Hidden charm pentaquark states and $\Sigma_{c} \bar{D}^{(*)}$ interaction in ChPT

Lu Meng (孟 璐)
Peking University

Based on arXiv:1905.07742 and work in preparation
Together with B. Wang, G. J. Wang, and S. L. Zhu
2019.06.23 Hunan Normal University

Contents

1 Introduction
$2 \Sigma_{c} \bar{D}^{(*)}$ interaction in ChPT
3 Numerical results
4 Summary and Outlook

Introduction

P_{c} states in LHCb

- In 2015, $\Lambda_{b} \rightarrow J / \psi p K, P_{c}(4380)$ and $P_{c}(4450)$
- Recently, $P_{c}(4450) \Rightarrow P_{c}(4440)+P_{c}(4457)$; A new state $P_{c}(4312)$ with 7.3σ; $I=1 / 2$?

[^0]
Compact or molecular states ?

- Compact pentaquark states: tightly bounded states
- Molecular states: loosely bound states of two color singlet hadrons
- The three P_{c} states under the thresholds $9 \mathrm{MeV}, 5 \mathrm{MeV}$ and 22 MeV
- Three P_{c} states are the good candidates of molecular states
- Our work
\Rightarrow Obtain the $\Sigma_{c} \bar{D}^{(*)}$ potential in ChPT
\Rightarrow Solve the Schrödinger Eq.

Chiral perturbation theory

- QCD Lagrangian

$$
\begin{aligned}
& \mathcal{L}_{Q C D}=\sum_{f} \bar{q}_{f}\left(i \not D-\mathcal{M} q_{f}\right)-\frac{1}{4} G_{\mu \nu}^{a} G^{\mu \nu, a} \\
& f=(u, d, s, c, b, t), \\
& \mathcal{M}=\operatorname{diag}\left(m_{u}, m_{d}, m_{s}, m_{c}, m_{b}, m_{t}\right)
\end{aligned}
$$

S.Weinberg

- two approximate symmetry: chiral symmetry and heavy quark symmetry

$$
\begin{equation*}
m_{u}, m_{d}, m_{s} \ll 1 \mathrm{GeV}, \quad m_{c}, m_{b} \gg \Lambda_{Q C D} \tag{1}
\end{equation*}
$$

- Chiral perturbation theory (ChPT) and heavy quark effective theory (HQET)
- $\mathrm{SU}(3)_{L} \times \mathrm{SU}(3)_{R} \rightarrow \mathrm{SU}(3)_{V} \quad \Rightarrow 8$ Goldstone bosons
- Quark masses break the chiral symmetry explicitly: $m_{\pi}^{2} \sim m_{q}$
- Freedom: Goldstone bosons and matter fields, e.g. N, D and Σ_{c}
- Expansion $\epsilon / \Lambda_{\chi}, \Lambda_{\chi} \approx 4 \pi F_{\pi} \approx m_{\rho}$ $\epsilon: m_{\pi}$, momentum of pion and residue momentum of matter fields

Why Chiral perturbation theory (ChPT)?

- Effective theory, model independence
- Systematically expansion, controllable and estimable error
- Loop diagrams
- Lattice QCD: chiral extrapolation
- Modern theory of nucleon force Phys. Rept. 503, 1 (2011); Rev. Mod. Phys. 81, 1773 (2009).

$\Sigma_{c} \bar{D}^{(*)}$ interaction in ChPT

Weinberg's formalism

- Enhanced by pinch singularity, two nucleon on-shell, power count fails
- Time-ordered perturbation theory

$$
\begin{equation*}
A m p=\langle N N| H_{I}|N N\rangle+\sum_{\psi} \frac{\langle N N| H_{I}|\psi\rangle\langle | H_{I}|N N\rangle}{E_{N N}-E_{\psi}} \tag{2}
\end{equation*}
$$

- Only include the two particle irreducible (2PIR) graphs in potential
- Potential as the kernel of Lippmann-Schwinger Eq. or Schrödinger Eq.
- The tree level one-pion exchange diagrams would be iterated to generate the 2PR contributions automatically

Feynman diagrams of $\Sigma_{c} \bar{D}^{(*)}$ to NLO

- All intermediate states, keep mass splitting, HQS violation
- Unknown low energy constants (LECs): contact terms

Heavy quark symmetry: violation

- $\Lambda_{Q C D} / m_{c} \simeq 0.2$, the HQS violation is sizable
- HQS with guidance for compact systems, $\left(\Sigma_{c}^{*}, \Sigma_{c}\right)(2518,2454) \mathrm{MeV}$
- HQS violation effect is more significant for the $\Sigma_{c} \bar{D}$ system than $\Sigma_{c} \bar{D}^{*}$

- Minimum of potential with the loosely bound state: $-0.06-0.15 \mathrm{GeV}$.

