# Spectrum of the fully-heavy tetraquark state $QQ\bar{Q}'\bar{Q}'$

**Guang-Juan Wang** 

**Peking University** 

In collaboration with L. Meng (孟璐) and S. L. Zhu (朱世琳)

Hunan Normal University

## Background

• Since the discovery of X(3872) in 2003, numerous exotic structures "XYZ" have been observed in experiments.

C. Z. Yuan, Int.J.Mod.Phys. A33,1830018

• The theoretical interpretations of "XYZ" include the loosely bound molecular states, the compact tetraquark states, and the hybirds, etc.



## Motivation

• PhD thesis result using CMS data:



✓ Best mass : 18.4 ± 0.1
 (stat.) ± 0.2 (syst.) GeV

- ✓  $M(bb\overline{b}\overline{b}) < 2M(\Upsilon(1S))$
- ✓ Global significance was
   3.6σ

JHEP 1705, 013 (2017) S. Durgut (CMS), Search for Exotic Mesons at CMS (2018), http://meetings.aps.org/Meeting/AP R18/Session/U09.6

✓ No significant excess is found for  $X_{bb\overline{b}\overline{b}}$  in the mass range (17.5-20.0) GeV.

JHEP 1810, 086 (2018)

### Motivation

- Theoretical works: existence of the stable fully-heavy tetraquark state
- ✓ Positive: bbbb ~ 18 20 GeV, ccccc ~ 5 7 GeV: arXiv:1612.00012, Eur. Phys. J. C 78, 647, EPJ Web Conf. 182, 02028, Phys. Lett. B 718, 545, Phys. Rev. D 70, 014009 ...
- ✓ Negative: no stable QQQQQ states exist.
  Phys. Rev. D 97, 094015, Phys. Rev. D.97.054505, arXiv:1901.02564 ...
- A fully-heavy tetra-quark state:
  - ✓ Two color configurations:  $\overline{3}_c \otimes 3_c = 1_c$  and  $6_c \otimes \overline{6}_c = 1_c$ .
  - ✓ Short-range one-gluon-exchange (OGE) potential dominates.
  - ✓ A good candidate for compact tetraquark state.
  - ✓ Nonrelativistic quark model.



### Quark model

• Model I

$$\begin{split} V_{ij}(r_{ij}) &= \frac{\lambda_i}{2} \frac{\lambda_j}{2} \left( V_{\text{coul}} + V_{\text{conf}} + V_{\text{hyp}} + V_{\text{cons}} \right) \\ &= \frac{\lambda_i}{2} \frac{\lambda_j}{2} \left( \frac{\alpha_s}{r_{ij}} - \frac{3b}{4} r_{ij} - \frac{8\pi\alpha_s}{3m_i m_j} \mathbf{s}_i \cdot \mathbf{s}_j e^{-\tau^2 r^2} \frac{\tau^3}{\pi^{3/2}} + V_{\text{cons}} \right) \end{split}$$

The running coupling constant

C. Y. Wong *et.al.,* Phys. Rev. C 65, 014903

$$\alpha_s(Q^2) = \frac{12\pi}{(33 - 2N_f)\ln(A + Q^2/B^2)}$$

• Model II  

$$V_{ij}(r_{ij}) = -\frac{3}{16} \sum_{i < j} \lambda_i \lambda_j \Big( -\frac{\kappa(1 - \exp(-r_{ij}/r_c))}{r_{ij}} + \lambda r_{ij}^p + \lambda r_{ij}^p - \Lambda + \frac{8\pi}{3m_i m_j} \kappa'(1 - \exp(-r_{ij}/r_c)) \frac{\exp(-r_{ij}^2/r_0^2)}{\pi^{3/2} r_0^3} \mathbf{s}_i \cdot \mathbf{s}_j \Big), \text{ All the mass information}$$

B. Silvestre-Brac, Few Body Syst. 20, 1

#### Quark model

• The parameters 🗧

#### Mass spectra of the mesons

TABLE I. The values of parameters in quark model I and model II.

