

ATLAS Silicon Detector R&D -CPPM /ACC perspective-

12th FCPPL workshop in Shanghai Jiao Tong University April 24th, 2019

Marlon Barbero / CPPM

- CPPM / ACC collaboration for design and test of Front-End pixel electronics for ATLAS phase II upgrade.
- Scientific cooperation supervised by Pr. Xinchou LOU, Dr. Zheng WANG and Pr. M.B., derived from ACC / ATLAS CPPM project (Pr. Jin SHAN / Dr. Emmanuel MONNIER)

...involving IHEP, SDU (Pr. Meng WANG) and CPPM

- Current detector:
 - Original ATLAS 3-pixel layers + IBL in 2014.
- ITk and new developments.
 - Why the ATLAS Inner Tracker (ITk) upgrade?
 - Front-End electronics
 - Depleted CMOS sensors
 - Current challenges
- Conclusion

Original pixel detector

2014: ATLAS Pixel IBL

(Aix*Marseille université

- Motivations:
 - Improves b-tagging performances
 - Increased robustness of pattern recognition
- How:
 - New innermost layer inserted into initial inner layer at r~3,7 cm. 2 mm clearance for insertion!

 IBL staves rely on sensors developed in 2 technologies (planar n-in-n / 3D) + ROC 130nm Side A IBL Stave Z=0

Plana

Plana

2-ROC module

3D

Side C

3D

 $12^{\rm th}$ FCPPL workshop, Shanghai Jiao Tong Univ., Marlon Barbero, April $24^{\rm th}$ 2019

12th FCPPL workshop, Shanghai Jiao Tong Univ., Marlon Barbero, April 24th 2019

Aix*Marseille

CPPN

Upgrade of the LHC

HL-LHC physics program

- The program includes:
 - Precision SM measurements:
 - Higgs boson: coupling, rare processes, Higgs auto-coupling
 - Vector boson scattering
 - Beyond SM searches:
 - New resonances
 - Susy
 - Dark Matter
 - Long Lived Particles
- See yellow report vol.2

https://arxiv.org/abs/1902.10229

Events / 2 GeV

Aix*Marseille

- An all silicon tracker, covering up to radius approx. 1m and extended tracking coverage $\eta = 4$.
- Reduced material (<1 X0 up to $\eta \sim 3$)
- <u>Silicon strip</u>:
 - 4 layers Strip Detector.
 - n⁺-in-p FZ and ABC130 ASIC
- **Pixel detector**:
 - 5 layers Pixel Detector.
 - Features:
 - Replaceable inner system.
 - Serial Powering.

12th FCPPL workshop, Shanghai Jiao Tong Univ., Marlon Barbero, April 24th 2019

Why a new tracker?

- A huge pile-up: 200 interactions per beam crossing!
 - ATLAS designed for 25 interactions
 - The new detector will allow to keep current performances in terms of tracking and vertexing, b-tagging...
- More difficult radiation environment:
 - Central layers should cope over lifetime with > $2.10^{16} n_{eq}/cm^{-2} / > 1$ Grad!
 - vs. 100-200 Mrad design for current inner layers
- Better η coverage:
 - $\eta = 2.5 \rightarrow 4.0$
 - higher lepton acceptance
 - better pile-up rejection

12th FCPPL workshop, Shanghai Jiao To

1 MeV neutron equivalent fluence

EXPERIMENT

ITk Pixel Detector

- 5 layers, >12 m², ~10k modules, ~5.10⁹ channels.
- Inner layer at 39 mm / pixel size $50 \times 50 \ \mu m^2$ these parameters are still discussed (radius could go down, pixel size could go to $25 \times 100 \ \mu m^2$)

- Most of the modules are ~4×4 cm² quad hybrid modules:
 - Planar sensor
 - Read out by 4 ROC, each 384×400 channels

• Lots of experience from current detectors, yet needs a factor 10 scale up wrt current detector in total production capability!