It may be misleading to adopt the HQS to calculate the molecular states.

Heavy quark symmetry: quark model

- The heavy dof.: spectators; light dof.: interactions

$$
\begin{align*}
V_{\text {quark }- \text { level }}= & {\left[V_{a}+\tilde{V}_{a} \boldsymbol{l}_{1} \cdot \boldsymbol{l}_{2}\right]+\left[\frac{V_{c}}{m_{c}} \boldsymbol{l}_{1} \cdot \boldsymbol{h}_{2}+\frac{V_{d}}{m_{c}} \boldsymbol{l}_{2} \cdot \boldsymbol{h}_{1}+\frac{V_{e}}{m_{c}^{c}} \boldsymbol{h}_{1} \cdot \boldsymbol{h}_{2}\right], } \\
& V_{\Sigma_{c} \bar{D}}=V_{1}, \quad V_{\Sigma_{c} \bar{D}^{*}}=V_{2}+\tilde{V}_{2} \boldsymbol{S}_{1} \cdot \boldsymbol{S}_{2}, \\
& V_{\Sigma_{c}^{*} \bar{D}}=V_{3}, \quad V_{\Sigma_{c}^{*} \bar{D}^{*}}=V_{4}+\tilde{V}_{4} \boldsymbol{S}_{1} \cdot \boldsymbol{S}_{2} . \tag{3}
\end{align*}
$$

- Ignoring mass splittings in loops, the HQS manifests itself
M. Z. Liu, et.al arXiv:1903.11560 [hep-ph].
- In QM, the HQS violation vanishes for $\Sigma_{c} \bar{D}$ system

$$
\begin{equation*}
\left\langle\boldsymbol{l}_{\boldsymbol{1}} \cdot \boldsymbol{h}_{2}\right\rangle=\left\langle\boldsymbol{l}_{2} \cdot \boldsymbol{h}_{1}\right\rangle=\left\langle\boldsymbol{h}_{1} \cdot \boldsymbol{h}_{\mathbf{2}}\right\rangle=0 \tag{4}
\end{equation*}
$$

- QM: analytical terms; Loop diagrams: nonanalytical structures
- Another eg. enhancement of isospin violation in loop diagrams F. K. Guo, H. J. Jing, U. G. Meißner and S. Sakai, Phys. Rev. D 99, no. 9, 091501 (2019).

Loops bring novel effects.

Numerical results

Contact terms

$$
\begin{align*}
\mathcal{V}_{\Sigma_{c} \bar{D}}^{X_{1}, 1} & =-D_{1}-\tilde{D}_{1}\left(2 \boldsymbol{I}_{1} \cdot \boldsymbol{I}_{2}\right) \tag{5}\\
\mathcal{V}_{\Sigma_{c} \bar{D}^{*}}^{X_{2,1}} & =-\left(D_{1}+\frac{1}{3} D_{2} \boldsymbol{\sigma} \cdot \boldsymbol{T}\right)-\left(\tilde{D}_{1}+\frac{1}{3} \tilde{D}_{2} \boldsymbol{\sigma} \cdot \boldsymbol{T}\right)\left(2 \boldsymbol{I}_{1} \cdot \boldsymbol{I}_{2}\right)
\end{align*}
$$

