The impact of unstable K^* on the decays of $\eta(1405/1475)$ via triangle diagrams

Mengchuan Du(杜蒙川) In collaboration with Prof. Qiang Zhao(赵强)

2019年6月23日 湖南 长沙 第十八届全国中高能核物理大会

Content

- Motivation
- Analytic properties of triangle loop integral
- Analysis on η'' decays
- Conclusions

Motivation

[1]M. Ablikim et al. [BESIII Collaboration] PRL 108, 182001 (2012); [2] Jia-Jun Wu, Xiao-Hai Liu, Qiang Zhao, Bing-Song Zou, PRL 108, 081803 (2012);

[3] Xiao-Gang Wu, Xiao-Hai Liu, Qiang Zhao, Bing-Song Zou, PR D87, 014023 (2013); [4] L. D. Landau, NP 13, 181 (1959);

[5] G. Bonnevay, I. J. R. Aitchison and J. S. Dowker, Nuovo Cim. 21, 3569 (1961); [6] R. E. Cutkosky, J. Math. Phys. 1, 429 (1960)

The effect of non zero Γ_{K^*}

Ref[7] shows the

Fig.2. The decay width calculated with $\Gamma_{K^*} = 50 \text{MeV}$ (the lower one)and $\Gamma_{K^*} = 0 \text{ MeV}$ (the higher one) from Ref[7].

- 1. How does the non-zero Γ_{K^*} affect the absorptive part of *I* ?
- 2. Taken into account Γ_{K^*} , does the TS still suffice to explain the large isospin violation?

Analytical properties of triangle loop integral

Decompose the amplitude

$$\begin{split} I &= -i(s_1 - m_1^2 + im_1\Gamma_1 + s_2 - 2s_3 + 2m_K^2 - \frac{(s_1 - m_K^2)(s_2 - m_K^2)}{m_1^2 - im_1\Gamma_1}) \int \frac{d^4q}{(2\pi)^4} \frac{1}{D_1 D_2 D_3} \\ &- i\frac{(s_1 - m_K^2)(s_2 - m_K^2)}{m_1^2 - im_1\Gamma_1}) \int \frac{d^4q}{(2\pi)^4} \frac{1}{q^2 D_2 D_3} - i(1 + \frac{s_1 - m_K^2}{m_1^2 - im_1\Gamma_1}) \int \frac{d^4q}{(2\pi)^4} \frac{1}{D_1 D_3} \\ &- i(1 + \frac{s_2 - m_K^2}{m_1^2 - im_1\Gamma_1}) \int \frac{d^4q}{(2\pi)^4} \frac{1}{D_1 D_2} + i \int \frac{d^4q}{(2\pi)^4} \frac{1}{q^2 D_1} - i\frac{m_K^2 - s_1}{m_1^2 - im_1\Gamma_1} \int \frac{d^4q}{(2\pi)^4} \frac{1}{q^2 D_3} - i\frac{m_K^2 - s_2}{m_1^2 - im_1\Gamma_1} \int \frac{d^4q}{(2\pi)^4} \frac{1}{q^2 D_2} \\ &+ i \int \frac{d^4q}{(2\pi)^4} \frac{1}{D_2 D_3} \end{split}$$

 $s_2 = p_2^2$

$$M(\Gamma) \equiv \int \frac{d^4q}{(2\pi)^4} \frac{1}{(q^2 - m_1^2 + im_1\Gamma_1)((q - p_2)^2 - m_2^2)((q - p_2 - p_3)^2 - m_3^2)}$$

If $\Gamma_1 \neq 0$ we seek for an explicit expression of $\Im M(\Gamma_1)$, which goes to $\Im M_{cut}$ as $\Gamma_1 \rightarrow 0$

Ref [8]
$$M = \frac{1}{16\pi^2} \int_0^1 dy \frac{1}{N_1(y)} [\ln u_1(y) - \ln u_1(y_0^{(1)})] - \frac{1}{16\pi^2} \int_0^1 dy \frac{1}{N_2(y)} [\ln u_2(y) - \ln u_2(y_0^{(2)})] + \frac{1}{16\pi^2} \int_0^1 dy \frac{1}{N_3(y)} [\ln u_3(y) - \ln u_3(y_0^{(3)})] u_1(y) \equiv by^2 + (c+e)y + a + d + f = s_3y^2 + (m_2^2 - m_3^2 - s_3)y + m_3^2 u_2(y) \equiv (a+b+c)y^2 + (e+d)y + f = s_2y^2 + (m_2^2 - m_1^2 - s_2)y + m_1^2 u_3(y) \equiv ay^2 + dy + f = s_1y^2 + (m_3^2 - m_1^2 - s_1)y + m_1^2 ,$$

