CP Violation in charm

Fu-Sheng Yu
Lanzhou University

第十八届全国中高能核物理大会 21-25 June 2019 @ 湖南师范大学

LHCb observes charm CPV

1903.08726

$$\Delta A_{CP} = A_{CP}(D^0 \to K^+K^-) - A_{CP}(D^0 \to \pi^+\pi^-)$$
$$= (-1.54 \pm 0.29) \times 10^{-3}$$

• $> 5\sigma$, first observation of CPV in charm

Big News!

CP Violation

CP: Charge-Parity symmetry

Particle-Antiparticle symmetry

- * Matter-Antimatter asymmetry of the Universe
- * CP violation is required by Sakharov conditions [Sakharov, 1967]
- *CPV in the SM is not large enough, thus a window to New Physics

SM: 3 families and 6 flavors of quarks

At the beginning, Gell-Mann: 3 quarks

Li, Yang: Parity violated

C and P violated, but CP conserved

CP conserved

first observation of CP Violation in 1964

1973, KM: 3 families and 6 quarks -> CPV

Charm CPV

- 1. Yes or No?
- 2. How large?
- 3. SM or NP?

Charm CPV

Observation

LHCb 2019!!

Milestone!!

Charm CPV

- 1. Yes or No? Yes!!
- 2. How large? 10⁻³
- 3. SM or NP?

1964

2001

Direct CPV in charm

$$\Delta A_{CP} \equiv A_{CP}(K^-K^+) - A_{CP}(\pi^-\pi^+)$$

CPV in SCS decays: tree v.s. penguin

- * Ambiguity in penguins
 - heavy quark expansion $1/m_c$, $m_c=1.3 \, \text{GeV}$, converges slowly in exclusive decays

* $\Delta A_{CP}(K^+K^-, \pi^+\pi^-)$ predicted from 10-4 to 10-2

Grossman, Kagan, Nir, '07; Bigi, Paul, '11; Isidori, Kamenik, Ligeti, Perez, '11; Brod, Grossmann, Kagan, Zupan, '11, '12; Feldmann, Nandi, Soni, '12; Bhattarcharya, Gronau, Rosner, '12; Cheng, Chiang, '12; Li, Lu, **FSY**, '12; Franco, Mishima, Silvestrini, '12; Hiller, Jung, Schacht, '12. Khodjamirian, Petrov, '17.

The only prediction of O(10⁻³)

Cheng, Chiang, '12: $(-1.51 \pm 0.04) \times 10^{-3}$

Li, Lu, **FSY**,'12: $(-0.6 \sim -1.9) \times 10^{-3}$

Exp Averages of ΔA_{CP}

Understanding charm CPV

$$\mathcal{A}(D^0 \to K^+ K^-) = \lambda_s \mathcal{T}^{KK} + \lambda_b \mathcal{P}^{KK},$$
$$\mathcal{A}(D^0 \to \pi^+ \pi^-) = \lambda_d \mathcal{T}^{\pi\pi} + \lambda_b \mathcal{P}^{\pi\pi},$$

$$\Delta A_{CP} = -2r \sin \gamma \left(\frac{|\mathcal{P}^{KK}|}{|\mathcal{T}^{KK}|} \sin \delta^{KK} + \frac{|\mathcal{P}^{\pi\pi}|}{|\mathcal{T}^{\pi\pi}|} \sin \delta^{\pi\pi} \right)$$
$$r = |\lambda_b/\lambda_{d,s}|$$

$$2r\sin\gamma = 1.5 \times 10^{-3} \qquad \left(\frac{|\mathcal{P}^{KK}|}{|\mathcal{T}^{KK}|}\sin\delta^{KK} + \frac{|\mathcal{P}^{\pi\pi}|}{|\mathcal{T}^{\pi\pi}|}\sin\delta^{\pi\pi}\right) \approx 1$$

$$\Delta A_{CP} = (-1.54 \pm 0.29) \times 10^{-3}$$

Li, Lu, **FSY**, PRD86,036012(2012); 1903.10638

$$\left(\frac{|\mathcal{P}^{KK}|}{|\mathcal{T}^{KK}|}\sin\delta^{KK} + \frac{|\mathcal{P}^{\pi\pi}|}{|\mathcal{T}^{\pi\pi}|}\sin\delta^{\pi\pi}\right) \approx 1$$