- Package heavy mesons exchanged interaction like ρ and ω
- Renormalization
\Rightarrow absorb the divergence in the loops
\Rightarrow remove the scale dependence.
- Contact or pion-exchange? depend on regularization schemes Phys. Rev. D91, 034002 (2015).
- Depend on chiral truncation order; types of regulator and values of cutoff Phys. Rept. 503, 1 (2011).
- Dimensional regularization, $\overline{M S}$-scheme, $\Lambda_{\chi}=1.0 \mathrm{GeV}$; Gaussian regulator $\Lambda=0.5 \mathrm{GeV}$

$$
\begin{equation*}
V(r)=\frac{1}{(2 \pi)^{3}} \int d^{3} \boldsymbol{q} e^{i \boldsymbol{q} \cdot \boldsymbol{r}} \mathcal{V}(\boldsymbol{q}) \mathcal{F}(\boldsymbol{q}), \quad \mathcal{F}(\boldsymbol{q})=\exp \left(-\boldsymbol{q}^{2 n} / \Lambda^{2 n}\right) \tag{6}
\end{equation*}
$$

Scenario II: single channel

$$
\begin{equation*}
\text { For } I=1 / 2, \quad \mathcal{V}_{\Sigma_{c} \bar{D}}^{X_{1}, 1}=-\mathbb{D}_{1}, \quad \mathcal{V}_{\Sigma_{c}^{*} D}^{X_{2}, 1}=-\left(\mathbb{D}_{1}+\frac{1}{3} \mathbb{D}_{2} \boldsymbol{\sigma} \cdot \boldsymbol{T}\right) \tag{7}
\end{equation*}
$$

- There is a very SMALL region where three states coexist as the molecular states
- Restricting the binding energy in exp., it is hard to reproduce three states as molecules simultaneously

$$
\langle\boldsymbol{\sigma} \cdot \boldsymbol{T}\rangle= \begin{cases}2 & J=1 / 2 \\ -1 & J=3 / 2\end{cases}
$$

Spin-Spin interaction is an obstacle.

Scenario III: couple channel

Scenario III: couple channel

- Reproduce the three P_{c} states as molecular states simultaneously
- Attraction mainly stems from the contact interaction
- The couple channel effect is important
- Minimum of potential

Summary and Outlook

Summary and Outlook

- $\Sigma_{c} \bar{D}^{(*)}$ potential in ChPT to NLO
\Rightarrow contact, $1-\pi, 2-\pi$
\Rightarrow HQS breaking effect, IMPORTANT!
\Rightarrow Couple channel effect
\Rightarrow Reproduce three P_{c} states simultaneously as molecular states
- Outlook
\Rightarrow Lattice QCD simulation on $\Sigma_{c} \bar{D}^{(*)}$ potential is called for
\Rightarrow Chiral extrapolation
\Rightarrow Three P_{c} states are HQSS partner states, more HQSS and HQFS partner states in molecular scheme? 1903.11560; 1904.01296...
\Rightarrow HQS breaking effect? $\Sigma_{c}^{*} \bar{D}^{(*)}$ and $\Sigma_{c}^{(*)} D^{(*)}$ system (on-going)
\Rightarrow Test the ChPT in the charm sector for chiral dynamics, $c(q q)_{s=1}^{I=1}=\Sigma_{c}+\Sigma_{c}^{*}$

Thanks for your attention!

Scenario I: model

$$
\begin{gather*}
\mathcal{L}_{\text {quark }}=-\frac{1}{2} c_{s} \bar{q} q \bar{q} q-\frac{1}{2} c_{t}(\bar{q} \boldsymbol{\sigma} q) \cdot(\bar{q} \boldsymbol{\sigma} q) \tag{8}\\
\text { For } I=1 / 2, \quad \mathcal{V}_{\Sigma_{c} \bar{D}}^{X_{1}, 1}=-\mathbb{D}_{1}, \quad \mathcal{V}_{\Sigma_{c}^{*} D}^{X_{2.1}}=-\left(\mathbb{D}_{1}+\frac{1}{3} \mathbb{D}_{2} \boldsymbol{\sigma} \cdot \boldsymbol{T}\right) \tag{9}
\end{gather*}
$$

Physics at the different scales never talk to each other

Effective field theory

- An effective field theory (EFT) is a low-energy approximation to some underlying, more fundamental theory.
\Rightarrow Large energy scale Λ
- The EFT Lagrangian: the most general Lagrangian with SYMMETRIES of the underlying theory.
\Rightarrow Low-energy constants (LECs)
- Expand the theory in powers of p / Λ
\Rightarrow Power counting law

$$
\begin{equation*}
\mathcal{M}=\sum_{\nu}\left(\frac{Q}{\Lambda}\right)^{\nu} f\left(Q / \mu, g_{i}\right) \tag{10}
\end{equation*}
$$