| Model I  |   |       | $m_c[\text{GeV}]$ | $m_b[\text{GeV}]$ | $b[{ m GeV}^2]$ | $\tau [{\rm GeV}]$ | $V_{\rm cons}[{\rm GeV}]$ | Α                     | $B[{ m GeV}]$           |        |
|----------|---|-------|-------------------|-------------------|-----------------|--------------------|---------------------------|-----------------------|-------------------------|--------|
| woder 1  |   |       | 1.776             | 5.102             | 0.18            | 0.897              | 0.62                      | 10                    | 0.31                    |        |
| Model II | p | $r_c$ | $m_c[\text{GeV}]$ | $m_b[\text{GeV}]$ | $\kappa$        | $\kappa'$          | $\lambda [{ m GeV}^2]$    | $\Lambda [{\rm GeV}]$ | $A[\mathrm{GeV}^{B-1}]$ | В      |
|          | 1 | 0     | 1.836             | 5.227             | 0.5069          | 1.8609             | 0.1653                    | 0.8321                | 1.6553                  | 0.2204 |

TABLE II. The mass spectra of the heavy quarkonia in units of MeV. The  $M_{ex}$ ,  $M_{th}^{I}$ , and  $M_{th}^{II}$  refer to the mass spectra of mesons from PDG, in model I, and in model II, respectively.

|              | $M_{\rm ex}$ | $M^I_{th}$ | $M^{II}_{th}$ |                | $M_{\rm ex}$ | $M^I_{th}$ | $M_{th}^{II}$ |  |
|--------------|--------------|------------|---------------|----------------|--------------|------------|---------------|--|
| $B_c$        | 6274.9       | 6319.4     | 6293.5        |                |              |            |               |  |
| $\eta_c$     | 2983.9       | 3056.5     | 3006.6        | $\eta_b$       | 9399.0       | 9497.8     | 9427.9        |  |
| $\eta_c(2S)$ | 3637.6       | 3637.6     | 3621.2        | $\Upsilon(1S)$ | 9460.30      | 9503.6     | 9470.4        |  |
| $J/\psi$     | 3096.9       | 3085.1     | 3102.1        | $\Upsilon(2S)$ | 10023.26     | 9949.7     | 10017.8       |  |
| $\psi(2S)$   | 3686.1       | 3652.4     | 3657.8        | $\Upsilon(3S)$ | 10355.2      | 10389.8    | 10440.6       |  |

#### Phys.Rev.D 98, 030001

#### Wave function

• Wave function of tetraquark state: No. of basis  $N^3 = 2^3$ .

$$\psi_{JJ_z} = \sum \left[ \varphi_{n_a J_a}(\mathbf{r}_{12}, \beta_a) \otimes \varphi_{n_b J_b}(\mathbf{r}_{34}, \beta_b) \otimes \phi_{NL_{ab}}(\mathbf{r}, \beta) \right]_{JJ_z},$$

• Basic wave function of each Jacobi coordinate

$$\varphi_{n_a J_a M_a} = [\phi_{n_a l_a}(\mathbf{r}_{12}, \beta_a)\chi_{s_a}]_{M_a}^{J_a} \chi_f \chi_{c_a}$$

 $\chi_{s,f,c}$ : the wave function in the spin, flavor, and color space.



C. Y. Wong, Phys.Rev.C69,055202; Emiko Hiyama et.al., Prog.Part.Nucl.Phys. 51 223-307

**Guang-Juan Wang** 

18th全国中高能核物理大会,2019/06/24

7

#### S-wave tetraquark state

- S-wave tetraquark states: **J** = **S** 
  - ✓ The ground S-wave state :  $l_a = l_b = L_{ab} = 0$

✓ The couple with higher orbital excitations is neglected.