η = **3.**0

 $\eta = 4.0$

3500

3000

2500

Various sensors options depending on location

Inner system:

- Lo and Ro: 3D sensors
- L1 and R1: 100 µm thin planar
- <u>Outer barrel and endcaps</u>:
- L2-4 and R2-4: 150 μ m thick planar

500

1000

500

2000

In L4: Option of using monolithic CMOS sensor recently dropped out

20

• Various sensors options depending on location

<u>Inner system</u>:

- Lo and Ro: 3D sensors
- L1 and R1: 100 μ m thin planar
- <u>Outer barrel and endcaps</u>:
- L2-4 and R2-4: 150 μ m thick planar
- In L4: Option of using monolithic CMOS sensor recently dropped out

Planar vs. 3D Si sensor

- The sensor technology is chosen wrt several criteria:
 - Radiation hardness
 - Cost
 - Production capability

Layer/Ring	Single	Quads
Layer o	1064	
Layer 1		920
Layer 2-4		4472
Ring o	336	
Ring 1		280
Ring 2-4		2344

3D sensors

- Need to cope with approx. 1.3 10¹⁶ n_{eq}.cm⁻² (for 2000 fb⁻¹ at half life).
 - Single-ROC module (~2×2cm²)
 - Active 150 µm (on top of 100 µm support wafer)
 - Sensors produced at FBK, CNM and Sintef
 - $50 \times 50 \ \mu m^2$ demonstrated
 - (If needed) $25 \times 100 \ \mu m^2$ TBD in assembly: rad hard 1 Electrode design vs. yield 2 Electrode design ?

(In all cases hybridisation at 50 µm pitch)

Planar sensors

- All quad modules.
- n implants in p substrate type:
 - One side processing: cost down.
 - Requires HV protection for the facing ROC at the sensor edge (BCB or parylene under evaluation)
 - Thin sensors in L1:
 - Suited for radiation environment (4.5 10¹⁵ n_{eq}.cm⁻² for 2000 fb⁻¹) in L1-R1: Hit efficiency saturates at lower bias voltage: Ileak & power consumption down!
 - Many vendors on market

\ix+Marseille

Hybrid FE / RD53 collaboration

- RD53 project : Design and develop pixel chips for ATLAS/CMS phase 2 upgrades, started in 2013
- Extremely challenging requirements for HL-LHC
 - Hit rates: 3 GHz/cm² (200 MHz/cm² in the current system) / ~220 hits/IC/bx
 - Small pixels: $50 \times 50 \mu m^2$ Low power Low mass
 - Radiation : 500 Mrad $10^{16} n_{eq}/cm^2$ over 5 years
 - Inner layer to be changed after 5 years
 - Local memory for 500 bx
- Baseline technology : 65nm CMOS

<u>~100 people from 20 institutes :</u>

- Bonn University
- CERN
- Fermilab
- INFN : Bari Bergamo-Pavia Milano -Padova – Perugia – Pisa - Torino
- IN2P3 : CPPM LAPP LAL LPNHE
- LBNL
- New Mexico
- NIKHEF
- Prague IP/FNSPE-CTU
- RAL
- Sevilla University

Hybrid FE / RD53 collaboration

- RD53 project : Design and develop pixel chips for ATLAS/CMS phase 2 upgrades, started in 2013
- Extremely challenging requirements for HL-LHC
 - Hit rates: 3 GHz/cm² (200 MHz/cm² in the current system) / ~220 hits/IC/bx
 - Small pixels: $50 \times 50 \mu m^2$ Low power Low mass
 - Radiation : 500 Mrad $10^{16} n_{eq}/cm^2$ over 5 years
 - Inner layer to be changed after 5 years
 - Local memory for 500 bx
- Baseline technology : 65nm CMOS
- RD53A chip half size prototype
 - Sensitive area : 2 cm x 1.18 cm \rightarrow 400 x 192 pixels of 50 x 50 μ m²
 - 3 different Analog Front End flavors : Synchronous, Linear, Differential
 - Submission August 2017
 - First chip tested December 2017
 - First bump-bonded chip tested April 2018

12th FCPPL workshop, Shanghai Jiao Tong Univ., Marlon

<u>~100 people from 20 institutes :</u>

- Bonn University
- CERN
- Fermilab
- INFN : Bari Bergamo-Pavia Milano -Padova – Perugia – Pisa - Torino
- IN2P3 : CPPM LAPP LAL LPNHE
- LBNL
- New Mexico
- NIKHEF
- Prague IP/FNSPE-CTU
- RAL
- Sevilla University