- Calculate and renormalize order-by-order
- Controllable and estimable error
- Prediction: experiment data as input

S.Weinberg

Go for the messes - that's where
the action is. Physica A96 (1979) 327-340

Contact terms of NN

C_{S}	C_{T}	Λ, channel	C_{S}	C_{T}	Λ, channel
Ordonez:1995rz			Epelbaum:2004fk		
112	13.5	$I=0$	-107.57	-11.64	$\{0.45,0.5\}, n p$
-26.6	-68.9	$I=1$	88.61	53.20	$\{0.6,0.5\}, n p$
Machleidt:2011zz			-121.08	-6.17	$\{0.45,0.7\}, n p$
-100.28	5.61	$\Lambda=0.5, n p$	33.70	25.66	$\{0.6,0.7\}, n p$
-99.55	7.07	$\Lambda=0.6, n p$			

$$
\begin{gather*}
\mathcal{L}_{N N}^{(0)}=-\frac{1}{2} C_{S} \bar{N} N \bar{N} N-\frac{1}{2} C_{T} \bar{N} \boldsymbol{\sigma} N \cdot \bar{N} \boldsymbol{\sigma} N \tag{11}\\
\mathcal{V}_{N N}=C_{S}+C_{T} \boldsymbol{\sigma} \cdot \boldsymbol{\sigma} \tag{12}
\end{gather*}
$$

Spontaneous symmetry breaking

- Chiral symmetry: Conservation charge Q_{A}^{a}

$$
\begin{gather*}
H_{Q C D}^{0}|i,+\rangle=E_{i}|i,+\rangle, \quad P|i,+\rangle=+|i,+\rangle, \quad|\phi\rangle=Q_{A}^{a}|i,+\rangle \tag{13}\\
H_{Q C D}^{0}|\phi\rangle=E_{i}|\phi\rangle, \quad P|\phi\rangle=-|\phi\rangle \tag{14}
\end{gather*}
$$

- Degenerate states with different parity? \rightarrow SSB
- Goldstone's theorem: spontaneous breaking of continuous global symmetries implies the existence of massless particles.
- NO. of Goldstone boson $=n_{G}-n_{H}$
G : symmetry group of Lagrangian;
H : the subgroup leaves the groud state invariant after SSB
- $\mathrm{SU}(3)_{L} \times \mathrm{SU}(3)_{R} \rightarrow \mathrm{SU}(3)_{V} \quad \Rightarrow 8$ Goldstone bosons
- Quark masses break the chiral symmetry explicitly: $m_{\pi}^{2} \sim m_{q}$

$$
\begin{align*}
V & \sim \int \frac{d^{d} \lambda^{4-d}}{(2 \pi)^{d}} \frac{1}{-v \cdot l+i \epsilon} \frac{1}{v \cdot l+i \epsilon} \frac{1}{l^{2}-m_{1}^{2}+i \epsilon} \frac{1}{(l+q)^{2}-m_{2}^{2}+i \epsilon} \tag{15}\\
& \sim \int \frac{d^{d} \lambda^{4-d}}{(2 \pi)^{d}} \frac{1}{-l^{0}+i \epsilon} \frac{1}{l^{0}+i \epsilon} \frac{1}{l^{02}-\omega_{1}^{2}+i \epsilon} \frac{1}{l^{02}-\omega_{2}^{2}+i \epsilon} \tag{16}\\
& \frac{1}{-v \cdot l+i \epsilon} \frac{1}{v \cdot l+i \epsilon} \rightarrow \frac{1}{-v \cdot l-\frac{l^{2}}{2 M_{1}}+i \epsilon} \frac{1}{v \cdot l-\frac{l^{2}}{2 M_{2}}+i \epsilon} \tag{17}
\end{align*}
$$