 $y_0^{(i)}: \text{ solution to } N_i(y) = 0$ $y_j^{(i)}(j = 1, 2): \text{ solution to } u_i(y) = 0$ $\Rightarrow \left\{ y_0^{(1)}, y_1^{(1)}, y_2^{(1)} \right\}, \left\{ y_0^{(2)}, y_1^{(2)}, y_2^{(2)} \right\}, \left\{ y_0^{(2)}, y_1^{(2)}, y_2^{(2)} \right\}, \left\{ y_0^{(2)}, y_1^{(2)}, y_2^{(2)} \right\}$

$$\begin{split} M &= \frac{1}{16\pi^2} \frac{1}{c+2b\alpha} (S^{(1)} - S^{(2)} + S^{(3)}), \\ S^{(i)} &= \Sigma_{j=1}^2 R_j^{(i)} + \sigma^{(i)}, \\ R_j^{(i)} &= Sp(z_{j1}^{(i)}) - Sp(z_{j2}^{(i)}) + T_j^{(i)} \equiv W_j^{(i)} + T_j^{(i)}, \\ z_{1k}^{(i)} &= \frac{y_k^{(i)} - 1}{y_k^{(i)} - y_0^{(i)}}, \quad z_{2k}^{(i)} = \frac{y_k^{(i)}}{y_k^{(i)} - y_0^{(i)}}, \end{split} \qquad Sp(z) = -\int_0^1 \frac{\ln(1 - zt)}{t} dt \end{split}$$

1. The condition for TS can be identified by the motion of $y_j^{(i)}$ in the complex plane 2. The locations of $y_j^{(i)}$ in the complex plane determine the absorptive part of *M*

[8] G. 't Hooft and M. J. G. Veltman, NP B153, 365

 $y_0^{(2)}$ meets $y_2^{(2)}$ at the cross

 $y_0^{(3)}$ meets $y_1^{(3)}$ at the cross

Simultaneously

trajectories as s_3 varies from the normal threshold to s_{3c} .

Extract the absorptive part

$$\begin{split} M &= \frac{1}{16\pi^2} \frac{1}{c+2b\alpha} (S^{(1)} - S^{(2)} + S^{(3)}), \\ S^{(i)} &= \Sigma_{j=1}^2 R_j^{(i)} + \sigma^{(i)}, \\ R_j^{(i)} &= Sp(z_{j1}^{(i)}) - Sp(z_{j2}^{(i)}) + T_j^{(i)} \equiv W_j^{(i)} + T_j^{(i)}, \\ z_{1k}^{(i)} &= \frac{y_k^{(i)} - 1}{y_k^{(i)} - y_0^{(i)}}, \quad z_{2k}^{(i)} = \frac{y_k^{(i)}}{y_k^{(i)} - y_0^{(i)}}, \end{split}$$

Small-width approximation

$$\Im Sp(a \pm ib) = \pm \pi \Theta(a-1) \ln a \mp \int_0^1 \frac{dt}{t} \arctan \frac{bt}{at-1} \simeq \pm \pi \Theta(a-1) \ln a$$

Near-threshold approximation

The energy region where TS occurs is close to $\sqrt{s_3} = m_2 + m_3$

$$\Im M(\Gamma) = \frac{1}{16\pi^2 \lambda [s_1, s_2, s_3]^{\frac{1}{2}}} (\Im W_{tot} + \Im T_{tot} + \Im \sigma_{tot})$$

$$\Im M_{cut} = \frac{1}{32\pi\sqrt{s_1}p_{\pi}^{(s_1)}} \ln \left| \frac{(a_1+1)(a_2+1)}{(a_1-1)(a_2-1)} \right|$$

- 1. We verified $\Im M(0) = \Im M_{cut}$
- 2. $\Im M(\Gamma) = \Im M_{cut}|_{m_1^2 \to m_1^2 i m_1 \Gamma} \equiv \Im M'_{cut}$

Fig.4. The absorptive part of *M* calculated using different formulas, with $\Gamma = 200$ MeV. Left: $\sqrt{s_3}$ is fixed at 1GeV. Right: $\sqrt{s_1}$ is fixed at 1.4GeV.