Final production IC development

- Test results show that RD53A is a solid baseline for final chip development
 - The Analog FE for ATLAS fulfills specifications but needs additional minor modifications for final chip

Aix*Marseille

- RD53A bug fixes and improvements (SEU, Data compression, 80MHz ToT, 6-to-4 ToT, clock gating...)
- Small prototypes have been submitted for some blocks requiring major changes

Final production IC development

- Test results show that RD53A is a solid baseline for final chip development
 - The Analog FE for ATLAS fulfills specifications but needs additional minor modifications for final chip
 - RD53A bug fixes and improvements (SEU, Data compression, 80MHz ToT, 6-to-4 ToT, clock gating...)
 - Small prototypes have been submitted for some blocks requiring major changes

Aix+Marseille

- Development of the final production chips is ongoing
 - ATLAS chip submission target July 2019 (20 mm × 21 mm)
 - CMS chip submission December 2019 (21.7 mm × 18 mm)
 - Both chips are synthesized from a common design framework

Monolithic depleted CMOS

• Could provide an advantageous alternative to hybrid pixels.

- Key ingredients:
 - Depletion \rightarrow Charges collected by drift.
 - Consequence \rightarrow Fast signal response & radiation hardness.
 - Technology requirements → High Voltage process (apply 50-200 V), High Resistive wafers (>100Ωcm) and multiple nested wells (for full CMOS & shield)
 - (depleted layer $d \sim \sqrt{\rho. V}$)

p- substrat

particle track

25

Advantages:

Key ingredients:

- Usage of commercial process: production capability, reliability, low cost...
- Simple less expensive module (wrt hybrid): no hybridization and much easier production! Can be used for larger area applications
- Small pixel size possible (in some process)
- <u>– Less power, less material...</u>

- Technology requirements \rightarrow High Voltage process (apply 50-200 V), High **Resistive wafers** (>100 Ω cm) and multiple nested wells (for full CMOS & shield)
- Depletion \rightarrow Charges collected by drift.

o- substrat

(depleted layer $d \sim \sqrt{\rho} V$)

particle track

Could provide an advantageous alternative to hybrid pixels.

Consequence \rightarrow Fast signal response & radiation hardness.

CMOS sensor development lines

Monolithic depleted sensors with electronics all in one!

2 lines of development followed : (a) large electrode design / (b) small electrode design

- LFoundry 150 process (or AMS/TSI)
- <u>Pros</u>:
 - Full CMOS
 - Uniform field, short drift distance → radiation hardness (TID & NIEL), 2.10¹⁵ n_{eq}.cm⁻² proven
 - HV rev. bias > 300V possible
 - BS thinning and processing possible
- <u>Cons</u>:
 - Deep nwell Q collection → big Capacitance
 (>200 fF) → noise, power & crosstalk

CMOS sensor development lines

Monolithic depleted sensors with electronics all in one!

2 lines of development followed : (a) large electrode design / (b) small electrode design

- LFoundry 150 process (or AMS/TSI)
- <u>Pros</u>:
 - Full CMOS
 - Uniform field, short drift distance → radiation hardness (TID & NIEL), 2.10¹⁵ n_{eq}.cm⁻² proven
 - HV rev. bias > 300V possible
 - BS thinning and processing possible
- <u>Cons</u>:
 - Deep nwell Q collection → big Capacitance
 (>200 fF) → noise, power & crosstalk

- Modified TowerJazz 180 process
- <u>Pros</u>:
 - Full CMOS
 - Small capacitance (<10fF) → low noise & low power.

(W. Snoeys et al., NIM A871 (2017) 90-96)

- Vendor established at CERN
- Thin detector possible.
- <u>Cons</u>:
 - Limited depletion, long drift distance → radiation hardness TBD

12th FCPPL workshop, Shanghai Jiao Tong Univ., Marlon Barbero, April 24th 2019

State of the art TJ and plans

State of the art TJ and plans

Aix*Marseille

IINIVersi

- LF efficient after radiation.
- LF is easy to access and relatively low cost \rightarrow large area OK!

But pixel size rather large.

pix: 50×250µm²

Sm

DepCMOS future plans

- Option to use depCMOS in ATLAS ITk L4 recently dropped out.
 - The high level of development and the closeness to specifications was recognized, but concern is that depCMOS diverts attention from main hybrid-like solution at a time when schedule is tight and several challenges still lay ahead for the standard solution.

