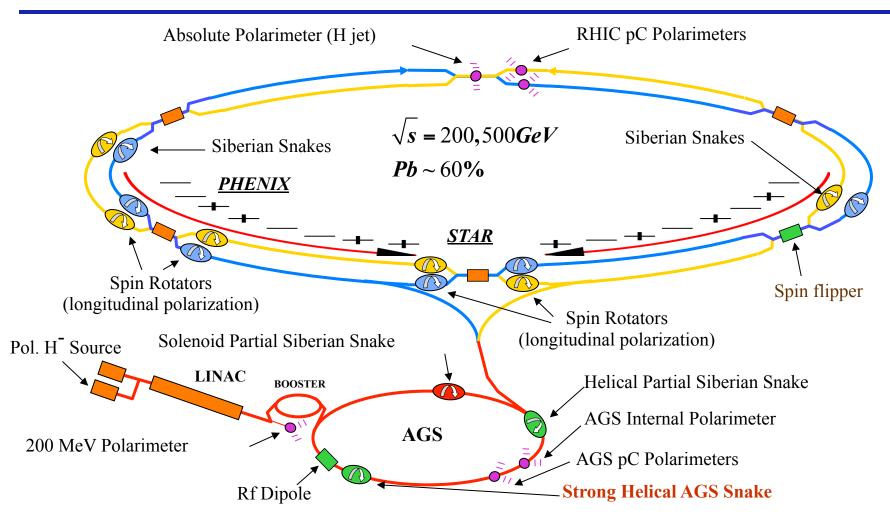
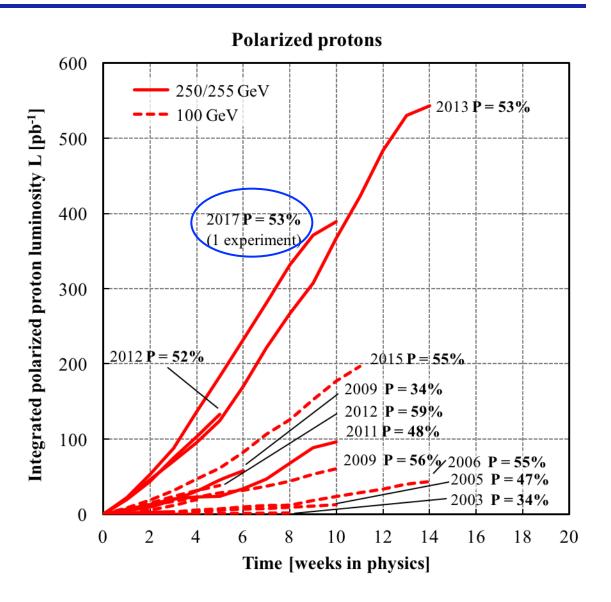

