Status report of the LAL-SDU/USTC project on ATLAS

Kunlin Han on behalf of

French side	Chinese side
Hicham Atmani	Lianliang Ma (Leader)
Kunlin Han	
Marta Perego (new)	Haiping Peng
Artur Trofymov (old)	Xiaowen Su (new)
Yongke Zhao (old)	
Zhiqing Zhang (Leader)	Yingchun Zhu

April 25, 2019

(日) (同) (三) (三)

Outline

Brief summary of the project of last year(s):

• High mass resonance search in WW

Focus on on-going projects:

- Precision measurement of electroweak (EW) parameters
- A generic search with inclusive Z boson events at large p_{T}

High mass resonance search in WW [Eur. Phys. J. C78 (2018) 24]

- A search for neutral heavy resonances performed in the WW $\rightarrow e\nu\mu\nu$ decay channel using 2015+2016 data (36.1 fb⁻¹)
- Analysis team: LAL, SDU, USTC.
- No evidence of such heavy resonances was found.
- Upper limits at 95% CL obtained over large mass range from 0.2 up to 5 TeV
- Seven scenarios/models studied:

Spin-0: Higgs-like scalars with 2 different widths; Two-Higgs-doublet model;

Georgi-Machacek model

- Spin-1: Heavy vector triplet
- Spin-2: Kaluza–Klein graviton excitation in Randall–Sundrum model; A tenser resonance in effective Lagrangian model

(日) (同) (三) (三)

Precision measurement of EW parameters

- ATLAS realized a precise m_W measurement with 4.6 fb⁻¹ at 7 TeV [Eur. Phys. J. C78 (2018) 110], we aim for a factor of 2 improvement in next years
- We convinced the ATLAS Collaboration to take dedicated low pile-up data
- Energy scale calibration of electromagnetic calorimeter
- Implementation of hadronic recoil calculation in ATLAS
- Developed a statistical tool aiming for an improved m_W measurement
- Measurement of $p_{T}^{W,Z}$ being performed using unfolding technique

Motivation for dedicated low pile-up data taking

- Hadronic recoil resolution is strongly pile-up dependent
- There is a significant discrepancy in $p_{\rm T}$ distributions among different predictions
- This was one of the dominant uncertainties for the m_W measurement
- The dedicated low pile-up data would allow to pin down the uncertainty

Energy scale calibration of electromagnetic calorimeter

- A precise calibration of the electron and photon energy is indispensable for any precision measurement
- Corrections for the energy scale in data and resolution in simulation are derived using $Z \rightarrow ee$ events in the final step of the ATLAS calibration chain

Energy scale calibration for low pile-up data

- · Calibration performed for both low pile-up and nominal data samples
- The precision limited for the low pile-up data due to its low statistics
- The extrapolation from the pile-up dependence of the nominal data sample is more precise and both are in good agreement

A generic search with inclusive Z boson events at large $p_{\rm T}$

- Model independent search for new resonances in high P_{T} Z events
- Leptonic Z decays provide a clean tag and fully triggered sample

- Signal process: $pp \rightarrow (Y) \rightarrow ZX$, the resonances could be X or Y
- A generic search in the sense that X can have all possible final states
- Relevant variables: m_X , m_{ZX} or H_T (scalar sum of all objects including E_T^{miss})

Expected mass spectrum of SM background

• Distributions normalized to 36.2 $\rm fb^{-1}$

(日) (同) (三) (三)

FCPPL WorkShop

Trigger and event selections

Data sample:

- 2015+2016 (36.2 ${
 m fb}^{-1}$) data samples are used for defining the analysis
- Final analysis will use full Run2 data of about 140 ${\rm fb}^{-1}$

Event selection:

- Events selected with single lepton and dilepton triggers
- At least one lepton matched with a triggered object
- At least one electron / muon pair with opposite charge
- The Z candidate has 66 GeV $< m_{II} < 116$ GeV
- Different Z boson $p_{\rm T}$ thresholds considered

Analysis strategy

- **1** Identify leading p_{T} object in the remaining final state X
- 2 Define semi-inclusive channels with the leading $p_{\rm T}$ object in the event:
 - leadJ: jet + …
 - leadB: b-jet + ...
 - leadP: photon + ...
 - leadL: lepton(e/μ) + ...
 - leadMET: MissingET + ... (MET significance > 2.5)
- 3 Study all kinematic distributions for every given channel
 - of the leading p_{T} object
 - of X = leading p_{T} object + other final state
 - of *Y* = *Z* + *X*

過 ト イヨ ト イヨト

Event yield of different semi-inclusive channels

- The inclusive channel includes all other channels
- The leading jet channel dominates in statistics
- The leading lepton channel is further separated in leading e and μ channels

(日) (同) (日) (日)

Background estimation

- The dominant background is from Z+ jets for all channels except for the leading γ and lepton channels where Z + γ and multi-boson background dominates, respectively
- Background with misidentified or fake leptons is small and data-driven
- All other background is based on MC simulation with cross sections normalized to best known predictions

Distribution of Z + X system

- At LO, p_T^Z =0, large p_T^Z implies QCD radiation in the SM or new resonance X production
- Expected X-Z balance in $p_{\rm T}$ in e.g. the leading jet channel, HVT or ZH signal with $p_{\rm T}^Z>100~{\rm GeV}$

(日) (同) (三) (三)

Challenge of the analysis

- One of the challenges is the highly boosted Z bosons making the two decaying electrons non-isolated at high $p_{\rm T}$
- Aim to gain efficiency by developing fat-electron identification

FCPPL WorkShop

Search algorithm

- Trying the BumpHunter (BH) algorithm [arXiv:1101.0390v2] to search for excess in a model independently way
- Need to define the binning of the $m_{\it X},\,m_{\it ZX}$ and $H_{\rm T}$ distributions according to detector resolution
- The largest deviation is evaluated with:
 - Local *p*-value: $p_0 = \sum_{n=d}^{\infty} \frac{b^n}{n!} e^{-b} (d > b)$
 - BH test statistic: $t = -\log(p_0^{\min})$
- Before the data will be unblinded, apply the BH algorithm to pseudo data with or without injected signal

Test with background and injected signal

- The largest excess from background only distribution is consistent with statistical fluctuation (large *p*-value)
- Correctly locate the excess for an injected HVT signal ($ZW \rightarrow Ilqq$ 500 GeV)

Kunlin Han (USTC, LAL)

FCPPL WorkShop

April 25, 2019 17 / 23

Summary

- Fruitful collaboration since many years
- Two projects actively going on

▶ ∢ ∃

3

Backup

Kunlin Han (USTC, LAL)

April 25, 2019 19 / 23

3

< ∃→

・ロト ・回ト ・ヨト

Electron scale factor and additional constant term

- Energy scale α : applied to data matching energy response in MC
- Additional constant term c': applied to MC matching energy resolution in data

Expected mass spectrum of signal-like samples

- Distributions normalized to 36.2 fb^{-1}
- Resonance Y: HVT WZ Ilqq 500GeV; X: Z(II)H(125GeV)

(日) (同) (日) (日)

Kunlin Han (USTC, LAL)

April 25, 2019 21 / 23

Expected mass spectrum after injectting signal-like samples

- Distributions normalized to 36.2 fb⁻¹
- Resonance Y: HVT WZ Ilqq 500GeV

(日) (同) (三) (三)

ECPPL WorkShop

April 25, 2019 22 / 23

Injection test of a new resonance signal

• The blue line is the observed BH test statistics results

April 25, 2019 23 / 23