Masses and Electricmagnetic Form Factors of Doubly Charmed Baryons

Zhi-Feng Sun

Outline

■ Experiments
■ CHPT
■ Masses
■ Form Factors
■ Summary

Experiments

$\Xi_{c c}^{++}=c c u, \Xi_{c c}^{+}=c c d, \Omega_{c c}^{+}=c c s$

SELEX Collaboration

$$
\begin{aligned}
& \Lambda_{c}^{+} K^{-} \pi^{+}: \Xi_{c c}^{+}(3443) \quad \Xi_{c c}^{+}(3520) \\
& p D^{+} K^{-} / \Xi_{c}^{+} \pi^{+} \pi^{-}: \Xi_{c c}^{+}(3520) \\
& \Lambda_{c}^{+} K^{-} \pi^{+} \pi^{+}: \Xi_{c c}^{++}(3460) \quad \Xi_{c c}^{++}(3541) \quad \Xi_{c c}^{++}(3780)
\end{aligned}
$$ not suported by other experiments

LHCb Collaboration

$$
\begin{aligned}
& \Xi_{c c}^{++} \rightarrow \Lambda_{c}^{+} K^{-} \pi^{+} \pi^{+} \\
& \mathrm{M}=3621.40 \pm 0.72(\text { stat }) \pm 0.27(\text { syst }) \pm 0.14\left(\Lambda_{c}^{+}\right) \mathrm{MeV} \\
& \tau=0.2566_{0.0 .02}^{+0.02}(\text { stat }) \pm 0.014(\text { syst }) \mathrm{ps} \\
& \Xi_{c c}^{++} \rightarrow \Xi_{c}^{+} \pi^{+} \\
& \mathrm{M}=3620.6 \pm 1.5(\text { stat }) \pm 0.4(\text { syst }) \pm 0.3\left(\Xi_{c}^{+}\right) \mathrm{MeV}
\end{aligned}
$$

$>$ QCD \longrightarrow Strong interaction

Asymptotic Freedom
(high energy)

Quark Confinement (low energy)

Chiral perturbation theory

Hadronic degree of freedom (meson and baryon)
effective theory of strong interactions at distances $\sim \mathrm{Mpi}^{\wedge}\{-1\}$

Lagrangian

Chiral symmetry -> the light quark strong interactions ->parity, charge conjugation

$$
\begin{aligned}
\mathcal{L}^{(1)}= & \bar{\psi}\left(i D D-m+\frac{g_{A}}{2} \gamma^{\mu} \gamma_{5} u_{\mu}\right) \psi, \\
\mathcal{L}^{(2)}= & c_{1} \bar{\psi}\langle\chi+\rangle \psi-\left\{\frac{c_{2}}{8 m^{2}} \bar{\psi}\left\langle u_{\mu} u_{v}\right\rangle\left\{D^{\mu}, D^{\nu}\right\} \psi+\text { h.c. }\right\} \\
& \left.-\left\{\frac{c_{3}}{8 m^{2}} \bar{\psi}\left\{u_{\mu}, u_{v}\right\} D^{\mu}, D^{v}\right\} \psi+\text { h.c. }\right\}+\frac{c_{4}}{2} \bar{\psi}\left\langle u^{2}\right\rangle \psi \\
& +\frac{c_{5}}{2} \bar{\psi} u^{2} \psi+\frac{i c_{6}}{4} \bar{\psi} \sigma^{\mu \nu}\left[u_{\mu}, u_{v}\right] \psi+c_{7} \bar{\psi} \hat{\chi}+\psi \\
& +\frac{c_{8}}{8 m} \bar{\psi} \sigma^{\mu v} \hat{f}_{\mu \nu}^{+} \psi+\frac{c_{9}}{8 m} \bar{\psi} \sigma^{\mu \nu}\left\langle f_{\mu \nu}^{+}\right\rangle \psi \\
\mathcal{L}^{(3)}= & \left\{\frac{i}{2 m} d_{1} \bar{\psi}\left[D^{\mu}, \hat{f}_{\mu \nu}^{+}\right\rangle D^{\nu} \psi+\text { h.c. }\right\}+\left\{\frac{2 i}{m} d_{2} \bar{\psi}\left[D^{\mu},\left\langle\int_{\mu \nu}^{+}\right\rangle\right\rangle D^{\nu} \psi+\text { h.c. }\right\}+\ldots
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{L}_{2}=\frac{F_{0}^{2}}{4} \operatorname{Tr}\left[D_{\mu} U\left(D^{\mu} U\right)^{\dagger}\right]+\frac{F_{0}^{2}}{4} \operatorname{Tr}\left(\chi U^{\dagger}+U \chi^{\dagger}\right) \\
& \mathcal{L}_{4}=L_{1}\left\{\operatorname{Tr}\left[D_{\mu} U\left(D^{\mu} U\right)^{\dagger}\right]\right\}^{2}+L_{2} \operatorname{Tr}\left[D_{\mu} U\left(D_{\nu} U\right)^{\dagger}\right] \operatorname{Tr}\left[D^{\mu} U\left(D^{\nu} U\right)^{\dagger}\right]
\end{aligned}
$$