Recent results on nucleon spin structure study at RHIC/STAR

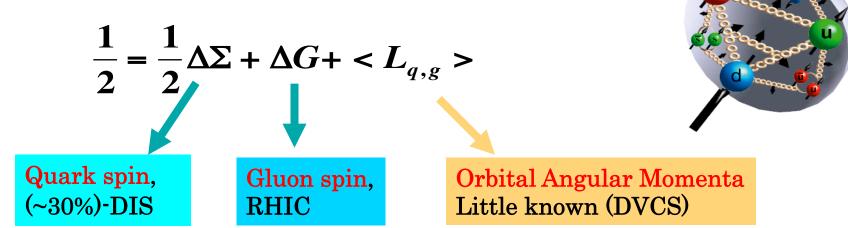

徐庆华,山东大学

第18届全国中高能核物理大会暨第12届全国中高能 核物理专题研讨会,

长沙, 6月21-25, 2019

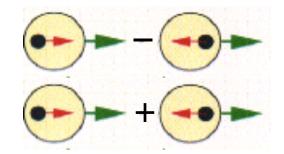

RHIC- 1st polarized proton-proton collider

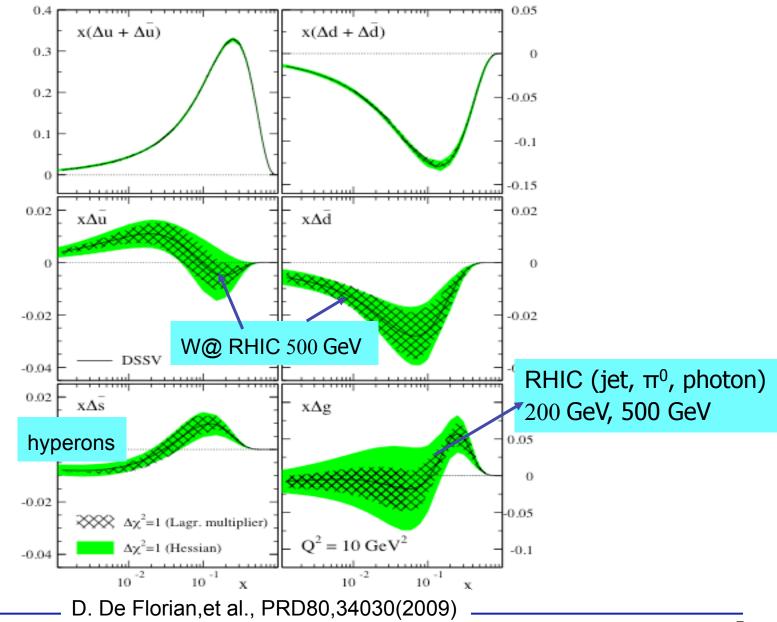
- World's only polarized hadron-hadron collider
- Polarization direction changes from bunch to bunch
- Spin rotators provide choice of spin orientation


RHIC performance with pp collisions

- Long runs with long. polarization at 200 GeV in 2005, 2006, 2009, 2015.
- Collisions at 500 GeV with long. pol. in 2009, 2012 and 2013.
- Long runs with trans. pol. in 2006, 2008, 2012 at 200GeV and 2011, 2017 at 500 GeV.

Spin structure of nucleon


• Spin sum rule (longitudinal case):


$$\Delta \Sigma = \Delta u + \Delta \bar{u} + \Delta d + \Delta \bar{d} + \Delta s + \Delta \bar{s} \quad [\Delta q = \int_0^1 \Delta q(x) dx]$$

• Polarized parton densities:

$$\Delta q(x,Q^2) = q^+(x,Q^2) - q^-(x,Q^2)$$
$$q(x,Q^2) = q^+(x,Q^2) + q^-(x,Q^2)$$

$\Delta q(x)$, $\Delta g(x)$ - global analysis of data

Experimental aspects: RHIC / STAR

Recent STAR spin highlights:

- ✓ Gluon polarization (Jet production, $π^0$): gluon polarization Δg
- \checkmark Quark/Anti-quark polarization (W/Z production): sea quark Δq
- ✓ Transverse spin asymmetry: Sivers sign change
- □ Upgrade plan for spin physics in 2021+ at RHIC
- Summary & outlook

Accessing $\Delta g(x)$ in pp collision

 $d\Delta\hat{\sigma}$ $\hat{a}_{LL} =$ $d\hat{\sigma}$ Longitudinal spin asymmetry: Δf_2 Δf_1 D_f^{π} $A_{LL} = \frac{\sigma_{++} - \sigma_{+-}}{\sigma_{++} + \sigma_{+-}} = \frac{\sum_{f_1, f_2} \Delta f_1 \otimes \Delta f_2 \otimes d\hat{\sigma}^{f_1 f_2 \to fX} \cdot \hat{a}_{LL}^{f_1 f_2 \to fX} \otimes \mathcal{D}_f^{\pi}}{\sum_{f_1, f_2} f_1 \otimes f_2 \otimes d\hat{\sigma}^{f_1 f_2 \to fX} \otimes \mathcal{D}_f^{\pi}}$ $\Delta q \Delta G$ $\Delta q \Delta q$ $\Delta G \Delta G$ \boldsymbol{G} \hat{a}_{LL} the contraction of the contracti A: $gg \rightarrow gg$ C А LOODDA LOODDA 0.75 0.5 B Partonic fraction for jet/ π^0 production: 0.25 B: $qq \rightarrow qq$ Subprocess Fraction 0 qg $\begin{array}{c} C \colon qg \to qg \\ qq' \to qq' \end{array} D \colon q\overline{q} \to q\overline{q} \end{array}$ 0.5 -0.25 $q\overline{q}' \rightarrow q\overline{q}'$ 0.4 $qg \rightarrow q\gamma E: q\overline{q} \rightarrow gg$ -0.5 pp→jet+X $\overline{\mathbf{q}}\mathbf{q} \rightarrow \overline{\mathbf{q}}\gamma$ $gg \rightarrow q\overline{q}$ **NLO CTEQ6M** 0.3 -0.75 $q\overline{q} \rightarrow q'\overline{q}'$ Anti-k_T R=0.6 |**|**|<1 E $q\overline{q} \rightarrow q\gamma$ qq+qq 0.2 -1 -0.8 -0.4 0 0.4 0.8 0.1 Solid: \s=200 GeV $\cos \theta^*$ Dotted: \s=500 GeV 0.15 0.2 0.25 0.3 0.5 0.05 0.1 0.35 0.4 0.45 Jet x_{τ} (= $2p_{1}/\sqrt{s}$)