DepCMOS future plans

- Option to use depCMOS in ATLAS ITk L4 recently dropped out.
 - The high level of development and the closeness to specifications was recognized, but concern is that depCMOS diverts attention from main hybrid-like solution at a time when schedule is tight and several challenges still lay ahead for the standard solution.
- The value of this technology for future applications makes no doubt:
 - Work continues with other targets:
 - Future application in ATLAS...
 - CepC, FCC-ee, Belle experiment, future hadron circular collider...
 - Timing layers, imaging applications...
 - Applications in which radiation hardness, high hit rate, speed is required.
- Strong collaboration (start ~2014) with our partners in various framework (ACC, Bonn/CPPM/CERN/CEA-IRFU collaboration, CERN RD50...)

ITk / challenge ahead: SP

(Aix+Marseille Universite CPPN ITk / challenge ahead: Data transmission

- Data transmission:
 - Baseline recently established:
 - Direct transmission from RD53B to Optoboard
 - 1.28 Gbps uplink and 160 Mbps downlink over low volume electric cable (max 6m!)
 - To be assessed:
 - Signal integrity over full chain & extra material introduced by the scheme

 $12^{\rm th}$ FCPPL workshop, Shanghai Jiao Tong Univ., Marlon Barbero, April $24^{\rm th}$ 2019

Aix*Marseille ^{*}ITk / challenge ahead: Gearing up for production CPPM

Outer barrel: > 4000 quads!

Current activities

- Development of loading methodology
 - Tooling design
 - Glue pattern and deposition method
 - Loading procedure
 - Survey procedure of loaded cells
- Material Qualification
 - Thermal & electrical properties
 - Mechanical properties
 - Filler particle size
 - **Radiation hardness**
 - Handling and storage
- Thermal QC of loaded cells
- Electrical QC of loaded cells

With a functional stave

TBD in ~2 years! (2022-23)

hai Jiao Tong Univ., Marlon Barbero, April 24th 2019

- 6 Cell Loading sites in production:
- **CERN**
- **CPPM**
- **KEK/QU**
- LPSC

Integrated stave

- **UniGE**
- **Wuppertal**

36

Conclusion

- ATLAS Upgraded ITk will cope with 5-7 times more pile-up than at present, yet it should have close to identical performances wrt present with higher η coverage.
- The ITk pixel detector is an ambitious detector to fulfill this goal, in which innovation is required on the detector Front-End, but also on the services!
- All the baseline components of the detector have been defined.
- Schedule is tight, but production phase is now getting in sight.

RD53A floorplan

Aix*Marseille université

- Array of 400 x 192 pixels
- Peripheral circuitry in the bottom of the chip
 - Bias, configuration, monitoring and readout
- I/O PADs is a single row in the bottom
- The pixel matrix : 8 x 8 pixel cores
 - 1 core \rightarrow 16 analog islands with 4 fronts ends each
 - Analog FE embedded in a flat digital synthesized "sea"
- The digital core is synthesized as one digital circuit
 - Provides configuration bits to the analog islands receives four binary outputs from each island
 - Handles all processing of the binary outputs
 - Receives all input signal from the previous core closer to the chip bottom
 - Regenerates the signals for the next core
- Calibration pulses generated via commands starting from 2 DC voltages
 - Common calibration circuitry for the 3 FE flavours
 - Pulses can be phase shifted with a global fine delay (640 MHz clk).
- The clock and injection edge signals are internally delayed in the core to ensure a uniform timing (within 2 ns)

8 X 8 pixel core

 $12^{\rm th}$ FCPPL workshop, Shanghai Jiao Tong Univ., Marlon Barbero, April $24^{\rm th}$ 2019

CPPM activities

- Test and qualification of 65 nm process for a dose level of 1 Grad
- CPPM leader of the irradiation RD53-WG
- Development of Irradiation corner model distributed to the collaboration
- Analog IP blocks
 - 12-bit ADC for monitoring
 - Bandgap voltage reference
 - Temperature sensor
 - Radiation monitor
- Analog pixel and Chip Bottom
 - SEU tolerant configuration memories
- Participation to the RD53A integration and verification
 - Monitoring block design
 - Verification and simulation
- Test of the RD53A chip : Irradiation, SEU