• Color-flavor-spin configuration of  $QQ\overline{Q}'\overline{Q}'$ : Fermi statistics

• 
$$J^{PC} = 0^{++}$$
  
 $\chi_1 = \begin{bmatrix} [QQ]_{\bar{3}_c}^1 [\bar{Q}\bar{Q}]_{\bar{3}_c}^1 \end{bmatrix}_{1_c}^0,$   
 $\chi_2 = \begin{bmatrix} [QQ]_{\bar{6}_c}^0 [\bar{Q}\bar{Q}]_{\bar{6}_c}^0 \end{bmatrix}_{1_c}^0.$   
•  $J^{PC} = 1^{+-}$   
 $\chi_1 = \begin{bmatrix} [QQ]_{\bar{3}_c}^1 [\bar{Q}\bar{Q}]_{\bar{3}_c}^1 \end{bmatrix}_{1_c}^1.$   
•  $J^{PC} = 2^{++}$   
 $\chi_1 = \begin{bmatrix} [QQ]_{\bar{3}_c}^1 [\bar{Q}\bar{Q}]_{\bar{3}_c}^1 \end{bmatrix}_{1_c}^2.$ 

#### Hamiltonian

$$H = \sum_{i=1}^{4} \frac{p_j^2}{2m_j} + \sum_i m_i + \sum_{i< j} V_{ij} = \frac{p^2}{2u} + V_I + h_{12} + h_{34},$$

With





- $h_{12}/h_{34}$  : diagonal in the color-flavor-spin space.
- $V_I$  : the mixing between different color-spin-flavor configurations.
- Solving the Schrödinger equation by variational method.

$$J^{PC} = 0^{++}$$

$$\int_{0}^{440} \int_{0}^{4-3} \int_{-3}^{640} \int_{-6}^{6425} \int_{-6}^{6425} \int_{-6}^{6425} \int_{-6}^{6425} \int_{-6}^{-19} \int_{-9}^{19} \int_{-9}^{19} \int_{-1}^{19} \int_{-1}^{19}$$

The left (right) half: without (with) mixing between  $\overline{3}_c \otimes 3_c$  and  $6_c \otimes \overline{6}_c$ 

$$J^{PC} = 0^{++}$$

- ccccc and  $bb\overline{b}\overline{b}$  : M( $\overline{3}_c \otimes 3_c$ ) > M( $6_c \otimes \overline{6}_c$ ) in two quark models.
- $bb\overline{c}\overline{c}$ : M( $\overline{3}_c \otimes 3_c$ )> M( $6_c \otimes \overline{6}_c$ ) in model I; M( $\overline{3}_c \otimes 3_c$ )< M( $6_c \otimes \overline{6}_c$ ) in model II;



 $J^{PC} = 0^{++}$ 

#### • The mixture:

| $J^{PC} = 0^{++}$            | Model I                                        | M $[GeV]$ | $\bar{3}_c \otimes 3_c$ | $6_c\otimes ar{6}_c$ | Model II                                       | M $[GeV]$ | $\bar{3}_c \otimes 3_c$ | $6_c\otimes ar{6}_c$ |
|------------------------------|------------------------------------------------|-----------|-------------------------|----------------------|------------------------------------------------|-----------|-------------------------|----------------------|
| $cc\bar{c}\bar{c}$           | $\beta_a = \beta_b = 0.4,  \beta = 0.6$        | 6.377     | 11%                     | 89%                  | $\beta_a = \beta_b = 0.5,  \beta = 0.7$        | 6.371     | 43%                     | 57%                  |
|                              | $\gamma_a = \gamma_b = 0.4,  \gamma = 0.7$     | 6.425     | 89%                     | 11%                  | $\gamma_a = \gamma_b = 0.5,  \gamma = 0.8$     | 6.483     | 57%                     | 43%                  |
| $bb\overline{b}\overline{b}$ | $\beta_a = \beta_b = 0.7,  \beta = 0.9$        | 19.215    | 1%                      | 99%                  | $\beta_a = \beta_b = 0.9,  \beta = 1.1$        | 19.243    | 17%                     | 83%                  |
| 0000                         | $\gamma_a = \gamma_b = 0.7,  \gamma = 0.9$     | 19.247    | 99%                     | 1%                   | $\gamma_a = \gamma_b = 0.8,  \gamma = 1.2$     | 19.305    | 83%                     | 17%                  |
| $bb\overline{c}\overline{c}$ | $\beta_a = 0.6, \beta_b = 0.5, \beta = 0.7$    | 12.847    | 14%                     | 86%                  | $\beta_a = 0.7, \beta_b = 0.5, \beta = 0.8$    | 12.886    | 53%                     | 47%                  |
|                              | $\gamma_a = 0.6, \gamma_b = 0.4, \gamma = 0.9$ | 12.866    | 86%                     | 14%                  | $\gamma_a = 0.7, \gamma_b = 0.5, \gamma = 0.9$ | 12.946    | 47%                     | 53%                  |