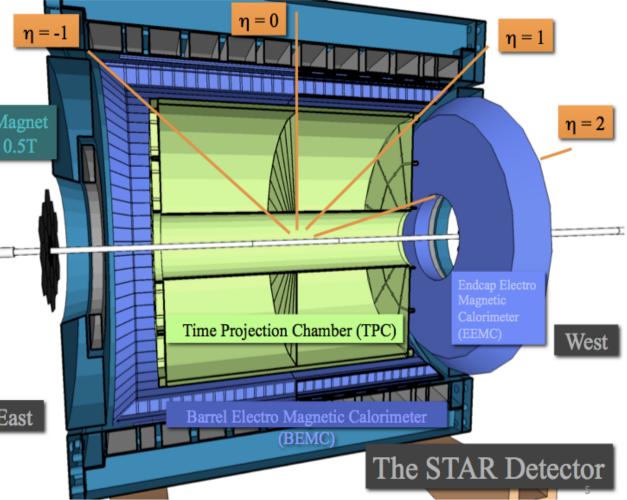
Mukherjee, Vogelsang, PRD86,094009(2012)

STAR - Solenoid Tracker At RHIC

Magnet

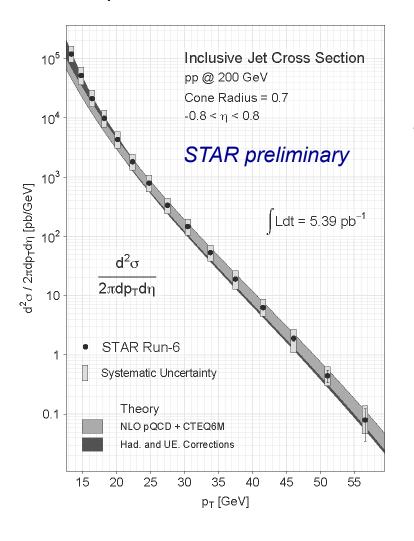
• 0.5 T Solenoid

Triggering & Luminosity Monitor

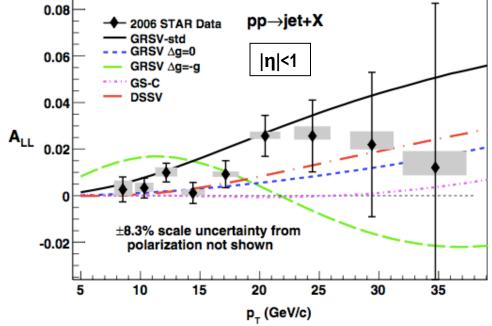

- Beam-Beam Counters
 - $3.4 < |\eta| < 5.0$
- Zero Degree Calorimeters
- Vertex Position Detector

Central Tracking

- Large-volume TPC
 - |η| < 1.3</p>


Calorimetry

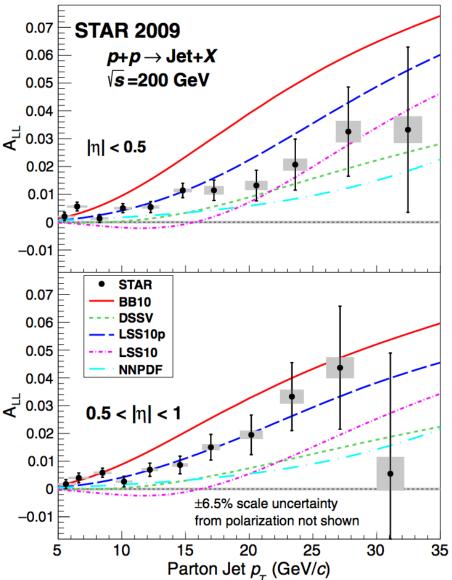
- Barrel EMC (Pb/Scintilator)
 - |η| < 1.0</p>
- Endcap EMC (Pb/Scintillator) East
 - 1.0 < η < 2.0</p>
- Forward Meson Spectrometer
 - 2.5 < η < 4.0



