

Beam energy dependence of squeeze-out effect on the directed and elliptic flows in Au+Au collisions at high baryon density region

Chao Zhang (张潮)

Central China Normal University(华中师范大学)

Collaborators: Jiamin Chen, Feng Liu, Xiaofeng Luo and Yasushi Nara

Physical Review C 97, 064913 (2018)

Outline

1. Introduction

- > EOS effects
- > Squeeze out and hadronic re-scattering effects

2. Results

- Collective transverse flow and directed flow of identified particles with different EOS.
- \triangleright Squeeze-out and hadronic re-scattering effects on v_1 and v_2 .
- \triangleright Beam energy dependence of the v_1 and v_2 .
- Comparing with data.

3. Summary

Introduction

$$\frac{dN}{d(\phi - \Psi)} \propto 1 + 2\sum_{n\geq 1} \nu_n^{\text{obs}} \cos[n(\phi - \Psi)],$$

First fourier coefficient v_1

Created in the overlapping stage of two nuclei
Sensitive to the EoS in the early stage.

Second fourier coefficient v_2

Initial spatial anisotropy

Final anisotropic momentum distribution
Sensitive to the early stage of the system evolution

JAM(Jet AA microscopic transport model)

JAM: Hadronic transport model

Initial condition = phase space distribution of hadrons,

Nuclear collision is described by the sum of independent binary hh collisions, Two-body collision at the closest distance according to σ .

Particle production is modeled by resonance and string production and their decay(PYTHIA).

EOS effect

Simulate the equation of state effect with two approach:

- Nuclear mean field potential
- Softening effect

Mean field Potential in the framework of RQMD/S

$$V = \sum_{i} V_{i} = \int d^{3}r \left[\frac{\alpha}{2} \left(\frac{\rho}{\rho_{0}} \right)^{2} + \frac{\beta}{\gamma + 1} \left(\frac{\rho}{\rho_{0}} \right)^{\gamma + 1} \right] + \sum_{k} \int d^{3}r d^{3}p d^{3}p' \frac{C_{ex}^{(k)}}{2\rho_{0}} \frac{f(\boldsymbol{r}, \boldsymbol{p})f(\boldsymbol{r}, \boldsymbol{p}')}{1 + (\boldsymbol{p} - \boldsymbol{p}')^{2}/\mu_{k}^{2}}$$

$$f(\boldsymbol{r}, \boldsymbol{p}) = \left(\frac{4}{3}\pi p_F^3\right)^{-1} \rho(\boldsymbol{r}) \Theta(p_F - |\boldsymbol{p}|)$$
 is the phase space distribution function

Skyrme-type density dependent + Lorentzian-type momentum dependent mean field potential

Softening the EOS

Control the pressure of the system by changing the scattering style in the two-body collisions

$$P = P_f + rac{1}{3TV} \sum_{(i,j)} \left(m{p}_i' - m{p}_i
ight) \cdot \left(m{r}_i - m{r}_j
ight)$$
 Virial theorem

Standard approach:
Azimuthal angle is randomly chosen
The pressure is zero in average

Attractive orbit approach:
Particle trajectory are bended in denser region.
The pressure of the system is reduced.

Spectator and hadronic re-scattering effect

Hadronic re-scattering: disabling meson-baryon(*MB*) and meson-meson(*MM*) scattering.

Spectator: disabling the interaction between spectator nucleons and participants.

EOS effects

- Softening effect predicts enhancement of collective transverse flow for all particles, while mean field mode predicts harder slope of proton.
- Attractive orbit simulation predicts a negative slope of protons.

Squeeze-out and hadronic re-scattering effects

- Baryon-Baryon (BB) collisions: negative v₁ for proton, positive for pions and kaons.
- (BB): nucleon v2 : smaller by about 20%, pion and kaon elliptic flows zero.

v_2 (Centrality dependence)

 Suppression of elliptic flow by the spectator can be seen for all centrality for all particles except for most central collisions.

Suppression of the squeeze-out effect

With spectator: reduction of nucleon v2: 30% in cascade. almost no reduction in attractive orbit mode.

Beam energy dependence

- BB collisions generate negative directed flow below 30 GeV (green),
- MB and MM scattering effects to the slope of nucleon directed flow is opposite at low and high energies.
- Spectator shadowing effects up to 10 GeV in MF, on the other hand, it disappear around 5GeV in 1OPT mode due to strong softening effect.

Data comparison

- Cascade mode underestimates the slope of directed flow while mean-field describe the data better due to the pressure of the system.
- The 1OPT scenario in JAM seems to be consistent with STAR data from RHIC-BES experiments at 7.7GeV, at higher energies, due to the lack of partonic phase the JAM simulations predict less than data.

Summary

- We studied the effects from different EOS on the directed and elliptic flow.
- We studied the role of meson-baryon and meson-meson rescattering as well as the interaction with spectator matter on the generation of directed and elliptic flows in Au+Au collisions at 3 62.4 GeV.
- We find that the dynamical origin of directed flow changes at 30 GeV.

Backup

The EoS of the system can be controlled by the formula in Ref. [42] by the following constraints in the two-body scattering:

$$\Delta P = \frac{\rho}{3(\delta \tau_i + \delta \tau_j)} (\boldsymbol{p}_i' - \boldsymbol{p}_i) \cdot (\boldsymbol{r}_i - \boldsymbol{r}_j), \qquad (7)$$

where ΔP is the pressure difference from the free streaming pressure, ρ is the local particle density, and $\delta \tau_i$ is the proper time interval of the *i*-th particle between successive collisions. We show that a given EoS can be simulated by choosing the azimuthal angle according to the constraint in Eq. (7) in the two-body scattering process [32]. The main advantage of this approach is to be able to simulate any given EoS with a numerically efficient way as far as there are many two-body collisions, which happens in heavy-ion collision such as Au + Au collisions. We use the same EoS used in Ref. [32] to simulate 1OPT (JAM/1OPT) based on Eq. (7) in this paper.