

Transverse Momentum Balance and Angular Correlation of $b\overline{b}$ Dijets in Pb+Pb collisions

Wei. Dai In Collaboration with S. Wang, S.L Zhang, B.-W Zhang, Enke Wang [arXiv:1806.06332]

23/06/2019

Physics Department, China University of Geosciences (Wuhan)

- Introduction
- p+p Baseline and Setup of Simulation
- Implementation of In-medium Evolution
- Results

Transverse momentum balance of $b\overline{b}$ dijet

✓ Angular correlation of $b\overline{b}$ dijet

Summary

Dijet Asymmetry

2.5 2 1.5 0.5 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 x_J $x_J = \frac{p_{T2}}{p_{T1}}, \Delta \phi > \frac{7\pi}{8}$

0 - 10 %

100 < p_ < 126 GeV

+Pb+Pb

🔶 рр

ATLAS Collaboration Phys. Lett. B774 (2017) 379

Initial paron flavor dependences determined in dijets

₹J\$

∽l≥^{3.5}

Inclusive b-jet R_{AA}

$$R_{AA}^{\text{b-jet}}(p_T; R) = \frac{\frac{d^2 \sigma^{AA}(p_T; R)}{dy \, dp_T}}{\langle N_{\text{bin}} \rangle \frac{d^2 \sigma^{pp}(p_T; R)}{dy \, dp_T}}$$

Jinrui Huang, Zhong-Bo Kang, Ivan Vitev PLB 726(2013)251-256

CMS collaboration ,PRL 113(2014)132301

2019/06/23

第十八届中高能核物理, Wei Dai

bb Dijets Asymmetry

bb-DijetsProduction

Monte Carlo event generator: Sherpa

- The tree-level matrix elements---Amegic and Comix.
- The one-loop virtual corrections ---BlackHat.
- Parton Shower---Catani-Seymour subtraction method .
- Matching of NLO+PS: MC@NLO.
- NNPDF3.0 NLO-5FS PDF .
- **FASTJET** --- jet reconstruction at parton level.

p+p Baseline

Azimuthal angle difference between two b jets:

 $\Delta \phi = |\phi_{b1} - \phi_{b2}|$

Angular distance: $\Delta R = \sqrt{(\Delta \phi)^2 + (\Delta \eta)^2}$

A good pp baseline: not only on jet production but also on angular distribution [CMS ,PRC 96 015202(2017); CMS,PRL 113(2014)132301; ATLAS, Eur. Phys. J. C 76, no. 12, 670 (2016)]

In-Medium E-loss: Heavy Quark

 For heavy quark, the discrete Langevin transport equations are used to describe the propagating of heavy quarks in the QGP. [Eur. Phys. J. C 71, 1666 (2011); Physical Review C, 2009, 79(5): 054907.]:

$$\overrightarrow{x}(t + \Delta t) = \overrightarrow{x}(t) + \frac{\overrightarrow{p}(t)}{E} \Delta t$$
$$\overrightarrow{p}(t + \Delta t) = \overrightarrow{p}(t) - \Gamma(p)\overrightarrow{p}\Delta t + \overrightarrow{\xi}(t)\Delta t - \overrightarrow{p}_g$$

Radiative E-loss

The Fluctuation-Dissipation Theorem: $\kappa = 2ET\Gamma = \frac{2T^2}{D_s}$. Based on the Lattice calculation[arXiv:1508.04543 [hep-lat]], D_s is fixed as $2\pi TD_s = 4$.

 For light partons, the collisional energy loss is described by Hard Thermal Loop calculation.[J.D. Bjorken, Fermilab preprint PUB-82/59-THY; Markus H.Thoma Physics Letters B 273 (1991)128-132; R.B.Neufeld PRD 83 (2011) 065012]

$$\frac{dE}{dz} = \frac{\alpha_s C_i m_D^2}{2} ln \frac{\sqrt{ET}}{m_D}$$

In-Medium E-loss: Radiative

 The medium-induced radiative energy loss of final-state patons is described by the Higher-Twist scheme [X.-F. Guo and X.-N. Wang, Phys. Rev. Lett. 85, 3591(2000);B.-W. Zhang, E. Wang, and X.-N. Wang, Phys. Rev.Lett. 93, 072301 (2004);A. Majumder, Phys. Rev. D85, 014023 (2012).]

$$\frac{dN_g}{dxdk_{\perp}^2 dt} = \frac{2\alpha_s C_A P(x)\hat{q}}{\pi k_{\perp}^4} \sin^2(\frac{t-t_i}{2\tau_f}) (\frac{k_{\perp}^2}{k_{\perp}^2 + x^2 M^2})^4$$

Jet transport parameter \hat{q}_0 employed the results of recent study of reextraction of 6 mesons R_{AA} at the RHIC and LHC. (iEBE-VISHNU Hydro) [G.-Y. Ma, W. Dai, B.-W.Zhang and Enke Wang, EPJC 2019]

$$\hat{q}(au,r)=q_0rac{
ho^{QGP}(au,r)}{
ho^{QGP}(au_0,0)}rac{p^\mu u_\mu}{p^0}$$

R_{AA} for Inclusive Jet and B-jet

• Our simulation can fairly describe the CMS data though b-jet R_{AA} slightly overestimates the data at low p_T region .