! ••

- Power counting

Infinit terms of the constructed Lagrangian, infinit free paremeters we need to assess the importance of a certain diagram

Weinberg's scheme: (for Goldstone mesons)

$$
|\overrightarrow{\mathbf{q}}| \sim|p| \sim\left|M_{\text {Goldstone }}\right| \sim Q \ll \Lambda_{0}
$$

- The amplitude of Feynman diagram can be expanded by powers of momentum and masses of Goldstone mesons (π, K and η)
- the Lagrangian can be classes by different order. derivative -> momentum, terms containing meson mass.
$D=4 N_{L}-2 I_{M}+\sum_{n=1}^{\infty} 2 n N_{2 n}^{M}$
extending to both mesons and baryons
$D=4 N_{L}-2 I_{M}-I_{B}+\sum_{n=1}^{\infty} 2 n N_{2 n}^{M}+\sum_{n=1}^{\infty} n N_{n}^{B}$.
- The nonzero mass of the baryon in chiral limit breaks the power counting.
\checkmark Extended-on-mass-shell (EOMS)
\checkmark Heavy-Baryon chiral perturbation theory (HBCHPT)
\checkmark Infrared BChPT
\checkmark Extended-on-mass-shell (EOMS)
\rightarrow Ultraviolet (UV) divergence: Dimensional regularisation, MS-1 subtraction
\rightarrow PCB terms: polynomials, removed by redefinition of LECs in Effective Lagrangian
\checkmark Scale independent
\checkmark Correct power counting (respectively faster convergence)
\checkmark keep original analyticity and all assumed symmetries

Masses

Quark model

Roncaglia, Lichtenberg, Predazzi, Phys. Rev. D52,1722(1995)
Ebert, Faustov, Galkin, Martynenko, Saleev, Z. Phys. C76, 111(1997)
B. Silvestre-Brac, Prog.Part. Nucl. Phys. 36, 263(1996)

Tong, Ding, Guo, Jin, Li, Shen, Zhang, Phys. Rev. D62, 054024(2000)

Lattice QCD

Lewis, Mathur, Woloshyn, Phys. Rev. D64, 094509(2001) Heechang Na, Steven Gottlieb, PoS LATTICE 2008, 119(2008) Liu, Lin, Orginos, Walker-Loud, Phys. Rev. D81, 094505(2010) PACS-CS Collaboration, PoS LATTICE 2012, 139(2012)
Alexandrou, Carbonell, Christaras, Drach, Gravina, Papinutto, PRD86, 114501(2012)

Isospin splitting of doubly heavy
baryons
Brodsky, Guo, Hanhart, Meißner, PLB698:251-255, 2011

Doubly heavy baryon mass under EOMS renormalization

$$
\begin{aligned}
m_{a}= & m-2 c_{1}\left(2 m_{K}^{2}+m_{\pi}^{2}\right)-2 c_{7}\left[\chi_{a a}-\frac{1}{3}\left(2 m_{K}^{2}+m_{\pi}^{2}\right)\right] \\
& +\sum_{b=1}^{3} \sum_{\lambda=\pi, K, \eta}(-) C_{a b}^{\lambda} \frac{g_{A}^{2}}{4 F_{\lambda}^{2}} 2 m M_{\lambda}^{2} \frac{1}{(4 \pi)^{2}}\left[\frac{M_{\lambda}^{2}}{2 m^{2}} \ln \frac{M_{\lambda}^{2}}{m^{2}}\right. \\
& \left.+\frac{M_{\lambda} \sqrt{4 m^{2}-M_{\lambda}^{2}}}{m^{2}} \arccos \frac{M_{\lambda}}{2 m}\right]
\end{aligned}
$$