power counting: $\frac{1}{l}$, our calculation $\frac{M}{l^{2}}$

$$
\begin{gather*}
\Sigma_{c}=\left(\begin{array}{cc}
\Sigma_{c}^{++} & \frac{\Sigma_{c}^{+}}{\sqrt{2}} \\
\frac{\Sigma_{c}^{+}}{\sqrt{2}} & \Sigma_{c}^{0}
\end{array}\right), \Sigma_{c}^{* \mu}=\left(\begin{array}{cc}
\Sigma_{c}^{*++} & \frac{\Sigma_{c}^{*+}}{\sqrt{2}} \\
\frac{\Sigma_{c}^{*+}}{\sqrt{2}} & \Sigma_{c}^{* 0}
\end{array}\right)^{\mu}, \tag{20}\\
\tilde{P}=\binom{\bar{D}^{0}}{\bar{D}^{-}}, \quad \tilde{P}^{* \mu}=\binom{\bar{D}^{* 0}}{\bar{D}^{*-}}, \tag{21}\\
\psi^{\mu}=\mathcal{B}^{* \mu}-\sqrt{\frac{1}{3}}\left(\gamma^{\mu}+v^{\mu}\right) \gamma^{5} \mathcal{B}, \\
\tilde{H}=\left(\tilde{P}_{\mu}^{*} \gamma^{\mu}+i \tilde{P} \gamma_{5}\right) \frac{1-\phi}{2} \tag{22}\\
\mathcal{L}_{\Sigma_{c} \phi}^{(0)}=-\operatorname{Tr}\left[\overline{\psi^{\mu}} i v \cdot D \psi_{\mu}\right]+i g_{a} \epsilon_{\mu \nu \rho \sigma} \operatorname{Tr}\left[\bar{\psi}^{\mu} u^{\rho} v^{\sigma} \psi^{\nu}\right]+i \frac{\delta_{a}}{2} \operatorname{Tr}\left[\bar{\psi}^{\mu} \sigma_{\mu \nu} \psi^{\nu}\right] . \\
\mathcal{L}_{\bar{D} \phi}^{(0)}=-i\langle\tilde{\tilde{H}} v \cdot D \tilde{H}\rangle+g_{b}\left\langle\tilde{\tilde{H}} u_{\mu} \gamma^{\mu} \gamma_{5} \tilde{H}\right\rangle-\frac{\delta_{b}}{8}\left\langle\tilde{\tilde{H}} \sigma^{\mu \nu} \tilde{H} \sigma_{\mu \nu}\right\rangle, \tag{23}
\end{gather*}
$$

Building Block

- building block

	$D_{\mu} \psi$	ψ	$\bar{\psi}$	$\chi_{ \pm}$	$f_{\mu \nu}^{ \pm}$	u_{μ}	Γ_{μ}
CH	$K D_{\mu} \psi$	$K \psi$	$\bar{\psi} K^{\dagger}$	$K \chi_{ \pm} K^{\dagger}$	$K f_{\mu \nu}^{ \pm} K^{\dagger}$	$K u_{\mu} K^{\dagger}$	$K \Gamma^{\mu} K^{\dagger}-\partial^{\mu} K K^{\dagger}$
P	$\gamma^{0} D^{\mu} \psi$	$\gamma^{0} \psi$	$\bar{\psi} \gamma^{0}$	$\pm \chi_{ \pm}$	$\pm f^{ \pm \mu \nu}$	$-u^{\mu}$	Γ^{μ}
C	$C D_{\mu}^{\prime T} \bar{\psi}^{T}$	$C \bar{\psi}^{T}$	$\psi^{T} C$	$\chi_{ \pm}^{T}$	$\mp\left(f_{\mu \nu}^{ \pm}\right)$	$\left(u_{\mu}\right)^{T}$	$-\left(\Gamma_{\mu}\right)^{T}$

$$
\begin{gather*}
F_{\mu \nu}^{ \pm}=u^{\dagger} F_{\mu \nu}^{R} u \pm u F_{\mu \nu}^{L} u^{\dagger}, \\
F_{\mu \nu}^{R}=\partial_{\mu} r_{\nu}-\partial_{\nu} r_{\mu}-i\left[r_{\mu}, r_{\nu}\right], \tag{24}\\
F_{\mu \nu}^{L}=\partial_{\mu} l_{\nu}-\partial_{\nu} l_{\mu}-i\left[l_{\mu}, l_{\nu}\right] . \tag{25}\\
\Gamma_{\mu}=\frac{1}{2}\left[u^{\dagger}\left(\partial_{\mu}-i r_{\mu}\right) u+u\left(\partial_{\mu}-i l_{\mu}\right) u^{\dagger}\right], \tag{26}\\
u_{\mu} \equiv \frac{1}{2} i\left[u^{\dagger}\left(\partial_{\mu}-i r_{\mu}\right) u-u\left(\partial_{\mu}-i l_{\mu}\right) u^{\dagger}\right], \tag{27}\\
\chi=2 B_{0}(s+i p), \quad \chi_{ \pm}=u^{\dagger} \chi u^{\dagger} \pm u \chi^{\dagger} u \tag{28}
\end{gather*}
$$

