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Introduction
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Created in the overlapping Initial spatial anisotropy
stage of two nuclei —» l

Sensitive to the EoS in the
carly stage.
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Final anisotropic momentum distribution

Sensitive to the early stage of the
system evolution
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JAM(Jet AA microscopic transport model)
J AM Hadronic transport model

Initial condition = phase space distribution of hadrons,
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Nuclear collision is described by the sum of independent binary hh collisions,
Two-body collision at the closest distance according to .

Particle production is modeled by resonance and string production and their
decay(PYTHIA).
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EOS eftect

Simulate the equation of state effect with two approach:
* Nuclear mean field potential
* Softening effect

Mean field Potential in the framework of RQMD/S
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f(r,p) = (%wp%) p(r) ©(pr —|p|) . 1s the phase space distribution function

Skyrme-type density dependent + Lorentzian-type momentum
dependent mean field potential
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Softening the EOS

Control the pressure of the system by changing the scattering style in the
two-body collisions
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Standard approach: Attractive orbit approach:
Azimuthal angle is randomly chosen Particle trajectory are bended in denser region.
The pressure 1s zero in average The pressure of the system 1s reduced.
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Spectator and hadronic re-scattering effect

Hadronic re-scattering: disabling meson-baryon(mB)

and meson-meson(MM) scattering.

participants

before collision after collision

SpeCtatOr . disabling the interaction between spectator nucleons
and participants.
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EOS effects

10 0.1F P T AMA ]
i oo u+Au 5 GeV
. 1 ST 9o 1 10-40% central
c;‘ 0 _-@7779967@@@%5@@-__— O Cascade 7
o 107" t O ! O Meanfield
O] O 1 1 = Attractive
< 102 -0.11 T ]
%’ 102 0.1 -g% T g@ e
g 10 0.05f758 g -;;-DS§§
° 1 ] 8 Qg - @@@ ffffffffff 3
pr e, N : g @ o ¥ @@ O
T 101 JAM AutAu5GeV > .0.05F QoF 0™
é_ 102 mid-central, lyl<0.12 : 0 15 S o¥ & O]
S : } } D + + + :‘Gr"- + + + :qb-'
% 10 0.1f K" fo } 3
1 0.05F +708 ;
10—1 i S E%%é@ D
1072 — Cascade 0 ;'UE’ g’@@’@@ggg' ””””” Qﬁ@@ ”””” E
102 F - Meanfield TR -0.05F 1 do ]
4 F ---Attractive = F U
}0_5 , , , OF L E
o 0.5 1 15 1-050 05 1 -1-050 05 1
my-m, (GeV) y

» Softening effect predicts enhancement of collective transverse flow
for all particles, while mean field mode predicts harder slope of
proton.

* Attractive orbit simulation predicts a negative slope of protons.
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Squeeze-out and hadronic re-scattering effects
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* Baryon-Baryon (BB) collisions: negative vi for proton, positive
for pions and kaons.

* (BB): nucleon v2 : smaller by about 20% , pion and kaon elliptic
flows zero.

2019/06/24 + /s 4 E sy K&KV 9



v,(Centrality dependence)
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Suppression of the squeeze-out effect
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With spectator: N
reduction of nucleon v2 :

30% i1n cascade.

almost no reduction in
attractive orbit mode.
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Beam energy dependence
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* BB collisions generate negative directed flow below 30 GeV (green),

* MB and MM scattering effects to the slope of nucleon directed flow is opposite at
low and high energies.

* Spectator shadowing effects up to 10 GeV in MF, on the other hand, it disappear
around 5GeV in 10PT mode due to strong softening effect.
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Data comparison
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* (Cascade mode underestimates the slope of directed flow while mean-field
describe the data better due to the pressure of the system.

* The 10PT scenario in JAM seems to be consistent with STAR data from
RHIC-BES experiments at 7.7GeV, at higher energies, due to the lack of
partonic phase the JAM simulations predict less than data.
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Summary

*  We studied the effects from different EOS on the directed and
elliptic flow.

* We studied the role of meson-baryon and meson-meson re-
scattering as well as the interaction with spectator matter on
the generation of directed and elliptic flows in Au+Au
collisions at 3 - 62.4 GeV.

*  We find that the dynamical origin of directed flow changes at
30 GeV.
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The EoS of the system can be controlled by the formula
in Ref. [42] by the following constraints in the two-body
scattering:

— L
387 + 6t))

where AP is the pressure difference from the free streaming
pressure, p is the local particle density, and d7; is the proper
time interval of the i-th particle between successive collisions.
We show that a given EoS can be simulated by choosing
the azimuthal angle according to the constraint in Eq. (7) in
the two-body scattering process [32]. The main advantage
of this approach is to be able to simulate any given EoS
with a numerically efficient way as far as there are many
two-body collisions, which happens in heavy-ion collision
such as Au + Au collisions. We use the same EoS used in
Ref. [32] to simulate 10PT (JAM/10PT) based on Eq. (7) in
this paper.
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