保持数幂律！

Power counting breaking terms：

$$
\delta m_{a}=-\sum_{b=1}^{3} \sum_{\lambda=\pi, K, \eta} C_{a b}^{\lambda} \frac{g_{A}^{2}}{32 \pi^{2} F_{\lambda}^{2}} m M_{\lambda}^{2}
$$

The estimation of the axial vector charge $\boldsymbol{g}_{\boldsymbol{A}}$

Heavy diquark symmetry J. Hu and T. Mehen, PRD 73. 054003

$$
\begin{array}{|l}
\begin{array}{l}
\mathcal{L}=\operatorname{Tr}\left[T_{a}^{\dagger}\left(i D_{0}\right)_{b a} T_{b}\right]-g \operatorname{Tr}\left[T_{a}^{\dagger} T_{b} \vec{\sigma} \cdot \vec{A}_{b a}\right]+\cdots \\
T_{a, i \beta}=\sqrt{2}\left(\Xi_{a, i \beta}^{*}+\frac{1}{\sqrt{3}} \Xi_{a, \gamma} \sigma_{\gamma \beta}^{i}\right)
\end{array} \\
g_{A}=-g / 3=-0.2
\end{array}
$$

c_{1}, c_{7} and m still unknown

The heavy quark expansion

$$
\mathrm{m}=\tilde{m}_{0}+2 m_{c}+\alpha / m_{c}+O\left(1 / m_{c}^{2}\right)
$$

Fitting the lattice data

$\mathrm{m}_{\mathrm{c}}(\mathrm{GeV})$

C. Alexandrou et al., PRD 86, 114501

$m_{c}^{p / y}$	$m_{z_{c}^{+/}}^{++/}$	$m_{\Omega_{c}^{+}}^{+}$	$\chi_{d o f}^{2}$
0.598 ± 0.066	3.608 ± 0.218	3.663 ± 0.223	
0.591 ± 0.028	3.585 ± 0.166	3.640 ± 0.173	0.22
0.598 ± 0.070	3.608 ± 0.225	3.663 ± 0.230	

LHCb：$M\left(\Xi_{c c}^{++}\right)=3621.40 \pm 0.72$（stat）$\pm 0.27$（syst）$\pm 0.14\left(\Lambda_{c}^{+}\right) \mathrm{MeV}$ $\mathrm{M}=3620.6 \pm 1.5($ stat $) \pm 0.4$（syst）$\pm 0.3\left(\Xi_{c}^{+}\right) \mathrm{MeV}$

Doubly heavy baryon mass under EOMS renormalization

$$
\begin{aligned}
m_{a} \doteq & m-2 c_{1}\left(2 m_{K}^{2}+m_{\pi}^{2}\right)-2 c_{7}\left[\chi_{a a}-\frac{1}{3}\left(2 m_{K}^{2}+m_{\pi}^{2}\right)\right] \\
& +\sum_{b=1}^{3} \sum_{\lambda=\pi, K, \eta}(-) C_{a b}^{\lambda} \frac{g_{A}^{2}}{4 F_{\lambda}^{2}} 2 m M_{\lambda}^{2} \frac{1}{(4 \pi)^{2}}\left[\frac{M_{\lambda}^{2}}{2 m^{2}} \ln \frac{M_{\lambda}^{2}}{m^{2}}\right. \\
& \left.+\frac{M_{\lambda} \sqrt{4 m^{2}-M_{\lambda}^{2}}}{m^{2}} \arccos \frac{M_{\lambda}}{2 m}\right]
\end{aligned}
$$

Expand by powers of M_{λ}

$$
m_{a}=m-2 c_{1}\left(2 m_{K}^{2}+m_{\pi}^{2}\right)-2 c_{7}\left[\chi_{a a}-\frac{1}{3}\left(2 m_{K}^{2}+m_{\pi}^{2}\right)\right]-\sum_{b=1}^{3} \sum_{\lambda=\pi, K, \eta} C_{a b}^{\lambda} \frac{g_{A}^{2}}{32 \pi^{2} F_{\lambda}^{2}} m\left[\frac{\pi M_{\lambda}^{3}}{m}+\cdots\right]
$$

This expression is the same as that under heavy-baryon CHPT

Form Factors

- 核子的形状因子 \longrightarrow 内部结构
- 本世纪初，SELEX实验对 Σ^{-}重子的电荷半径，研究了它的电磁结构
－我们在理论上研究双重味重子的形状因子