Effective field theory

- An effective field theory (EFT) is a low-energy approximation to some underlying, more fundamental theory.
\Rightarrow Large energy scale Λ
- The EFT Lagrangian: the most general Lagrangian with the symmetries of the underlying theory.
\Rightarrow Low-energy constants (LECs)
- Expand the theory in powers of p / Λ
\Rightarrow Power counting law
- Calculate and renormalize order-by-order
- Prediction: experiment data as input
- $m_{u}, m_{d}, m_{s} \ll 1 \mathrm{GeV} \leq m_{c}, m_{b}, m_{t}$; Chiral limit: $m_{u}, m_{d}, m_{s}=0$
- The QCD Lagrangian in the chiral limit can then be written as

$$
\begin{equation*}
\mathcal{L}_{Q C D}^{0}=\sum_{l=u, d, s}\left(\bar{q}_{R, l} i \not D D q_{R, l}+\bar{q}_{L, l} i \not D D q_{L, l}\right)-\frac{1}{4} \mathcal{G}_{\mu \nu, a} \mathcal{G}_{a}^{\mu \nu} \tag{29}
\end{equation*}
$$

where $P_{R, L}=\frac{1}{2}\left(1 \pm \gamma_{5}\right)$

- Chiral symmetry $\mathrm{SU}(3)_{L} \times \mathrm{SU}(3)_{R} \times \mathrm{U}(1)_{L} \times \mathrm{U}(1)_{R}$

$$
\begin{align*}
& \left(\begin{array}{c}
u_{L} \\
d_{L} \\
s_{L}
\end{array}\right) \mapsto U_{L}\left(\begin{array}{c}
u_{L} \\
d_{L} \\
s_{L}
\end{array}\right)=\exp \left(-i \sum_{a=1}^{8} \Theta_{a}^{L} \frac{\lambda_{a}}{2}\right) e^{-i \Theta^{L}}\left(\begin{array}{c}
u_{L} \\
d_{L} \\
s_{L}
\end{array}\right), \\
& \left(\begin{array}{c}
u_{R} \\
d_{R} \\
s_{R}
\end{array}\right) \mapsto U_{R}\left(\begin{array}{c}
u_{R} \\
d_{R} \\
s_{R}
\end{array}\right)=\exp \left(-i \sum_{a=1}^{8} \Theta_{a}^{R} \frac{\lambda_{a}}{2}\right) e^{-i \Theta^{R}}\left(\begin{array}{c}
u_{R} \\
d_{R} \\
s_{R}
\end{array}\right), \tag{30}
\end{align*}
$$

Spontaneous symmetry breaking

- Goldstone's theorem: spontaneous breaking of continuous global symmetries implies the existence of massless particles.
- NO. of Goldstone boson $=n_{G}-n_{H}$
G : symmetry group of Lagrangian;
H : the subgroup leaves the groud state invariant after SSB
- $\mathrm{SU}(3)_{L} \times \mathrm{SU}(3)_{R} \rightarrow \mathrm{SU}(3)_{V} \quad \Rightarrow 8$ Goldstone bosons
- nonlinear realization of chiral symmetry

$$
\begin{align*}
U(x)= & \exp \left(i \frac{\phi(x)}{F_{0}}\right), \quad U \rightarrow R U L^{\dagger}, \tag{31}\\
\phi(x) & =\sum_{a=1}^{8} \lambda_{a} \phi_{a}(x) \equiv\left(\begin{array}{ccc}
\pi^{0}+\frac{1}{\sqrt{3}} \eta & \sqrt{2} \pi^{+} & \sqrt{2} K^{+} \\
\sqrt{2} \pi^{-} & -\pi^{0}+\frac{1}{\sqrt{3}} \eta & \sqrt{2} K^{0} \\
\sqrt{2} K^{-} & \sqrt{2} \bar{K}^{0} & -\frac{2}{\sqrt{3}} \eta
\end{array}\right) . \tag{32}
\end{align*}
$$