• The analytic Γ dependence of $\Im M$ can be obtained by looking into $\Im M'_{cut}$, which is much simpler.

$$\Im M_{cut}' = \frac{1}{32\pi\sqrt{s_1}p_{\pi}^{(s_1)}} \ln \left| \frac{(a_1+1)(a_2+1)}{(a_1-1)(a_2-1)} \right| \Big|_{m_1^2 \to m_1^2 - i \, m_1 \Gamma}$$

Expand $\Im M'_{cut}$ with respect to Γ and set $s_1 = s_1^-$

Fig.5. The energy dependence of the new scale β .

Analysis on $\eta(1405/1475)$ decays

$$\eta^{\prime\prime} \to f_0(980)\pi^0 \to \pi^+\pi^-\pi^0$$

[3] Xiao-Gang Wu, Xiao-Hai Liu, Qiang Zhao, Bing-Song Zou, PR D87, 014023 (2013); [9] N. N. Achasov and A. V. Kiselev, PR D70, 111901 (2004)

Form factor $F(q^2)$ arises naturally in an effective theory:

$$I = \int \frac{d^4q}{(2\pi)^4} \frac{(2p_1 - q)_{\mu} \left(-g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^2}\right)(q - 2p_2)_{\nu} F(q^2)}{(q^2 - m_1^2)((q - p_2)^2 - m_2^2)((q - p_2 - p_3)^2 - m_3^2)} \qquad F(q^2) = \prod_{i=1}^3 \frac{\Lambda_i^2 - m_i^2}{\Lambda_i^2 - p_{i(q)}^2}$$

 $\Lambda_i = m_i + \alpha \Lambda_{QCD}$, $\alpha = 1 \sim 2$ and $\Lambda_{QCD} = 250$ MeV. The result should be stable as α varies. $F(q^2)$ is safe when the physical result mostly arises from the region where 1) $p_i^2 = m_i^2$ or 2) p_i is space like.

Experiment Constraints:

$$\frac{BR(J/\Psi \to \gamma \eta^{\prime\prime} \to \gamma f_0 \pi \to \gamma \pi^+ \pi^- \pi^0)}{BR(J/\Psi \to \gamma \eta^{\prime\prime} \to \gamma a_0 \pi \to \gamma \eta \pi^0 \pi^0)} = \frac{(1.50 \pm 0.11 \pm 0.11) \times 10^{-5}}{(8.40 \pm 1.75) \times 10^{-5}} = (17.9 \pm 4.2)\%$$

$$\frac{BR(J/\Psi \to \gamma \eta^{\prime\prime} \to \gamma f_0 \pi \to \gamma \pi^+ \pi^- \pi^0)}{BR(J/\Psi \to \gamma \eta^{\prime\prime} \to \gamma K \overline{K} \pi)} = \frac{(1.50 \pm 0.11 \pm 0.11) \times 10^{-5}}{(2.8 \pm 0.6) \times 10^{-3}} = (0.53 \pm 0.13)\%$$

$$\frac{BR(J/\Psi \to \gamma \eta^{\prime\prime} \to \gamma a_0 \pi \to \gamma f_0 \pi \to \gamma \pi^+ \pi^- \pi^0)}{BR(J/\Psi \to \gamma \eta^{\prime\prime} \to \gamma a_0 \pi \to \gamma \eta \pi^0 \pi^0)} \sim 1\%$$

$$a_0 \pi \ll K \overline{K} \pi$$

$$a_0 \pi \ll K^* \overline{K}$$

Parameters	Values]		$\alpha = 2$	$\alpha = 1$
g_{VPP}	4.52		$g_{\eta^{\prime\prime}K^{*}\overline{K}}$	3.97	4.03
$g_{f_0K^+K^-}$	5.92GeV		$g_{\eta^{\prime\prime}a_0\pi}$	0.72 GeV	0.37 GeV
$g_{f_0\pi^+\pi^-}$	2.96GeV		${\widetilde g}_{\eta^{\prime\prime}a_0\pi}$	0.5 GeV	0.49 GeV
$g_{a_0K^+K^-}$	2.24GeV		$\{\phi_a, \phi_b\}$	{60°, -40°}	$\{10^{\circ}, -70^{\circ}\}$
$g_{a_0\eta\pi}$	3.03GeV	1			

Table.2. List of couplings and their phases determined by matching with experiment data.