Spatial charge and moment densities：

$$
\begin{aligned}
& e_{1}(r)=\int \frac{d^{3} \mathbf{q}}{(2 \pi)^{3}} F_{1}\left(-\mathbf{q}^{2}\right) e^{-i \mathbf{q} \cdot \mathbf{r}} \\
& e_{2}(r)=\int \frac{d^{3} \mathbf{q}}{(2 \pi)^{3}} F_{2}\left(-\mathbf{q}^{2}\right) e^{-i \mathbf{q} \cdot \mathbf{r}}
\end{aligned}
$$

H．S．Li，L．Meng，Z．W．Liu，S．L．Zhu，PRD96，076011（2017）
M．Z．Liu，Y．Xiao，L．S．Geng，PRD98（2018） 014040

$\left\langle B\left(p_{f}\right)\right| J^{\mu}(0)\left|B\left(p_{i}\right)\right\rangle=\bar{u}\left(p_{f}\right)\left[\gamma\left\langle\widehat{F^{B}\left(q^{2}\right)}+\frac{i \sigma^{\mu v} q_{v}}{2 m_{B}} \widehat{F_{2}^{B}\left(q^{2}\right)}\right] u\left(p_{i}\right)\right.$

Dirac FF

Pauli FF

Power counting breaking terms:

$$
\Delta F_{2}^{4}=C_{4} \frac{g_{A}^{2} m^{2}}{16 \pi^{2} F^{2}}, \quad \Delta F_{2}^{8}=C_{8} \frac{g_{A}^{2} m^{2}}{32 \pi^{2} F^{2}}
$$

rescattering effects
 $\rho / \omega / \phi$ resonances

$$
\begin{aligned}
\mathcal{L}_{\gamma}=- & \frac{1}{2 \sqrt{2}} \frac{F_{V}}{M_{V}}\left\langle V_{\mu \nu} f^{+\mu \nu}\right\rangle \\
\mathcal{L}_{V B B}= & \left(\bar{\Xi}_{Q Q}^{++}, \bar{\Xi}_{Q Q}^{+}\right)\left(g_{v}^{\Xi_{Q Q}} \gamma^{\mu}+g_{t}^{\Xi_{Q Q}} \frac{\sigma^{\mu v} \partial_{v}}{2 m_{B}}\right)\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} \rho^{0}+\frac{1}{\sqrt{2}} \omega & \rho^{+} \\
\rho^{-} & -\frac{1}{\sqrt{2}} \rho^{0}+\frac{1}{\sqrt{2}} \omega
\end{array}\right)\binom{\Xi_{Q Q}^{++}}{\Xi_{Q Q}^{+}} \\
& +\bar{\Omega}_{Q Q}^{+}\left(g_{v}^{\Omega_{Q Q}} \gamma^{\mu}+g_{t}^{\Omega_{Q Q}} \frac{\sigma^{\mu v} \partial_{v}}{2 m_{B}}\right) \phi_{\mu} \Omega_{Q Q .}^{+} .
\end{aligned}
$$

$$
\begin{aligned}
& F_{1}^{V B}=-C_{V B} \frac{F_{V}}{M_{V}} \frac{g_{v}^{B} q^{2}}{q^{2}-M_{V}^{2}+i \epsilon} \\
& F_{2}^{V B}=C_{V B} \frac{F_{V}}{M_{V}} \frac{g_{t}^{B} q^{2}}{q^{2}-M_{V}^{2}+i \epsilon}
\end{aligned}
$$

Sachs Form Factor

$$
\begin{aligned}
& G_{E}^{B}\left(q^{2}\right)=F_{1}^{B}\left(q^{2}\right)+\frac{q^{2}}{4 m_{B}^{2}} F_{2}^{B}\left(q^{2}\right) \Longleftrightarrow G_{E}^{B}(0) \Rightarrow \text { charge } \\
& G_{M}^{B}\left(q^{2}\right)=F_{1}^{B}\left(q^{2}\right)+F_{2}^{B}\left(q^{2}\right) . \quad \mu_{B}=G_{M}(0) \frac{e}{2 m_{B}}
\end{aligned}
$$

electric and magnetic radii

$$
\left\langle r_{E, M}^{2}\right\rangle_{B}=\left.\frac{6}{G_{E, M}^{B}(0)} \frac{d G_{E, M}^{B}\left(q^{2}\right)}{d q^{2}}\right|_{q^{2}=0}
$$

electric radii for neutral baryons

$$
\left\langle r_{E}^{2}\right\rangle_{B}=\left.6 \frac{d G_{E}^{B}\left(q^{2}\right)}{d q^{2}}\right|_{q^{2}=0}
$$