•  $6_c \otimes \overline{6}_c$  is important even dominant in the ground state.

• The proportions in the two models are quite different. The mixing is more stronger in model II.

- S-wave tetraquark state  $Q_1 Q_2 \overline{Q} \overline{Q}$  :
- ✓ Orthogonality of  $\chi_s$   $\implies$  Color interactions do not contribute to the mixing.
- $\checkmark$  Only the hyperfine interaction contributes to the couple-channel effects.

#### Mixture

- A tetraquark state is an admixture of different color configurations.
- For a  $Q_1 Q_2 \overline{Q}_3 \overline{Q}_4 \ (Q_1 \neq Q_2 \& Q_3 \neq Q_4)$ :  $(\sum_{n}^4 \lambda_n)^2 |\chi_{i,j}\rangle = 0$   $\langle \chi_i | (\lambda_1 + \lambda_2)^2 | \chi_j \rangle = 0$   $\langle \chi_i | (\lambda_3 + \lambda_4)^2 | \chi_j \rangle = 0$

|                    | Model I                | Model II             |
|--------------------|------------------------|----------------------|
| OGE Coulomb        | $\alpha_s(m_i,m_j)$ 🗸  | constant $\kappa$ ×  |
| Linear confinement | constant $b \times$    | constant $\lambda$ × |
| Hyperfine          | $\alpha_s(m_i, m_j)$ 🗸 | constant $\kappa'$ 🗸 |

#### Scattering state vs tetraquark state



**Guang-Juan Wang** 

18th全国中高能核物理大会,2019/06/24

$$J^{PC} = 1^{+-}$$
 and  $2^{++}$ 

• Only one color configuration:  $\overline{3}_c \otimes 3_c$ 

| • | The m | nass | spectra | of | $ccc\overline{c}\overline{c}$ , | bbbb | and | <u>bbc</u> c | states |
|---|-------|------|---------|----|---------------------------------|------|-----|--------------|--------|

|                              | Model I         | nS | $J^{PC} = 1^{+-}$ | $J^{PC} = 2^{++}$ | Model II        | nS | $J^{PC} = 1^{+-}$ | $J^{PC} = 2^{++}$ |
|------------------------------|-----------------|----|-------------------|-------------------|-----------------|----|-------------------|-------------------|
| $cc\bar{c}\bar{c}$           | $\beta_a = 0.4$ | 1S | 6.425             | 6.432             | $\beta_a = 0.5$ | 1S | 6.450             | 6.479             |
|                              | $\beta_b = 0.4$ | 2S | 6.856             | 6.864             | $\beta_b = 0.5$ | 2S | 6.894             | 6.919             |
|                              | $\beta = 0.6$   | 3S | 6.915             | 6.919             | $\beta = 0.6$   | 3S | 7.036             | 7.058             |
| $bb\overline{b}\overline{b}$ | $\beta_a = 0.7$ | 1S | 19.247            | 19.249            | $\beta_a = 1.0$ | 1S | 19.311            | 19.325            |
|                              | $\beta_b = 0.7$ | 2S | 19.594            | 19.596            | $\beta_b = 1.0$ | 2S | 19.813            | 19.823            |
|                              | $\beta = 0.9$   | 3S | 19.681            | 19.682            | $\beta = 1.1$   | 3S | 20.065            | 20.077            |
| $bb\bar{c}\bar{c}$           | $\beta_a = 0.7$ | 1S | 12.864            | 12.868            | $\beta_a = 0.7$ | 1S | 12.924            | 12.940            |
|                              | $\beta_b = 0.5$ | 2S | 13.259            | 13.262            | $\beta_b = 0.5$ | 2S | 13.321            | 13.334            |
|                              | $\beta = 0.7$   | 3S | 13.297            | 13.299            | $\beta = 0.7$   | 3S | 13.364            | 13.375            |

