

New FCPPL Project: LHCbECAL2

Stéphane T'Jampens

24 April 2019

LHCb timeline

	Running [yr]	Int. Lumi. [fb ⁻¹]	Inst. Lumi. [cm ⁻² s ⁻¹]	μ (*)	Status
LHCb	7	9	4x10 ³²	1.1	Done
LHCb Upgrade I	7	50	2x10 ³³	5.5	Construction underway

(*) average number of visible pp interactions per bunch crossing

<u>Upgrade I (2021-2029):</u>

- Raise operational luminosity x5
- Full software trigger:
 - Allows effective operation at higher luminosity
 - Improved efficiency in hadronic modes

<u>Upgrade II (2031-~2038):</u>

proposal to upgrade the LHCb experiment in order to take full advantage of the flavorphysics opportunities at the HL-LHC

Flavor physics has the potential to continue **exploring new physics territory** provided **large enough samples** are available → **Precision Frontier**

LHCb Upgrade II

Begin after LS4 (2030). Operate at up to 2x10³⁴ cm⁻²s⁻¹ & collect (at least) 300 fb⁻¹.
 → Significant experimental challenges to perform flavor physics at such a luminosity

Eol submitted to LHCC in early 2017

Full physics case submitted to Sept. LHCC

In parallel, many studies from the machine side, summarized in a report which identifies

"a range of potential solutions for operating LHCb Upgrade II at a luminosity of up to 2×10^{34} cm⁻² s⁻¹ and permitting the collection of 300 fb⁻¹ or more at IP8 during the envisaged lifetime of the LHC"

[CERN-LHCC-2017-003]

[CERN-LHCC-2018-027, also arXiv:1808.08865]

[CERN-ACC-NOTE-2018-038]

Approved by LHCC (Feb. 2019)

 \rightarrow proceed to Framework TDR (including computing) by end of 2020/early 2021

LHCb phase-II upgrade (design phase)

Main features to cope with high luminosity:

- Radiation hardness
- Increase granularity to cope with increased multiplicity
- Fast-timing information essential for suppressing combinatorial background

LHCb ECAL Upgrade II

LS3 in 2024/25: Consolidation

Replace modules around beam-pipe (≥ 32 modules, ~50-60 kGy) compatible with L=2x10³³ cm⁻²s⁻¹

LS4 in 2030/31: LHCb Upgrade II

- Rebuilt ECAL in high occupancy "belt-region" compatible with luminosity up to L=2x10³⁴ cm⁻²s⁻¹
- Include timing information to mitigate multiple interactions/crossing

- 32 modules for extreme conditions (up to 1 MGy!)
- 150 new modules with "moderate" radiation requirements (up to 200 kGy)
- Can reshuffle inner type modules (176 modules).
 Can reshuffle middle type modules (448 modules).
 2688 out of 3312 modules are of outer type.

ECAL requirements for Upgrade II

Overall requirements:

- ✓ sustain radiation doses of up to ~1MGy and ≤6^{-10¹⁵} cm⁻² for 1MeV neq/cm² at 300 fb⁻¹
- good timing properties for both, the <u>decay time</u> component (spill-over, 25ns) and the <u>rise time</u> (pile-up mitigation, ~several 10th of ps) (1MGy = 100Mrad)
- ✓ keep good energy resolution of order $\sigma(E)/E \sim 10\%/\sqrt{E} \oplus 1\%$
- handle increased occupancy by improving spatial resolution in inner & middle region
- respect dimensional constraints of a module: 12 x 12 cm² outer dimension

On-going R&D at CERN and test-beam evaluations

https://ep-dep.web.cern.ch/rd-experimental-technologies

Fast-timing to mitigate pile-up

Possible options:

- 1) dedicated timing layer in front of the ECAL modules ("timing pre-shower")
 - a) with silicon layers?
 - b) with fast crystal layers?
- 2) ~tenth of ps timing incorporated to the ECAL module
- \rightarrow Possibly a mixture of the two depending on the region (inner, middle, outer)?

1000 F

800

600

400

200

50

ArXiv:1307.6346 Preliminary studies done with fast parametric simulation (DELPHES) JHEP 02 (2014) 057

Reconstruct π^0 in minimum bias sample:

- $p_{\tau}(\gamma) > 0.2 \text{ GeV/c}$
- p_τ(π⁰) > 2 GeV/c
- Time resolution 40 ps

MIN

ECAL design parameters and performance studies

5D ECAL requirements (E, x, y, z, t) to be determined from **physics performance studies** for:

- "hottest" and "intermediate" inner region to define E-resolution, cell size, Moliere radius, ...
- middle and outer region to optimize "re-shuffling strategy"
- optimization of the reconstruction procedure in the high pile-up environment: clustering, timing resolution, ...

Simulation studies for an overall detector optimization to define the design parameters from physics and environment

ECAL fast simulation

Total time in each detector volume

Most of the CPU time in Geant4-simulated events is spent in the calorimeter system

Simulation takes most of the

distributed resources

- Run 2: 75%
- Run 3: >90%
- \rightarrow Simulation for Upgrade I:

Full/Fast/Parametric (40%/40%/20%)

On-going developments:

- Frozen-shower Libraries [SLAC-PUB-14790]
- Hits generation based on Generative
 Adversarial Network (GAN)
- Aim to speed up \sim O(3-10)
 - Fully parametric fast simulation (DELPHES)
- → Aim to speed up ~O(100-1000)

Crucial to have reliable fast/parametric simulations for upgrade I and design studies for upgrade II

LHCb phase-I upgrade: software-only trigger!

In the LHCb upgrade I, every event will contain at least 2 light, long-lived hadrons with displaced vertices \rightarrow saturate any trigger.

minin

The main challenge of Upgrade II: exabyte era!

> Upgrade II DAQ must process 10x the HL-LHC GPD data rate

> Upgrade II Offline must process same data volume as HL-LHC GPDs

FCPPL LHCbECAL2

LHCbECAL2 workshop on April 27-28

BACKUP SLIDES

The current LHCb Electromagnetic Calorimeter

4th Workshop on Upgrade II Amsterdam

9 April 2019

Current LHCb ECAL:

- Large Shashlik array ~50 m² with 3312 modules and 6016 channels
- Modular wall-like structure of ~8 x 7 m², two halves open laterally within few minutes
- Three sections (Inner, Middle, Outer) of cell size 4x4, 6x6, 12x12 cm²
- > σ(E)/E ~ 10%/√E ⊕ 1%

Andreas Schopper

Energy resolution with electrons

LHCD IBC TOR 15 26 November 2015

LHCb Computing Model

Model assumptions					
$L (cm^{-2}s^{-1})$		2×10^{33}			
Pileup	6				
Running time (s)	$5 \times 10^6 \ (2.5 \times 10^6 \text{ in } 2021)$				
Output bandwidth (GB/s)	10				
Fraction of Turbo events	73%				
Ratio Turbo/FULL event size	16.7%				
Ratio full/fast/param. simulations	40:40:20				
Data replicas on tape	2				
Data replicas on disk	2 (Turbo); 3 (FULL, TurCal)				
Resource requirements					
WLCG Year	Disk (PB)	Tape (PB)	CPU (kHS06)		
2021	66	142	863		
2022	111	243	1.579		
2023	159	345	2.753		
2024	165	348	3.467		
2025	171	351	3.267		

The LHCb trigger

- A trigger is needed to reduce storage and readout costs
- A good trigger does so by keeping more signal than background
- General purpose LHC experiments are interested in signatures in the kHz region
 - Readout at 100kHz is efficient with reasonably straightforward E_T requirements
- LHCb (£ = 4 × 10³² cm⁻² s⁻¹) faces a unique challenge:
 - $\blacktriangleright~45 kHz$ of $b \overline{b},~\sim 1 MHz$ of $c \overline{c}$
 - 1MHz readout is needed to stay efficient for beauty signals

3/20

The MHz signal era

Starting in 2021, LHCb will run at L = 2 × 10³³ cm⁻² s⁻¹: 5 × more collisions per second

 \blacktriangleright Readout becomes a bottleneck as signal rates \rightarrow MHz even after simple trigger criteria 6

⁶LHCb-PUB-2014-027

LHCр ГН<mark>С</mark>р

The LHCb Trigger

Introduction Run 2 Trigger HLT1 Buffer Alignment & Calibration

HLT2

Upgrade

Triggerless readout Run 3 trigger

Conclusions

17

So what 'stuff' can we throw away?

