038 \pm 0.015 \pm 0.057, \end{aligned}$$

$$\begin{aligned} \mathcal{B}(b \to \chi_{c0} X) &= (3.02 \pm 0.47 \pm 0.23 \pm 0.94) \times 10^{-3}, \\ \mathcal{B}(b \to \chi_{c1} X) &= (2.76 \pm 0.59 \pm 0.23 \pm 0.89) \times 10^{-3}, \\ \mathcal{B}(b \to \chi_{c2} X) &= (1.15 \pm 0.20 \pm 0.07 \pm 0.36) \times 10^{-3}, \end{aligned}$$

Search for X(3872), $\chi_{c0,2}(2P)$

EPJC 77 (2017) 609 $\sqrt{s} = 7$ and 8 TeV, $\int Ldt \sim 3 \text{ fb}^{-1}$

Relative yields with respect to resonances with similar quantum numbers
 Proposed by V. Khoze

	90% CL	95% CL
$\frac{BR(b \to X(3872)X) \cdot BR(X(3872) \to \phi\phi)}{BR(b \to \chi_{c1}X) \cdot BR(\chi_{c1} \to \phi\phi)}$	<0.34	<0.39
$\frac{BR(b \to \chi_{c0}(2P)X) \cdot BR(\chi_{c0}(2P) \to \phi\phi)}{BR(b \to \chi_{c0}X) \cdot BR(\chi_{c0} \to \phi\phi)}$	<0.12	<0.14
$\frac{BR(b \to \chi_{c2}(2P)X) \cdot BR(\chi_{c2}(2P) \to \phi\phi)}{BR(b \to \chi_{c2}X) \cdot BR(\chi_{c2} \to \phi\phi)}$	<0.16	<0.20

	90% CL	95% CL
$BR(b \rightarrow X(3872)X) \cdot BR(X(3872) \rightarrow \phi\phi)$	$< 3.9 imes 10^{-7}$	$< 4.5 imes 10^{-7}$
$BR(b \rightarrow \chi_{c0}(2P)X) \cdot BR(\chi_{c0}(2P) \rightarrow \phi\phi)$	$< 2.7 imes 10^{-7}$	$< 3.1 imes 10^{-7}$
$BR(b \rightarrow \chi_{c2}(2P)X) \cdot BR(\chi_{c2}(2P) \rightarrow \phi\phi)$	$< 2.3 imes 10^{-7}$	$< 2.8 imes 10^{-7}$

Quarkonia at LHCb

Extraction of $\eta_c(1S)$ BRs using $B_s \rightarrow \phi \phi$

$$BR(B_{s}^{0} \rightarrow \phi\phi) = \frac{N_{B_{s}^{0}}}{N_{\eta_{c}}} \times \frac{\varepsilon_{\eta_{c}}}{\varepsilon_{B_{s}^{0}}} \times \frac{\varepsilon_{\eta_{c}}}{\varepsilon_{B_{s}^{0}}} \times \sqrt{s = 7 \text{ and } 8 \text{ TeV, JLdt} \sim 3 \text{ fb}^{-1}}}{\sqrt{s = 7 \text{ and } 8 \text{ TeV, JLdt} \sim 3 \text{ fb}^{-1}}} \times \frac{BR(b \rightarrow \eta_{c} X) \cdot BR(\eta_{c} \rightarrow p\overline{p})}{BR(b \rightarrow J/\psi X) \cdot BR(J/\psi \rightarrow p\overline{p})} \times \frac{BR(\eta_{c} \rightarrow \phi\phi)}{BR(\eta_{c} \rightarrow p\overline{p})} \times BR(b \rightarrow J/\psi X) \times BR(J/\psi \rightarrow p\overline{p})} / BR(\overline{b} \rightarrow B_{s}^{0})$$

Using LHCb measurement (JHEP 10 (2015) 053):

 $BR(B_s \rightarrow \phi \phi) = ((1.84 \pm 0.05 stat \pm 0.07 sys \pm 0.12 norm \pm 0.11 (f_s/f_d)) \times 10^{-5}$

$$\frac{\mathcal{B}(\eta_c(1S) \to \phi\phi)}{\mathcal{B}(\eta_c(1S) \to p\bar{p})} = 1.79 \pm 0.14 \pm 0.09 \pm 0.10 \pm 0.03 \pm 0.29$$