• Results in two quark models are similar.

- The mass difference of two states arises from the hyperfine potential.
- Guang-Juan Wang

#### Numerical results





✓ The lowest  $0^{++}$  states are located about 300 ~ 450 MeV above the lowest scattering state.

✓ No bound states exist in the two quark models

#### **Guang-Juan Wang**

## $m_q$ -denpendence

The constituent quark mass dependence of the tetraquark spectra



(a)The mass spectra of the tetraquark states  $QQ\bar{Q}\bar{Q}$  with  $J^{PC} = 0^{++}$ .

(b) The mass difference between the tetraquark states and the mass threshold of  $\eta_Q \eta_Q$ .

• The  $M(QQ\bar{Q}\bar{Q}\bar{Q}) > M(\eta_Q\bar{\eta}_Q)$ : no bound tetraquark states exist.

### Summary and Outlook

> The mass spectra of tetraquark states  $QQ\bar{Q}'\bar{Q}'$  in two quark models,

- $6_c \otimes \overline{6}_c$  is important even dominant in the ground state.
- Only the hyperfine potential contributes to the mixing between different color configurations.
- No bound  $cc\bar{c}\bar{c}$ ,  $bb\bar{b}\bar{b}$ , and  $bb\bar{c}\bar{c}$  (or  $cc\bar{b}\bar{b}$ ) states exist in the two quark models.

> The extension to the  $Q_1 Q_2 \overline{Q}_3 \overline{Q}_4$  state.

> The confinement mechanism for multi-quark system need more investigation.

> The existence of the tetraquark resonances with narrow decay width.

## Thank you for your attention!

## Backup slides

# Wave function $\bar{Q}_3$ $Q_1$ $r_{13}$ $\bar{Q}_3$ $Q_1$



FIG. 1. The Jacobi coordinates in the tetraquark state.

• The Jacobi coordinates transfer as

$$\begin{split} \mathbf{r}_{jk} &= \mathbf{r}_j - \mathbf{r}_k = \mathbf{r} + c_{jk}^a \mathbf{r}_{12} + c_{jk}^b \mathbf{r}_{34}, \\ \mathbf{r} &= \frac{m_1 \mathbf{r}_1 + m_2 \mathbf{r}_2}{m_1 + m_2} - \frac{m_3 \mathbf{r}_3 + m_4 \mathbf{r}_4}{m_3 + m_4}, \\ \mathbf{r}' &= \frac{(m_1 m_3 - m_2 m_4) \mathbf{r} + M_T u_{12} \mathbf{r}_{12} - M_T u_{34} \mathbf{r}_{34}}{(m_1 + m_4)(m_2 + m_3)}, \\ \mathbf{r}'' &= \frac{(m_1 m_4 - m_2 m_3) \mathbf{r} + M_T u_{12} \mathbf{r}_{12} - M_T u_{34} \mathbf{r}_{34}}{(m_1 + m_3)(m_2 + m_4)}, \end{split}$$

• Use the first coordinate configuration.

#### Numerical results

• The dependence of the mass spectra on the number of the expanding base.