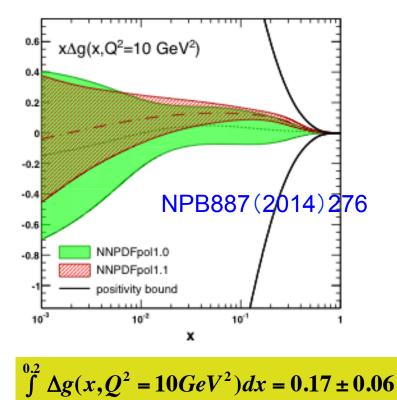
STAR run6 results on jet x-section and ALL

 Cross section well described by NLO pQCD+Hadronization

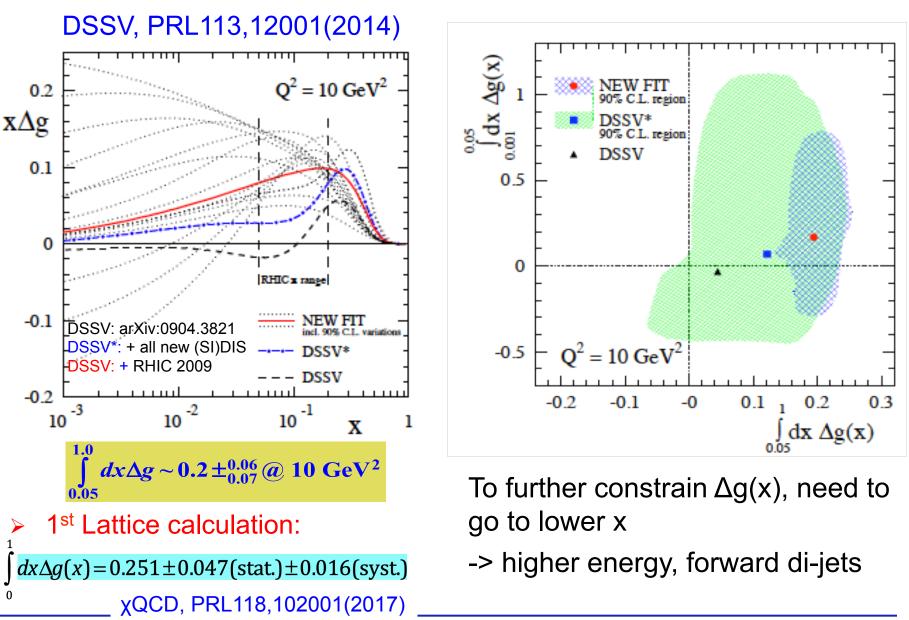
STAR, PRD86, 32006(2012)



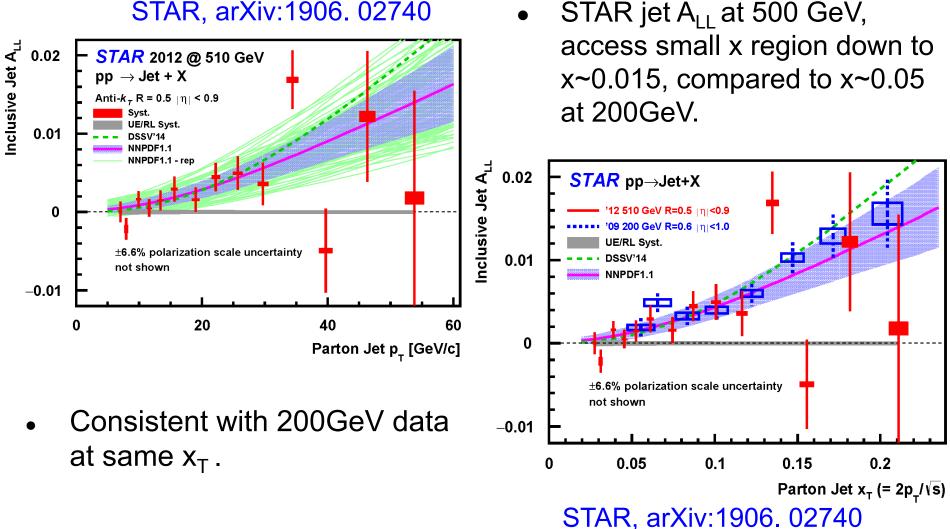
STAR run6 data rule out several previous models of gluon polarization, and included in the DSSV global analysis together with PHENIX π^0 results.


$$\int_{0.05}^{0.2} \Delta g(x) dx = 0.005 \pm_{0.164}^{0.129} \text{ at } Q^2 = 10 \text{ GeV}^2$$
-arXiv:1304.0079

STAR inclusive jet A_{LL} from run9


- 2009 STAR data is a factor of 4 more precise than 2006.
- The A_{LL} asymmetry is small, but clearly non-zero !
- Impact of STAR data in NNPDF:

Qinghua Xu (Shandong U.)


0.05

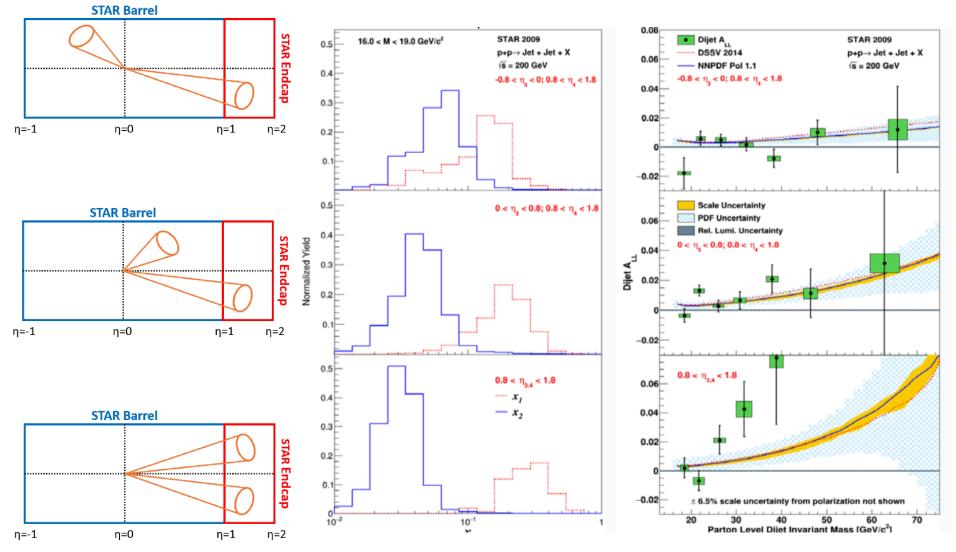
DSSV global analysis including STAR/PHENIX data -Observation of gluon polarization

New A₁₁ results at 500 GeV

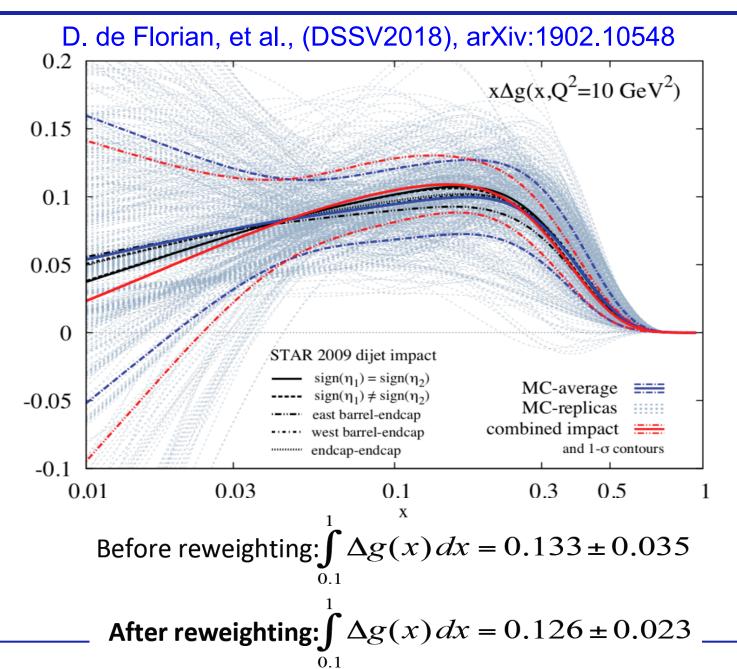
Can we further improve our knowledge on $\Delta g(x)$? Yes!