$$\frac{|\mathcal{P}|}{|\mathcal{T}|}\sin\delta \sim 1/2$$

topological approach

Li, Lu, **FSY**, '12

$$\frac{\mathcal{P}^{\pi\pi}}{\mathcal{T}^{\pi\pi}} = 0.66e^{i134^{\circ}}, \quad \text{and} \quad \frac{\mathcal{P}^{KK}}{\mathcal{T}^{KK}} = 0.45e^{i131^{\circ}}$$

$$A_{CP} \sim 10^{-3}$$

Perturbative QCD

Khodjamirian, Petrov, '17

$$\frac{|\mathcal{P}|}{|\mathcal{T}|} \sim \frac{\alpha_s}{\pi} \sim 0.1$$

$$A_{CP} \lesssim 10^{-4}$$

Long-distance Key: non-perturbative

Understand: tree -> penguin; Branching ratio -> CPV

QCD

Topological Amplitudes

- According to the weak flavour flows
- Including all strong interaction effects
- Amplitudes extracted from data

Chau, 86'; Chau, Cheng, 87'; Bhattacharya, Rosner, 08'; Cheng, Chiang, 10'

Always in the flavour SU(3) symmetry limit,
 but losing predictive power

Factorization-Assisted Topological-Amplitude Approach (FAT)

- Dynamics In factorization:
 - Short-distance:
 Wilson coefficients
 - Long-distance: hadronic matrix elements

Li, Lu, **FSY**, '12

Non-perturbative quantities

Extracted from data

W-annihilation (A) W-exchange (E)

$$\langle P_1 P_2 | \mathcal{H}_{\text{eff}} | D \rangle_{E,A} = \frac{G_F}{\sqrt{2}} V_{\text{CKM}} b_{q,s}^{E,A}(\mu) f_D m_D^2 \left(\frac{f_{P_1} f_{P_2}}{f_{\pi}^2} \right)$$

Li, Lu, **FSY**, '12

A:
$$b_{q,s}^{A}(\mu) = C_{1}(\mu) \chi_{q,s}^{A} e^{i\phi_{q,s}^{A}}$$

E: $b_{q,s}^{E}(\mu) = C_{2}(\mu) \chi_{q,s}^{E} e^{i\phi_{q,s}^{E}}$

perturbative

nonperturbative

Modes	Br(exp)	Br(this work)	$A_{CP}^{\rm SM} \times 10^{-3}$
$D^0 o \pi^+ \pi^-$	1.45 ± 0.05	1.43	0.58
$D^0 \longrightarrow K^+ K^-$	4.07 ± 0.10	4.19	-0.42
$D^0 \to K^0 \bar{K}^0$	0.320 ± 0.038	0.36	1.38
$D^0 o \pi^0 \pi^0$	0.81 ± 0.05	0.57	0.05
$D^0 o \pi^0 \eta$	0.68 ± 0.07	0.94	-0.29
$D^0 o \pi^0 \eta'$	0.91 ± 0.13	0.65	1.53
$D^0 o \eta \eta$	1.67 ± 0.18	1.48	0.18
$D^0 o \eta \eta'$	1.05 ± 0.26	1.54	-0.94
$D^+ \to \pi^+ \pi^0$	1.18 ± 0.07	0.89	0
$D^+ \to K^+ \bar{K}^0$	6.12 ± 0.22	5.95	-0.93
$D^+ o \pi^+ \eta$	3.54 ± 0.21	3.39	-0.26
$D^+ o \pi^+ \eta'$	4.68 ± 0.29	4.58	1.18
$D_S^+ \to \pi^0 K^+$	0.62 ± 0.23	0.67	0.39
$D_S^+ \to \pi^+ K^0$	2.52 ± 0.27	2.21	0.84
$D_S^+ \to K^+ \eta$	1.76 ± 0.36	1.00	0.70
$D_S^+ \to K^+ \eta'$	1.8 ± 0.5	1.92	-1.60

2. then predict charm CPV

1. Understand QCD dynamics @ 1GeV by Branching Ratios

Modes	Br(exp)	Br(this work)	$A_{CP}^{\rm SM} \times 10^{-3}$
$D^0 o \pi^+ \pi^-$	1.45 ± 0.05	1.43	$0.58 \Lambda \Delta SM = 1 \times 10^{-3}$
$D^0 \longrightarrow K^+ K^-$	4.07 ± 0.10	4.19	${0.58 \atop -0.42} \triangleright \Delta A_{CP}^{SM} = -1 \times 10^{-3}$

- 1. Understand QCD dynamics @ 1GeV by Branching Ratios
- 2. Then predict charm CPV