Phys. Lett. B 726, 703 (2013)
JHEP 1405, 125 (2014)
Phys. Rev. D 92,114515 (2015)

Contributions to $\mu \mathrm{B}$ for the double-charm baryons

	Tree	Loops HB	Loop HB $\left[\mu_{N}\right]$	Loop EOMS $\left[\mu_{N}\right]$	$\mu\left[\mu_{N}\right]$	Ref. [31]
$\Xi_{c c}^{++}$	$2+\frac{2}{3} c_{8}+4 c_{9}$	$-\frac{g_{A}^{2}}{8 \pi}\left[\frac{M_{\pi} m_{\Xi_{c c}}}{F_{\pi}^{2}}+\frac{M_{K} m_{m_{c c}}}{F_{K}^{2}}\right]$	$-2.09 g_{A}^{2}$	$-1.21 g_{A}^{2}$	-	-
$\Xi_{c c}^{+}$	$1-\frac{1}{3} c_{8}+4 c_{9}$	$\frac{g_{A}^{2} m_{c c}}{8 \pi} \frac{M_{\pi}}{F_{\pi}^{2}}$	$0.60 g_{A}^{2}$	$0.80 g_{A}^{2}$	$\mathbf{0 . 3 7 (2)}$	$0.425(29)$
$\Omega_{c c}^{+}$	$1-\frac{1}{3} c_{8}+4 c_{9}$	$\frac{g_{A}^{2} m_{c c}}{8 \pi} \frac{M_{K}}{F_{K}^{2}}$	$1.46 g_{A}^{2}$	$1.59 g_{A}^{2}$	$\mathbf{0 . 4 0 (3)}$	$0.413(24)$

TABLE V. Tree-level contributions to the double charm F_{1} and F_{2} from the chiral Lagrangian $(\chi \mathrm{PT})$ and vector-meson diagrams (VM).

	$\chi \mathrm{PT} F_{1}$	$\mathrm{VM} F_{1}$	$\chi \mathrm{PT} F_{2}$	$\mathrm{VM} F_{2}$
$\Xi_{c c}^{++}$	$2-\frac{4 d_{1}}{3} t-8 d_{2} t$	$-\sum_{V=\rho, \omega, \phi} C_{V B} \frac{F_{V} t}{M_{V}} \frac{g_{V}^{\Xi_{c c}}}{t-M_{V}^{2}}$	$\frac{2}{3} c_{8}+4 c_{9}+\frac{4 d_{1}}{3} t+8 d_{2} t$	$\sum_{V=\rho, \omega, \phi} C_{V B} \frac{F_{V} t}{M_{V}} \frac{g_{t}^{\Xi_{c c}}}{t-M_{V}^{2}}$
$\Xi_{c c}^{+}$	$1+\frac{2 d_{1}}{3} t-8 d_{2} t$	$-\sum_{V=\rho, \omega, \phi} C_{V B} \frac{F_{V} t}{M_{V}} \frac{g_{V}^{\Xi_{c c}}}{t-M_{V}^{2}}$	$-\frac{1}{3} c_{8}+4 c_{9}-\frac{2 d_{1}}{3} t+8 d_{2} t \left\lvert\, \sum_{V=\rho, \omega, \phi} C_{V B} \frac{F_{V} t}{M_{V}} \frac{g_{t}^{\Xi_{c c}}}{t-M_{V}^{2}}\right.$	
$\Omega_{c c}^{+}$	$1+\frac{2 d_{1}}{3} t-8 d_{2} t$	$-\sum_{V=\rho, \omega, \phi} C_{V B} \frac{F_{V} t}{M_{V}} \frac{g_{v}^{\Omega_{c c}}}{t-M_{V}^{2}}$	$-\frac{1}{3} c_{8}+4 c_{9}-\frac{2 d_{1}}{3} t+8 d_{2} t \left\lvert\, \sum_{V=\rho, \omega, \phi} C_{V B} \frac{F_{V} t}{M_{V}} \frac{g_{t}^{\Omega_{c c}}}{t-M_{V}^{2}}\right.$	

Summary

- The mass corrections and the form factors of doubly heavy baryons are calculated in the frame of EOMS scheme.
- The EOMS scheme keep the power counting. And we compare the difference of the results in HBCHPT and EOMS scheme.
- We fit the Lattice data and predict the masses and the magnetic moments of doubly charmed baryons. Our results are consistent with other theoretical calculations and the LHCb measurement.

Thank you:

