Overview of recent open heavy-flavour results with ALICE at the LHC

Xiaoming Zhang

- Introduction
- R_{AA} and v_2 of open heavy-flavour particles
- Collectivity in smaller systems
- Charmed baryon production
- Open heavy flavour jets

Heavy quarks (charm and beauty): powerful probes of the

Quark-Gluon Plasma (QGP)

Total charm cross section in A–A collisions is expected to scale w. r. t. the number of binary collisions in pp-like collisions

		S. Radhakrishnan at QM'18
Charm Hadron		Cross Section dơ/dy (µb)
Au+Au 200 GeV (10-40%)	D^0	41 ± 1 ± 5
	D^+	18 ± 1 ± 3
	D_s^+	$15 \pm 1 \pm 5$
	Λ_c^+	78 ± 13 ± 28*
	Total	152 ± 13 ± 29
p+p 200 GeV	Total	130 ± 30 ± 26

* derived using Λ_c^+ / D^0 ratio in 10-80% STAR Preliminary

- Produced in initial hard scatterings (high Q^2) at the early stage of heavy-ion collisions: $\tau_{c/b} \sim 0.01 0.1 \text{ fm/}c < \tau_{QGP}$ (~0.3 fm/c)
- Production cross section calculable with pQCD (m_c , $m_b \gg \Lambda_{QCD}$)
- Experience the entire evolution of the QCD medium probe transport properties of the deconfined medium

12th FCPPL workshop

ALICE HF results

Heavy quarks (charm and beauty): powerful probes of the Quark-Gluon Plasma (QGP)

Nuclear modification factor (RAA): heavy quark in-medium energy loss

- Elastic (radiative) vs. inelastic (collisional) processes
- Radiative energy loss: color charge (Casimir factor) and mass (dead cone effect) dependence

the D_{s^+} /non-strange D and Λ_c / D ratio ALICE HF results

Heavy quarks (charm and beauty): powerful probes of the

Azimuthal anisotropy: Fourier decomposition of particle azimuthal distribution relative $to_{d^3\vec{p}} = teaction plane (\Psi_R) \frac{2v_n}{2\pi p_T dp_T dy} \frac{2v_n}{2\pi p_T dp_T dy} \cos n(\phi - \Psi_R)$]

• Elliptic flow (v_2): coefficient of second order harmonic $v_2 = <\cos 2(\phi - \Psi_R) >$

→ Low and intermediate p_T : collective motion and possible heavy-quark thermalization in the QCD medium

High p_T : path-length dependence of heavy-quark in-medium energy loss 12th FCPPL workshop X. Zhang

Open heavy-quark correlations and jets

- Complementary to open heavy-flavour measurements
- Possible modification of heavy-quark fragmentation
- Flavour dependence of the jet quenching / redistribution of the lost energy

Smaller systems: pp and p–Pb collisions

- Control experiments
- ➡ Important to test pQCD calculations
- Provide a necessary baseline for heavy-ion studies
- Understanding of Cold Nuclear Matter (CNM) effects
- New collectivity-like effects observed at high multiplicity in smaller systems
- Insight into Multiple-Parton-Interaction (MPI) phenomena
- Understand the interplay of soft and hard processes
 12th FCPPL workshop
 ALICE HF results

HF guark

ALICE apparatus

Nuclear modification factor

- Increasing suppression from peripheral to central collisions
- R_{AA} of HFe at mid-rapidity is consistent with HFm at forward rapidity
- Heavy quarks undergone significant interactions in a wide rapidity window in the most central Pb–Pb collisions
- Confirmed the RUN-I measurements

Nuclear modification factor

- Increasing suppression from peripheral to central collisions
- RAA of HFe at mid-rapidity is consistent with HFm at forward rapidity

• Similar suppression at 5.02 TeV and 2.76 TeV

Counterbalance between an increased medium
 temperature / density and harder quark *p*_T spectra

12th FCPPL workshop

ALICE HF results

D meson R_{AA} vs. light-hadron R_{AA}

ALICE JHEP 10 (2018) 174 ALICE JHEP 11 (2018) 013

- $R_{AA}(D) > R_{AA}(\pi^{\pm})$ for $p_T < 8$ GeV/c in central and semi-central collisions
- R_{AA}(D) ~ R_{AA}(π[±]) ~ R_{AA}(h[±]) in peripheral collisions and for p_T > 8 GeV/c in central and semi-central collisions

12th FCPPL workshop

ALICE HF results

• $R_{AA}(D) \simeq R_{AA}(\pi^{\pm}) \simeq R_{AA}(h^{\pm})$ in peripheral collisions and for $p_T > 8$ GeV/c in

central and semi-central collisions

12th FCPPL workshop

ALICE HF results

R_{AA}(e←b) vs. R_{AA}(e←c, b)

- Hint of a smaller suppression for beauty-decay electrons for $p_T < 6$ GeV/c
- Data is reproduced by models within uncertainties, implementing quark mass dependent energy loss

Xe–Xe vs. Pb–Pb collisions

ALICE Phys. Lett. B788 (2019) 166

Elliptic flow of open heavy flavours¹³

ALICE Phys. Rev. Lett. 120 (2018) 102301 ALICE arXiv:1809.09371

- Positive v_2 of D mesons for p_T in 2 8 GeV/c in semi-central collisions
- v_2 of D_s compatible with non-strange D-mesons within uncertainties

Elliptic flow of open heavy flavours

- Positive v_2 of D mesons for p_T in 2 8 GeV/c in semi-central collisions
- *v*₂ of D_s compatible with non-strange D-mesons within uncertainties
- $v_2(D) \simeq v_2(\pi^{\pm})$ for $p_T > 4$ GeV/c, hint of $v_2(D) < v_2(\pi^{\pm})$ for $p_T < 4$ GeV/c

12th FCPPL workshop

ALICE HF results

Event-shape engineering

- Event eccentricity quantified by q₂:
 - $\Rightarrow <(q_2)^2 > \approx 1 + < M 1 > <(v_2)^2 >$
- Opportunity to study the charm-quark coupling to the light-hadron bulk by measuring v₂ at different q₂ values

12th FCPPL workshop

15

ALI-PUB-307195

20

25

30

35

40

Centrality (%)

45

50

¹² ALICE Pb–Pb, $\sqrt{s_{NN}} = 5.02 \text{ TeV}$

Charm quarks sensitive to the lighthadron bulk collectivity and event-byevent initial condition fluctuations

Autocorrelation and non-flow effects between q₂ determination and D-meson reconstruction are present

ALICE arXiv:1809.09371

15

 10^{3}

 10^{2}

10

ALICE HF results

R_{AA} and v_2 of D mesons vs. models¹⁶

- ALICE LHC RUN-II: improved data precision w. r. t. RUN-I and provided important constraints on models
- Models in which charm quarks pick up collective flow via recombination or subsequent elastic collisions in expanding medium better describe both R_{AA} and v₂ at low p_T (LBT, MC@sHQ, PHSD, POWLANG)
 - Recombination and collisional energy loss: important for heavy quarks

Charm quark diffusion coefficient at the LHC: $(1.5 - 7) / 2\pi T_c$ 12th FCPPL workshop ALICE HF results

Directed flow of open charm

- Sensitive to the early time EM fields in the collisions
- ➡ Provide constraint for CME related physics
- Charm dragged by tilted bulk: production points are shifted from the bulk at y ≠ 0 — larger v₁ for D mesons than for light flavours

Probe the longitudinal profile of the initial matter

Hint of positive slope with a significance of 2.7σ at low p_{T}

X. Zhang

Directed flow of open charm

- Sensitive to the early time EM fields in the collisions
- Provide constraint for CME related physics
- Charm dragged by tilted bulk: production points are shifted from the bulk at $y \neq 0$ — larger v_1 for D mesons than for light flavours

Probe the longitudinal profile of the initial matter

Hint of positive slope with a significance of 2.7 σ at low p_{T}

Similar trend observed for charged particles, but different magnitude

12th FCPPL workshop

ALICE HF results

HF-decay lepton v_2 in p–Pb collisions

ALICE Phys. Rev. Lett. 122 (2019) 072301

- Positive HFe v_2 in 1.5 < p_T < 4 GeV/c (>5 σ) in high multiplicity events
 - ➡ Possible lower than v_2 of charged particles at intermediate- p_T
 - ➡ Similar to inclusive muons at large rapidity

HF-decay lepton v₂ in p–Pb collisions

ALICE Phys. Rev. Lett. 122 (2019) 072301

- Positive HFe v_2 in 1.5 < p_T < 4 GeV/c (>5 σ) in high multiplicity events
 - ➡ Possible lower than v_2 of charged particles at intermediate- p_T
 - ➡ Similar to inclusive muons at large rapidity
- New: inclusive muon v₂ at 8.16 TeV, Q-cumulants with 2-particle correlations
 - ⇒ Positive v_2 in 2 < p_T < 6 GeV/c (>3 σ) −HFm components dominated

12th FCPPL workshop

ALICE HF results

Ξ_c production in pp collisions

ALICE Phys. Lett. B781 (2018) 8

- $\Xi_c(\rightarrow e\Xi^-v_e)$ / D⁰ ratio higher than theoretical predictions
 - ➡ PYTHIA8 with enhanced color reconnection mechanisms closer to data
 - \Rightarrow BR($\Xi_c \rightarrow e\Xi \cdot v_e$) unknown, high uncertainty bands in theoretical predictions

Λ_c / D⁰ ratio in smaller systems

- Decreasing trend from $p_T = 4 \text{ GeV}/c$ observed in pp and p-Pb collisions
- Similar trend to baryon-to-meson ratio in the light-flavour sector

12th FCPPL workshop

ALICE HF results

Λ_c / D⁰ ratio in smaller systems

- Decreasing trend from $p_T = 4 \text{ GeV/c}$ observed in pp and p-Pb collisions
- Similar trend to baryon-to-meson ratio in the light-flavour sector

ALICE HF results

¹²th FCPPL workshop

Λ_c production in Pb–Pb collisions

ALICE arXiv:1809.10922

- First measurement in Pb–Pb at the LHC
- Λ_c / D⁰ ratio in Pb–Pb: higher than (>2 σ) pp and p–Pb collisions
 - Described by model calculations including only coalescence

ALICE HF results

Λ_c production in Pb–Pb collisions

ALICE arXiv:1809.10922

- First measurement in Pb–Pb at the LHC
- Hint of $R_{AA}(\Lambda_c) > R_{AA}(D_s) > R_{AA}(non-strange D) > R_{AA}(h^{\pm})$
 - A significant fraction of charm quarks hadronize via coalescence

D⁰-tagged jets *R*_{AA} in Pb–Pb collisions

- Strong suppression of D⁰-tagged jets in the most 10% central
 Pb–Pb collisions
- Hint of more suppression of low
 *p*_T D⁰-tagged jets than inclusive
 jets at higher *p*_T
- D⁰-tagged jets: more quarkseeded jets compared to

inclusive jets

12th FCPPL workshop

D⁰-tagged jets *R*_{AA} in Pb–Pb collisions

- Strong suppression of D⁰-tagged jets in the most 10% central
 Pb–Pb collisions
- Hint of more suppression of low $p_T D^0$ -tagged jets than inclusive jets at higher p_T
- D⁰-tagged jets: more quark-

seeded jets compared to

inclusive jets

 Similar suppression of D⁰-jets and D mesons

New constraint on understanding charm quark in-medium energy loss
 ALICE HF results

Conclusion

R_{AA} and v_2 of open heavy-flavour particles

- ALICE LHC RUN-II: improved data precision w. r. t. RUN-I
- Recombination and collisional energy loss: important for heavy quarks

Collectivity in smaller systems: positive *v*₂ in high multiplicity events

Charmed baryon production

- PYTHIA8 with enhanced color reconnection closer to data in smaller syst.
- Λ_c production in Pb–Pb: first measurement at the LHC
- Described by model calculations including only coalescence
- Suggests a significant fraction of charm hadronize via coalescence

Open heavy flavor tagged jets: similar suppression of D⁰-jets and D mesons

Backup

Event-shape engineering

- Event eccentricity quantified by q₂:
 - $\Rightarrow <(q_2)^2 > \approx 1 + < M 1 > <(v_2)^2 >$
- Opportunity to study the charm-quark coupling to the light-hadron bulk by measuring v₂ at different q₂ values

- $dN/dp_T(ESE) / dN/dp_T(unbiased)$ compatible with unity within errors
- Promising observable to study interplay between elliptic flow and radial flow

(at low/intermediate p_T) and and in-medium energy (at high p_T) 12th FCPPL workshop ALICE HF results 30

 10^{3}

 10^{2}

10

¹² ALICE Pb–Pb, $\sqrt{s_{NN}}$ = 5.02 TeV