Factorization-Assisted Topological (FAT) approach

2. CPV in $D \rightarrow f K_S$

$$V_{CKM} = \begin{pmatrix} 1 - \lambda^{2}/2 - \lambda^{4}/8 & \lambda & A\lambda^{3}(\bar{\rho} - i\bar{\eta}) + A\lambda^{5}(\bar{\rho} - i\bar{\eta})/2 \\ -\lambda + A^{2}\lambda^{5}[1 - 2(\bar{\rho} + i\bar{\eta})]/2 & 1 - \lambda^{2}/2 - \lambda^{4}(1 + 4A^{2})/8 & A\lambda^{2} \\ A\lambda^{3}(1 - \bar{\rho} - i\bar{\eta}) & -A\lambda^{2} + A\lambda^{4}[1 - 2(\bar{\rho} + i\bar{\eta})]/2 & 1 - A^{2}\lambda^{4}/2 \end{pmatrix}$$
23

Postulated in literature:

deducting kaon mixing, data reveal direct CPV in charm

$$A_{CP}^{D^{+} \to K_{S}^{0} \pi^{+}} \equiv \frac{\Gamma(D^{+} \to K_{S}^{0} \pi^{+}) - \Gamma(D^{-} \to K_{S}^{0} \pi^{-})}{\Gamma(D^{+} \to K_{S}^{0} \pi^{+}) + \Gamma(D^{-} \to K_{S}^{0} \pi^{-})}$$
$$= A_{CP}^{\Delta C} + A_{CP}^{\bar{K}^{0}}$$

Lipkin, Xing, '95; D'Ambrosio, Gao, '01; Bianco, Fabbri, Benson, Bigi, '03; Grossman, Nir, '12; Belle, '12

However...

Full decay chain

$$D^+ \to \pi^+ K(t) (\to \pi^+ \pi^-)$$

$$A_{CP}(t) = A_{CP}^{\overline{K}^0}(t) + A_{CP}^{\text{dir}}(t)$$

Indirect CPV in kaon mixing

$$Re(\epsilon)=10^{-3}$$

Direct CPV in charm decays

 $Im(V_{cd}V_{us}/V_{cs}V_{ud})=\lambda^6=10^{-5}$

Z.z. Xing, '95; Grossman, Nir, '12

Bigi, Yamamoto, '95

$$A_{CP}(t) = A_{CP}^{\overline{K}^0}(t) + A_{CP}^{\operatorname{dir}}(t) + A_{CP}^{\operatorname{int}}(t)$$

CPV induced by mother decay and daughter mixing

Im(ϵ) Re($V_{cd}^*V_{us}/V_{cs}^*V_{ud}$)=10-4~-3

Belle: Evidence for CP Violation in the Decay $D^+ o K_S^0 \pi^+$

PRL109,021601(2012) [arXiv:1203.6409]

[Wang, **FSY**, Li, '17]

$$A_{CP}^{D^{+} \to K_{S}^{0} \pi^{+}} \equiv \frac{\Gamma(D^{+} \to K_{S}^{0} \pi^{+}) - \Gamma(D^{-} \to K_{S}^{0} \pi^{-})}{\Gamma(D^{+} \to K_{S}^{0} \pi^{+}) + \Gamma(D^{-} \to K_{S}^{0} \pi^{-})}$$

$$= A_{CP}^{\Delta C} + A_{CP}^{\bar{K}^{0}} + A_{CP}^{int}$$

$$A_{CP}^{D^{+} \to K_{S}^{0} \pi^{+}} = (-0.363 \pm 0.094 \pm 0.067)\% \quad \text{Belle}$$

$$A_{CP}^{\bar{K}^{0}} = (-0.339 \pm 0.007)\%$$

$$A_{CP}^{\Delta C} = (-0.024 \pm 0.115)\% \qquad A^{\Delta C} = (-0.006 \pm 0.115)\%$$

29

Belle

$$\Delta A_{CP} = A_{CP}(D^+ \to \pi^+ K_S^0) - A_{CP}(D_s^+ \to K^+ K_S^0)$$

New Observable

revealing new CPV effect

$$A_{CP}(t) \simeq \left[A_{CP}^{\overline{K}^0}(t) + A_{CP}^{dir}(t) + A_{CP}^{int}(t) \right]$$

Cancel some systematic errors

@ LHCb & Belle-II

[Wang, **FSY**, Li, '17]

Summary

- * CPV in D0->K+K- and pi+pi-
 - Understandable in the Standard Model
 - FAT approach works well in charm
- * New CPV effect is found in CF $D \rightarrow K_S f$
 - mother decay and daughter mixing
 - To be subtracted to extract direct CPV
- Charm CPV is becoming more charming with precision at order of 10-4