• The mass effect of the jet quenching trends to disappear.

Transverse Momentum Imbalance-x_I

- Leading jet $p_T > 100 \text{GeV}$
- Sub-leading jet $p_T > 40 GeV$
- Leading and sub-leading jets must be b-tagged.
- $|\Phi_1 \Phi_2| > \frac{2\pi}{3}$ suppresses the gluon splitting process, the two b jets are back-to-back. 2019/06/23 第十八届中高能核物理, Wei Dai 12

x_J for $b\overline{b}$ dijets

arXiv:1806.06332

- A visible shift of x_J towards smaller in the central Pb+Pb collision, relative to pp reference .
- Much smaller shift is observed in the peripheral Pb+Pb collision, indicating smaller energy loss.

2019/06/23

x_J for $b\overline{b}$ dijets

arXiv:1806.06332

- Imbalance of $b\overline{b}$ dijet increasing due to jet quenching is visible in central Pb+Pb collision.
- A smaller energy loss of $b\overline{b}$ dijets than inclusive dijet in peripheral Pb+Pb collision.

2019/06/23

Azimuthal Angle Correlation

$$\Delta \phi = |\phi_{b1} - \phi_{b2}|$$

arXiv:1806.06332

- $0 < \Delta \phi < \pi, |\eta| < 2.5, R = 0.4$
- Leading jet $p_T > 270 GeV$
- $p_{T,bjet} > 20 GeV$
- Leading and sub-leading jets are not required to be b-tagged.
- 2 b jets separated by $\Delta R > 0.4$

2019/06/23

第十八届中高能核物理, Wei Dai

Azimuthal Angle Distribution $--\frac{1}{N}\frac{dN}{d\Delta\phi}$

- The energy loss effect would suppress and broaden the near side (small $\Delta \phi$) peak, and also enhance and sharp the away side (near $\Delta \phi = \pi$) peak in the normalized $\Delta \phi$ distribution.
- In the small angle region, it suffers stronger suppression relative to the large angle region.

2019/06/23

Azimuthal Angle Correlation

- The structure of azimuthal angle distribution between the two b jets was sensitive to the minimum p_T cut of b jet.
- GSP more likely produces two b jets with relatively lower p_T compared with FCR.

Angular Distance Distribution --- $\frac{1}{N} \frac{dN}{d\Delta R}$

• Suppression on small ΔR and enhancement on large ΔR with centrality dependence.

2019/06/23

Summary and Outlook

- SHERPA for pp baseline, light and heavy quark in-medium evolution in one framework have been implemented to study the $b\overline{b}$ dijets production in Pb+Pb collisions.
- *x_J*

 x_J shift to smaller value consistent with CMS data, and a similar trend as that in dijet has been observed.

• $\Delta \phi$ and ΔR

Suppression on the near side and the enhancement on the away side in the normalized distribution are predicted.

More exclusive channel has been investigated

 $z+b\overline{b}$ production, soon to be submitted.

In-Medium Energy Loss

Backup-1 Gluon Sampling Method

The average number of radiative gluon during a time step[Phys.Rev. C94 (2016) no.1, 014909]:

$$\langle N_g(t,\Delta t) \rangle = \Delta t \int dx dk_{\perp}^2 \frac{dN_g}{dx dk_{\perp}^2 dt}$$

• Assuming that the number of radiative gluon *n* obeys the Possion distribution $P(n) = \frac{\langle N_g \rangle^n}{n!} e^{-\langle N_g \rangle}$, the total probability for radiation during a time step Δt :

$$P_{rad}(t,\Delta t) = 1 - e^{-\langle N_g
angle}$$

- Then it's available to sample the energy xE and transverse momentum k_⊥ of the radiative gluons during every time step for arbitrary state (E, T, t).
- The interval $t t_i$ would be reset when a radiation occurred.

The jet p_T resolution is parametrized according the following form[arXiv:1607.03663]:

$$\sigma(p_T)/p_T = \sqrt{C^2 + \frac{S^2}{p_T} + \frac{N^2}{p_T^2}}$$

- In pp collisions, the constant C and stochastic S terms are 0.06 and 0.8 GeV^{-1}
- In Pb+Pb collisions the S term is slightly larger value of 1.0 GeV⁻¹, due to the underlying event.
- The noise parameter (N) depends on collision centrality, according to $N = 14.82 centrality(\%)/5.40(GeV^2)$ subtraction.

Radiative E-loss: gluon & light quark & heavy quark

 The radiative energy loss of gluon is much larger than quarks.

•
$$\Delta E_g > \Delta E_q > \Delta E_c > \Delta E_b$$
.

 Mass effect of heavy quarks trends to disappear as energy increasing.

Radiative Vs. Collisional E-loss

In-medium energy loss is dominated by gluon radiation both for light and heavy flavor.

Collisional E-loss shown no initial energy dependence.

Bottom Production