FIG. 2. The dependence of the mass spectrum on the number of Gaussian basis  $N^3$ . The line and dashed line represent the numerical results in model I and model II, respectively.

|                       |                       |                       |                       |                       | -0                    |                       |                      |
|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|----------------------|
| $c^a_{14}$            | $c^a_{13}$            | $c_{23}^{a}$          | $c^a_{24}$            | $c_{14}^{b}$          | $c_{13}^b$            | $c^{b}_{23}$          | $c_{24}^{b}$         |
| $\frac{m_2}{m_1+m_2}$ | $\frac{m_2}{m_1+m_2}$ | $-rac{m_1}{m_1+m_2}$ | $-rac{m_1}{m_1+m_2}$ | $\frac{m_3}{m_3+m_4}$ | $-rac{m_4}{m_3+m_4}$ | $-rac{m_4}{m_3+m_4}$ | $rac{m_3}{m_3+m_4}$ |

TABLE III. The coefficient  $c_{ij}$ .

TABLE IV. The configurations of the diquark (antiquark) constrained by Pauli principle. "S" and "A" represent symmetry and antisymmetry.

| $J^P = 1^+$                       | QQ           | $J^P = 0^+$                 | QQ           |
|-----------------------------------|--------------|-----------------------------|--------------|
| S-wave(L=0)                       | $\mathbf{S}$ | S-wave(L=0)                 | $\mathbf{S}$ |
| Flavor                            | $\mathbf{S}$ | Flavor                      | $\mathbf{S}$ |
| Spin(S=1)                         | $\mathbf{S}$ | Spin(S=0)                   | А            |
| $\operatorname{Color}(\bar{3}_c)$ | А            | $\operatorname{Color}(6_c)$ | $\mathbf{S}$ |



FIG. 1: The dependence of the root mean square radius  $\sqrt{\langle r_{12} \rangle} (\sqrt{\langle r_{34} \rangle})$  and  $\sqrt{\langle r \rangle}$  on the extension of the wave function.

$$\rho(r) = \int |\psi(r_{12}, r_{34}, r)|^2 d\vec{r}_{12} d\vec{r}_{34} d\vec{\vec{r}}$$

$$\rho(r_{12}) = \int |\psi(r_{12}, r_{34}, r)|^2 d\vec{r} d\vec{r}_{34} d\hat{\vec{r}}_{12}$$

|                              | Ref.                                          | [48]      |                       | without constrains  |                                             |           |                       |                             |
|------------------------------|-----------------------------------------------|-----------|-----------------------|---------------------|---------------------------------------------|-----------|-----------------------|-----------------------------|
| $J^{PC} = 0^{++}$            | w = 0.325                                     | M $[GeV]$ | $ar{3}_c \otimes 3_c$ | $6_c\otimes ar 6_c$ |                                             | M $[GeV]$ | $ar{3}_c \otimes 3_c$ | $6_c\otimes \overline{6}_c$ |
| 2022                         | $\beta_a = \beta_b = 0.49,  \beta = 0.69$     | 6470      | 66%                   | 34%                 | $\beta_a = \beta_b = 0.4, \ \beta = 0.6$    | 6417      | 33%                   | 67%                         |
| uu                           | $\gamma_a = \gamma_b = 0.49,  \gamma = 0.69$  | 6559      | 34%                   | 66%                 | $\gamma_a = \gamma_b = 0.4, \ \gamma = 0.7$ | 6509      | 67%                   | 33%                         |
| $bb\overline{b}\overline{b}$ | $\beta_a = \beta_b = 0.88, \ \beta = 1.24$    | 19268     | 66%                   | 34%                 | $\beta_a = \beta_b = 0.7, \ \beta = 0.9$    | 19226     | 18%                   | 82%                         |
|                              | $\gamma_a = \gamma_b = 0.88, \ \gamma = 1.24$ | 19306     | 34%                   | 66%                 | $\gamma_a = \gamma_b = 0.7, \ \gamma = 0.9$ | 19268     | 82%                   | 18%                         |

TABLE VIII. The comparison of the mass spectra of  $0^{++} cc\bar{c}\bar{c}$  and  $bb\bar{b}\bar{b}$  from Ref. [48] and our results using the same quark model. In the right table, we remove the constraints on the wave functions used in Ref. [48].

[48] M.S. Liu et.al., PhysRevD.100.016006.