Cf. PDG:
$$\frac{BR(\eta_c(1S) \rightarrow \phi\phi)}{BR(\eta_c(1S) \rightarrow pp)} = 1.17 \pm 0.18$$

\rightarrow New high-impact PDG entry

Quarkonia at LHCb

Constraining LDMEs using different measurements

Quarkonia at LHCb

Simultaneous study of J/ψ and $n_c(1S)$ production in b-decays

□ From EPJC 75 (2015) 311 and Chin. Phys. C40 (2016) 100001:

□ Relation between LDME from HQSS:

 Branching fractions calculated in Beneke, Maltoni, Rothstein, PRD 59 (1999) 054003

$$Usachov, Kou, SB, LAL-17-051$$

$$\frac{\mathcal{B}(b \to \eta_c(1S)^{direct}X)}{\mathcal{B}(b \to J/\psi^{direct}X)} = 0.691 \pm 0.090 \pm 0.024 \pm 0.103,$$

$$\langle O_1^{\eta_c}({}^{1}S_0) \rangle = \frac{1}{3} \langle O_1^{J/\psi}({}^{3}S_1) \rangle,$$

$$\langle O_8^{\eta_c}({}^{1}S_0) \rangle = \frac{1}{3} \langle O_8^{J/\psi}({}^{3}S_1) \rangle,$$

$$\langle O_8^{\eta_c}({}^{3}S_1) \rangle = \langle O_8^{J/\psi}({}^{1}S_0) \rangle,$$

$$\langle O_8^{\eta_c}({}^{1}P_1) \rangle = 3 \langle O_8^{J/\psi}({}^{3}P_0) \rangle.$$

Simultaneous study of J/ψ and $n_c(15)$ production

- □ Simultaneous fits to J/ψ and $\eta_c(1S)$ LDMEs, prompt and b-decay production
- \Box <O(1S₀)> fixed at 1.16 GeV³
- Sequentially fix other LDMEs according to theoretical prediction
- □ Red points: PRL 114 (2015) 092005
- Theoretical uncertainties crucial, plots including theory uncertainties

Simultaneous study of χ_c production in inclusive b-decays

□ From EPJC 77 (2017) 609 and Chin. Phys. C40 (2016) 100001: $\mathcal{B}(b \to \chi_{c0}{}^{direct}X) = (2.74 \pm 0.47 \pm 0.23 \pm 0.94_{\mathcal{B}}) \times 10^{-3}$ $\mathcal{B}(b \to \chi_{c1}{}^{direct}X) = (2.49 \pm 0.59 \pm 0.23 \pm 0.89_{\mathcal{B}}) \times 10^{-3}$ $\mathcal{B}(b \to \chi_{c2}{}^{direct}X) = (0.89 \pm 0.20 \pm 0.07 \pm 0.36_{\mathcal{B}}) \times 10^{-3}$

Usachov, Kou, SB, LAL-17-051

Relation between LDME from HQSS:

$$O_{1} \equiv \langle O_{1}^{\chi_{c0}}({}^{3}P_{0}) \rangle / m_{c}^{2},$$

$$O_{8} \equiv \langle O_{8}^{\chi_{c0}}({}^{3}S_{1}) \rangle,$$

$$\langle O_{1}^{\chi_{cJ}}({}^{3}P_{J}) \rangle / m_{c}^{2} = (2J+1)O_{1},$$

$$\langle O_{8}^{\chi_{cJ}}({}^{3}S_{1}) \rangle = (2J+1)O_{8}.$$

Branching fractions calculated in Beneke, Maltoni, Rothstein, PRD 59 (1999) 054003

□ Fit two LDME to three measurements

Important to revisit theory calculations

Simultaneous study of charmonia with linked LDMEs

- This technique constrains theory using simultaneously results on charmonia hadroproduction and on charmonia from b-inclusive decays under assumptions of factorization, universality and HQSS, with different charmonium states.
- Alternatively, once hadroproduction and production in b-decays measured for charmonium states with linked LDMEs, the above assumptions can be tested quantitatively.

- The FCPPL project pursues a series of theoretical and phenomenological developments and a series of LHCb data analyses to insight the mechanism of quarkonia production.
- □ The project challenges the mechanism of ground state charmonia production and its experimental verification using **charmonia decays to hadronic final states** (pp, $\varphi\varphi$, ...).

Despite a newly created FCPPL project (2019)
 the IPN - LAL - LPTHE - UCAS
 team possesses a rich tradition of successful collaboration.