Channels	Partial width [MeV] $\alpha = 1$	Partial width [MeV] $\alpha = 2$
$\eta^{\prime\prime} \to a_0 \pi \to \eta \pi \pi (total)$	4.01	4.25
$\eta^{\prime\prime} \rightarrow a_0 \pi \rightarrow \eta \pi \pi \ (tree)$	2.24	8.17
$\eta^{\prime\prime} \to K^* \overline{K} \to a_0 \pi \to \eta \pi \pi (tri)$	5.27	15.5
$\eta^{\prime\prime} \to K\overline{K}\pi(total)$	46.0	45.7
$\eta^{\prime\prime} \to K^* \overline{K} \to K \overline{K} \pi(tree)$	50.2	48.7
$\eta^{\prime\prime} \to a_0 \pi \to K \overline{K} \pi (tree + tri)$	0.79	1.51
$\eta^{\prime\prime} \to a_0 \pi \to K \overline{K} \pi(tree)$	0.28	1.10
$\eta^{\prime\prime} \to K^* \overline{K} \to a_0 \pi \to K \overline{K} \pi(tri)$	1.34	3.27
$ \begin{array}{c} \eta^{\prime\prime} \to K^* \overline{K} \to f_0 \pi \\ \to \pi^+ \pi^- \pi^0 (\text{tri}) \end{array} \end{array} $	0.241	0.242
$ \begin{array}{c} \eta^{\prime\prime} \rightarrow a_0 \pi \rightarrow K \bar{K} \rightarrow f_0 \pi \\ \rightarrow \pi^+ \pi^- \pi^0 (tri + tree) \end{array} \end{array} $	0.0047	0.00413

Table.3. Partial widths of $\eta'' \to a_0 \pi \to \eta \pi \pi, \eta'' \to K \overline{K} \pi$ and $\eta'' \to f_0 \pi \to \pi^+ \pi^- \pi^0$ by the parameters given in Table.2.

Fig.6. $K\overline{K}$ (left panel) and $K\pi$ (right panel) invariant mass spectra (red solid) at $\sqrt{s_1} = 1.42$ GeV.

Fig.7. $\eta \pi^0$ invariant mass spectrum (red solid) at $\alpha = 1$ (left) and $\alpha = 2$ (right). The doublepeak structure arises from the mass difference between the charged and the neutral loops.

Conclusions

- 1. The large suppression from the seemingly small Γ_{K^*} can be understood as being due to a small scale $\beta \sim O(\Gamma_{K^*})$.
- 2. The condition for the occurrence of the TS can be demonstrated by the motion of $y_i^{(i)}$.
- 3. The triangle mechanism can also enhance the $a_0\pi$ production from η'' .
- 4. The small $\eta'' \to a_0 \pi \to \eta \pi \pi$ branching ratio is due to the cancellation between the triangle and the tree diagrams.
- 5. Taken into account the non-zero Γ_{K^*} , the triangle singularity and the accompanying cancellation between charged and neutral loops is still the dominant contribution to the large isospin violation in $J/\Psi \rightarrow \gamma \eta'' \rightarrow \gamma f_0(980)\pi \rightarrow \gamma \pi^+ \pi^- \pi^0$.

References

- [1] M. Ablikim et al. [BESIII Collaboration], Phys. Rev. Lett. 108, 182001 (2012)
- [2] Jia-Jun Wu, Xiao-Hai Liu, Qiang Zhao and Bing-Song Zou, Phys. Rev. Lett. 108, 081803 (2012)
- [3] Xiao-Gang Wu, Jia-Jun Wu, Qiang Zhao, and Bing-Song Zou, Phys. Rev. D 87, 014023 (2013)
- [4] L. D. Landau, Nucl. Phys. 13, 181 (1959)
- [5] G. Bonnevay, I. J. R. Aitchison and J. S. Dowker, Nuovo Cim. 21, 3569 (1961)
- [6] R. E. Cutkosky, J. Math. Phys. 1, 429 (1960)
- [7] N. N. Achasov, A. A. Kozhevnikov and G. N. Shestakov, Phys. Rev. D 92, 036003 (2015)
- [8] G. 't Hooft and M. J. G. Veltman, Nucl. Phys. B 153,365(1961)
- [9] N. N. Achasov and A. V. Kiselev, Phys. Rev. D 70, 111901 (2004)

Thank you

Explicit absorptive part

$$\Im M(\Gamma) = \frac{1}{16\pi^2 \lambda [s_1, s_2, s_3]^{\frac{1}{2}}} (\Im W_{tot} + \Im T_{tot} + \Im \sigma_{tot})$$

The expressions for $\Im W_{tot}$, $\Im T_{tot}$ and $\Im \sigma_{tot}$ are real but different for each energy region.