RD53A Specifications

Process	65 nm CMOS	
Pixel size	50 x 50 μm²	
Pixels	192 x 400 = 76800 (50% of production chip)	
Detector capacitance	< 100fF (200fF for edge pixels)	
Detector leakage	< 10nA (20nA for edge pixels)	
Detection threshold	< 600 e-	
In-time threshold	< 1200 e-	
Noise hits	< 10 ⁻⁶	
Hit rate	< 3 GHz/cm ² (75 kHz avg. pixel hit rate)	
Trigger rate	Max 1 MHz	
Digital buffer	12.5 µs	
Hit loss at max hit rate (in-pixel pile-up)	≤1%	
Charge resolution	≥ 4 bits ToT (Time over Threshold)	
Readout data rate	1-4 links @ 1.28 Gbit/s = max 5.12 Gbit/s	
Radiation tolerance	500 Mrad, 1 10 ¹⁶ 1Mev eq. n/cm ² at -15°C	
SEU for the whole chip	< 0.05 /hr/chip at 1.5GHz/cm ² particle flux	
Power consumption at max hit/trigger rate	< 1W/cm ² including SLDO losses	
Pixel analog / digital current	4 μΑ / 4 μΑ	
Temperature range	-40 °C to +40 °C	

- RD53A : Large scale demonstrator
 - Common engineering run with CMS MPA to share a full reticle

42

RD53A: 3 analog flavors

• Apr. 13, 2018: First bump-bonded chip test

SEU protection of critical blocks

- Global strategy:
 - —All digital global signals that could cause SEU problems at the chip level are deglitched before being routed.
 - -No signal triplication has been performed.
- PixelRegion:
 - -Triple Modular Redundancy (TMR) cannot be used due to area constraints.
 - RD53A relies on fast and continuous configuration refresh in order to mitigate SEU effects.
- Digital Chip Bottom:
 - —All critical signals are deglitched.
 - —TMR is used for Global Configuration. Automatically added to the design via script.
 - -New Virtuoso version allows to spread triplicated FF's by a user defined distance (15 um were chosen).
- The new input protocol allows for fast and continuous writing of all configuration bits.
- The whole chip (including Pixel configuration bits) can be reconfigured in ~30 ms.

(Aix+Marseille Universite Shunt-LDO en TJ: to power electronics

LF-MONOPIX1 (Aix Marseille CPP Column drain readout architecture

- Similar to the current ATLAS pixel readout chip "FE-I3"
 - Sufficient rate capability with affordable in-pixel logic density for CMOS pixels

Results for LF

LF-MONOPIX1 : Laboratory results

- Breakdown @ -280 V => up to \sim 300 μ m depletion
- ToT calibrated with sources: ²⁴¹Am, terbium
- Gain 10 -12 μV/e⁻
- Typical ENC ~ 200 e⁻
- Tunable threshold down to 1400 e⁻
 - dispersion ~ 100e⁻ after tuning

ToT vs. Injection

Response to sources

CPPN

CCPD_LF

- Subm. in Sep. 2014
- 33 x 125 µm² pixels
- Fast R/O coupled to FE-I4
- Standalone R/O for test
- Bonn/CPPM/KIT

LF-CPIX (DEMO)

٠

- Subm. in **Mar. 2016**
- 50 x 250 μm² pixels
- Fast R/O coupled to FE-I4
- New Sensor Guard-Ring
- Standalone R/O for test
- Bonn/CPPM/IRFU

LF-Monopix1

- Subm. in Aug. 2016
- 50 x 250 μm² pixels
 - Fast column drain R/O
- Bonn/CPPM/IRFU

- Being designed
- 50 x 150 µm² pixels
- Full height matrix
- Fast column drain R/O
- Bonn/CERN/CPPM/IRFU

DMAPS collaboration

- Developing detectors for HL-LHC environment is actually **paving the road** for a general use of this technology
 - Generating a collaborative effort of ~25 ATLAS ITK institutes
 - Capable of attracting also non-ATLAS institutes and resources

Exploring **different solutions is paramount**:

- Every solution has pros and cons \rightarrow avoid missing opportunities or delays by technical difficulties of one specific solution
- Close collaboration with foundries is critical \rightarrow risk mitigation against industrial policies