- Quark masses break the chiral symmetry explicitly: $m_{\pi}^{2} \sim m_{q}$

Effective Lagrangian and Power-Counting Scheme

- The Lagrangian is organized as the NO. of derivatives of Goldstone bosons
- The chiral dimension D of given diagrams

$$
\begin{gather*}
\mathcal{M}\left(t p_{i}, t^{2} m_{q}\right)=t^{D} \mathcal{M}\left(p_{i}, m_{q}\right), \tag{33}\\
D=2+2 N_{L}+\sum_{n=1}^{\infty} N_{2 n}(2 n-2), \tag{34}
\end{gather*}
$$

- $\Lambda_{C S B}$ scale: either $4 \pi F_{0}$ or m_{ρ}
- The leading order Lagrangian

$$
\begin{equation*}
\mathcal{L}_{2}=\frac{F_{0}^{2}}{4} \operatorname{Tr}\left[\nabla_{\mu} U\left(\nabla^{\mu} U\right)^{\dagger}\right]+\frac{F_{0}^{2}}{4} \operatorname{Tr}\left(\chi U^{\dagger}+U \chi^{\dagger}\right) . \tag{35}
\end{equation*}
$$

S. Weinberg, Physica A 96, 327 (1979).
J. Gasser and H. Leutwyler, Annals Phys. 158, 142 (1984).
J. Gasser and H. Leutwyler, Nucl. Phys. B 250, 465 (1985).

Heavy baryon formalism

- the baryon mass does not vanish in the chiral limit
\Rightarrow mess up the power counting
- the heavy and light freedom

$$
\begin{gather*}
p_{\mu}=M v_{\mu}+l_{\mu} \tag{36}\\
 \tag{37}\\
\Psi=e^{-i M v \cdot x}(H+h), \text { with } \psi H=H, \quad \nLeftarrow h=-h \\
\mathcal{L}=\bar{\Psi}(i \not \partial-M) \Psi \tag{38}\\
= \\
\bar{H}(i v \cdot \partial) H-\bar{h}(i v \cdot \partial+2 M) h+\bar{H} i \not{ }^{\perp} h+\bar{h} i \not \partial^{\perp} H
\end{gather*}
$$

- Integrate the heavy field h,

$$
\begin{equation*}
\mathcal{L}=\bar{H}(i v \cdot \partial) H+\mathcal{O}\left(\frac{1}{2 M}\right) \tag{39}
\end{equation*}
$$

[^1]
Heavy baryon formalism

- Power counting for diagrams with only one baryon line

$$
D=2 L+1+\sum_{n=2}^{\infty}(n-2) N_{n}^{M}+\sum_{n=1}^{\infty}(n-1) N_{n}^{B}
$$

- The leading order Lagrangian

$$
\begin{align*}
\mathcal{L}^{(1)} & =\bar{\Psi}\left(i \not D-M_{H}\right) \Psi+\frac{\tilde{g}_{A}}{2} \bar{\Psi} \gamma^{\mu} \gamma_{5} u_{\mu} \Psi \tag{40}\\
\mathcal{L}^{(1)} & =\bar{H}(i v \cdot D) H+\tilde{g}_{A} \operatorname{Tr} \bar{H} S^{\mu} u_{\mu} H \tag{41}
\end{align*}
$$

where $S_{\mu}=\frac{i}{2} \gamma_{5} \sigma_{\mu \nu} v^{\nu}$ is the covariant spin-operator.

- In this work,

$$
\begin{gathered}
Q_{B}=\operatorname{diag}(2,1,1) \text { and } Q_{M}=\operatorname{diag}(2 / 3,-1 / 3,-1 / 3) \\
r_{\mu}=l_{\mu}=-e Q A_{\mu} ; \quad F_{\mu \nu}^{+}=-2 e Q F_{\mu \nu}+\ldots
\end{gathered}
$$

- Traceless part and trace part: \hat{A} and $\operatorname{Tr}(A)$

[^0]: Phys.Rev.Lett. 115 (2015) 072001; arXiv:1904.03947;

[^1]: E. E. Jenkins and A. V. Manohar, Phys. Lett. B 255, 558 (1991),
 V. Bernard, N. Kaiser, J. Kambor and U. G. Meissner, Nucl. Phys. B 388, 315 (1992).

