

Event anisotropy v₂ in Au + Au collisions at STAR

Shaowei Lan

Central China Normal University

Outline

> Introduction

- > STAR Detectors
- Results and Discussions
- > Summary and Outlook

Elliptic flow (v₂)

Initial geometry overlap (eccentricity) => finial momentum anisotropy (elliptic flow)

- \checkmark Sensitive to the the early stage of heavy ion collisions
- ✓ Pressure gradient drives flow

> Multi-strange hadrons and φ meson:

- Less sensitive to late hadronic re-scatterings
- Freeze-out earlier than other light hadrons

STAR detectors

Beam Energy Scan I

Early Universe The Phases of QCD	√S _{NN} (GeV)	Events (10 ⁶)	Year
RHIC Experiments	200	350	2010
	62.4	67	2010
	54.4	1000	2017
	39	39	2010
~170 MeV Crossover	27	70	2011
Critical Point	19.6	36	2011
Hadron Gas	14.5	20	2014
Vacuum Nuclear Neutron Stars	11.5	12	2010
0 MeV – 200 MeV 0 MeV 900 MeV Baryon Chemical Potential	7.7	4	2010

Explore the QCD phase structure!

Energy dependence v₂

STAR: Phys. Rev. C 86 54908 (2012)

 \succ v₂{4} results

Three centrality bins

 Consistent v₂(p_T) from 7.7 GeV to
 2.76 TeV for p_T > 2 GeV/c

$$\rightarrow$$
 p_T< 2GeV/*c*

The v_2 values rise with increasing collision energy ->

Large collectivity? Particle composition?

ALICE data: Phys. Rev. Lett. 105, 252302 (2010)

Energy dependence v₂

Similar v₂(p_T)
 shape for PID at RHIC
 BES I energy.

Energy dependence v₂

Particle vs. Anti-particle v₂

Significant difference between baryon and anti-baryon v₂ is observed

Baryon/Meson Separation

A splitting between baryons and mesons is observed at all energies except 7.7 GeV and all centralities.

At 7.7 GeV we are limited by the number of events.

STAR: Phys. Rev. C 93, 014907(2016)

Baryon/Meson Separation

The splitting between baryons and mesons is observed significant for all energies above 14.5 GeV and also at 14.5 GeV for 40%–80%.

For these energies below 11.5 GeV, we are limited by the number of events.

STAR: Phys. Rev. C 93, 014907(2016)

φ Meson v₂

- φ meson is less sensitive to late hadronic interactions^[1]
- Sizable φ meson v₂:
 comparable to 19.6 GeV
- High statistics and more energies below 20 GeV needed!

STAR: Phys. Rev. C 88, 014902(2013)Phys. Rev. C 93, 014907(2016)[1] STAR: Phys. Rev. Lett. 116, 062301(2016)

 $v_2(\phi)$ versus $v_2(p)$

Model calculations: T. Hirano et al., ; PRC77, 044909 (2008), PRC92, 044907 (2015)

- > Ideal hydro + hadron cascade (JAM)
- Small hadron cross section + hadronic re-scattering effect on v_2 Mass $\phi > mass p \rightarrow v_2(\phi) > v_2(p)$
 - **Break mass ordering for** ϕ **mesons and protons**

$v_2(\phi)$ versus $v_2(p)$

Model study indicates with increasing hadronic cascade time (more hadronic re-scattering), the v₂(φ)/v₂(p) ratio increases

The ratio v₂(φ)/v₂(p)
 Is 4.35 ± 0.98±^{0.66}_{0.45} at
 p_T = 0.52 GeV/c in 0-30%
 ->

The effect of late hadronic interactions on the proton v₂

STAR: Phys. Rev. Lett.116, 062301 (2016) Model calculations: T. Hirano et al., ; PRC77, 044909 (2008), PRC92, 044907 (2015)

Beam Energy Scan II

Electron cooling + longer beam bunches for BES II factor 4-15 improvement in luminosity compared with BES I

Detector upgrade

Event Plane Detector

important for flow and fluctuation analyses

➢ iTPC upgrade

increases TPC acceptance to ~ 1.7 in η ; improves dE/dxresolution

> ETOF upgrade

New charged hadron PID capabilities for $1.1 < |\eta| < 1.6$

Fixed target program

extends STAR's physics reach to region of compressed baryonic matter

Summary

- Particle vs. Anti-particle v₂
 The difference increases with decreasing beam energy
- > Baryon and meson $v_2(p_T)$ separation has been observed
- Mass ordering break for φ meson and proton v₂ Indicates late hadronic interactions on proton v₂
- φ meson and multi-strange hadron v₂ => study the
 QCD phase boundary
- > BES II force on the $\sqrt{s_{NN}}$ < 20 GeV region.

Thank you for your attention!