Energy	$s_1 < s_1^-$	$s_1^- < s_1 < s_{1c}$	$s_{1c} < s_1 < s_1^+$	$s_1^+ < s_1$
$\Im W_{tot}$	$\pi \ln \left \frac{z_{11}^{(1)} z_{12}^{(1)} z_{21}^{(2)} z_{22}^{(2)} z_{11}^{(3)}}{z_{11}^{(2)} z_{12}^{(2)} z_{12}^{(3)}} \right $	$\pi \ln \left \frac{z_{21}^{(1)} z_{12}^{(1)} z_{21}^{(2)} z_{21}^{(3)}}{z_{11}^{(2)} z_{12}^{(3)}} \right $	$\pi \ln \left \frac{z_{21}^{(1)} z_{12}^{(1)} z_{21}^{(2)}}{z_{11}^{(2)} z_{21}^{(3)} z_{12}^{(3)}} \right $	$\pi \ln \left \frac{z_{21}^{(1)} z_{22}^{(2)} z_{21}^{(2)} z_{12}^{(2)}}{z_{11}^{(2)} z_{22}^{(2)} z_{11}^{(3)} z_{12}^{(3)}} \right $

Energy	$s_1 < s_1^-$	$s_1^- < s_1 < s_{1c}$	$s_{1c} < s_1 < s_1^+$	$s_1^+ < s_1$
$\Im T_{tot}$	$\pi \ln \left \frac{r_{31}^{(1)} r_{41}^{(2)} r_{42}^{(2)} (r_{32}^{(2)})^2 r_{31}^{(3)} r_{22}^{(3)}}{r_{21}^{(1)} r_{21}^{(1)} r_{31}^{(1)} r_{22}^{(2)} r_{22}^{(2)} r_{22}^{(2)} r_{22}^{(3)} r_{33}^{(3)}} \right $	$\pi \ln \left \frac{r_{11}^{(1)} r_{32}^{(2)} r_{41}^{(3)} r_{12}^{(3)}}{r_{22}^{(1)} r_{32}^{(1)} r_{41}^{(1)} r_{12}^{(2)} r_{22}^{(3)} r_{31}^{(3)}} \right _{r_{22}^{(2)} r_{32}^{(2)} r_{41}^{(3)} r_{12}^{(2)} r_{21}^{(3)} r_{32}^{(3)} r_{41}^{(1)}}$	$\pi \ln \left \frac{r_{11}^{(1)} r_{32}^{(2)} r_{41}^{(2)} r_{22}^{(3)} (r_{31}^{(3)})^2 r_{41}^{(3)}}{r_{22}^{(1)} r_{31}^{(1)} r_{41}^{(1)} r_{12}^{(2)} r_{21}^{(2)} r_{13}^{(3)} r_{32}^{(3)}} \right $	$\pi \ln \left[\frac{r_{11}^{(1)} r_{12}^{(2)} r_{22}^{(2)} r_{41}^{(3)} r_{12}^{(3)} r_{22}^{(3)}}{(r_{32}^{(1)})^2 r_{41}^{(1)} r_{42}^{(1)} r_{21}^{(2)} r_{42}^{(3)} r_{32}^{(3)}} \right]$

$$\Im\sigma_{tot} \equiv \Im\sigma^{(1)} - \Im\sigma^{(2)} + \Im\sigma^{(3)} = -2\pi\Theta(s_{1c} - s_1)\ln\left|\frac{y_0^{(1)} - 1}{y_0^{(1)}}\right| - 2\pi\Theta(s_1 - s_1^+)\ln\left|\frac{y_0^{(2)} - 1}{y_0^{(2)}}\right|$$

The parameters $z_{jk}^{(i)}$ and $r_{jk}^{(i)}$ are functions of $\{y_j^{(i)}\}$