- ▶ The problem is no longer one of rejecting (trivial) background
- Fundamentally changes what it means to trigger

The LHCb Trigger

Introduction

Run 2 Trigger

HLT1

Buffer

Alignment & Calibration

HLT2

Upgrade

Triggerless readout Run 3 trigger

Conclusions

C. Fitzpatrick

March 12, 2019

- Instead, we need to categorise different 'signals'
 - Requires access to as much of the event as possible, as early as possible

Real-time Alignment + Calibration

- With Run 2 signal rates, efficient & pure output requires full reconstruction at HLT2
 - Online selections \rightarrow offline selections
 - Reduces systematic uncertainties and workload for analysts
- Alignment and calibration of full detector in the trigger needed
- While HLT1 is written to disk, alignment & calibration tasks run

8/20

Trigger: Run 2 versus Run 3

Run-1 → Upgrade II: Order of magnitude in precision

Observable	Current LHCb		Upgrade II
EW Penguins		-	
$\overline{R_K} (1 < q^2 < 6 \mathrm{GeV}^2 c^4)$	0.1 [274]		0.007
R_{K^*} $(1 < q^2 < 6 \text{GeV}^2 c^4)$	0.1 [275]		0.008
$R_{\phi}, R_{pK}, R_{\pi}$			$0.02,\ 0.02,\ 0.05$
CKM tests			
$\overline{\gamma}$, with $B_s^0 \to D_s^+ K^-$	$\binom{+17}{-22}^{\circ}$ [136]		1°
γ , all modes	$(^{+5.0}_{-5.0})^{\circ}$ [167]		0.35°
$\sin 2\beta$, with $B^0 \to J/\psi K_s^0$	0.04 [609]		0.003
$\phi_{\rm s}$, with $B^0_{\rm s} \to J/\psi \phi$	49 mrad [44]	Λ	4 mrad
ϕ_{s} , with $B_{0}^{0} \rightarrow D_{+}^{+}D_{-}^{-}$	170 mrad [49]		9 mrad
$\phi^{s\bar{s}s}$, with $B^0 \to \phi \phi$	154 mrad [94]		11 mrad
a_{-1}^s	33×10^{-4} [211]		3×10^{-4}
$\frac{ V_{vb} }{ V_{vb} }$	6% [201]		1%
\mathbf{P}_{0} \mathbf{P}_{0} \mathbf{P}_{0} \mathbf{P}_{0} \mathbf{P}_{0}			
$\frac{B_s^o, B^o \to \mu^+ \mu^-}{\mu^{-}}$	0.007 [0.0.4]		1.007
$\mathcal{B}(B^0 \to \mu^+ \mu^-) / \mathcal{B}(B^0_s \to \mu^+ \mu^-)$	90% [264]	/	10%
$\tau_{B^0_s \to \mu^+ \mu^-}$	22% [264]	/	2%
$S_{\mu\mu}$	_	,	0.2
$b \to c \ell^- \bar{\nu}_l \text{ LUV studies}$			
$\overline{R(D^*)}$	0.026 [215, 217]		0.002
$R(J/\psi)$	0.24 [220]		0.02
Charm			
$\overline{\Delta A_{CP}(KK - \pi\pi)}$	8.5×10^{-4} [613]		$3.0 imes 10^{-5}$
$A_{\Gamma} (\approx x \sin \phi)$	2.8×10^{-4} [240]		1.0×10^{-5}
$x\sin\phi$ from $D^0 \to K^+\pi^-$	13×10^{-4} [228]		$8.0 imes 10^{-5}$

10 Apr 2019 - Upgrade II workshop - Niels Tuning 11