STAR, arXiv:1906. 02740

Correlation measurements with partonic kinematics

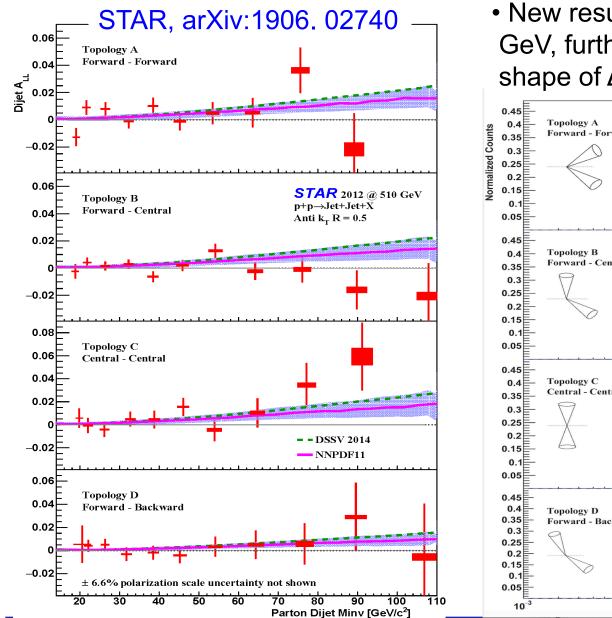

Access to partonic kinematics Better constrain the functional through di-jet production form of Δg STAR 2009 Di-jet Cross Section 10 Data p1³ơ/dMơn₁ởn₂ [μb/(GeV/c²) p_{T_3}, η_3 NLO pQCD CT10 + UEH **UEH Systematic Uncertainty** gg, qg, qq $rac{}{}^{\circ}p_{T_4},\eta_4$ p√s = 200 GeV Anti-k_τ, R = 0.6, |η_s,η_a| < 0.8 $x_1 = \frac{1}{\sqrt{s}} \left(p_{T3} e^{\eta_3} + p_{T4} e^{\eta_4} \right)$ 10 L dt = 18.6 pb⁻¹ ± 8.8% $x_2 = \frac{1}{\sqrt{s}} \left(p_{T3} e^{-\eta_3} + p_{T4} e^{-\eta_4} \right)$ Data-Theory)/Theory 0.4 0.2 $M = \sqrt{x_1 x_2 s}$ $\eta_3 + \eta_4 = \ln \frac{x_1}{x_2}$ -0.4 30 50 90 20 40 60 70 80 100 $\left|\cos\theta^*\right| = \tanh\left|\frac{\eta_3 - \eta_4}{2}\right|$ Di-jet Invariant Mass [GeV/c²] STAR, PRD95,071103(2017)

• Di-jet A_{LL} for two topologies, STAR, PRD95,071103(2017) allowing for constraints on the shape of $\Delta g(x)$ Normalized Yield Sign(η) = Sign(η) Di-Jet A **STAR Barrel** 19.0 < M < 23.0 GeV/c² 0.08 0.9 DSSV 2014 8.4 < p₋ < 11.7 GeV/c NNPDF Pol 1.1 0.8 0.06 Scale Uncertainty **0.7**E Di-jet A , , , **PDF Uncertainty** Rel. Lumi. Uncertainty 0.6 0.5 0.4 0.3 η=-1 η=0 **n=** 0.2 Sign(η_{r}) = Sign(η_{r}) -0.02 0.1 0.08 Normalized Yield Di-jet x **STAR 2009 Sign(η,)** ≠ **Sign(η,)** Sign(η_{1}) \neq Sign(η_{2}) 0.9 $p+p \rightarrow Jet + Jet + X$ Di-jet x **STAR Barrel** 0.06 √s = 200 GeV 0.8 Inclusive x (/20) |η₁,η₂| < **0.8** Di-jet A , Di-jet A Anti-k_T, R = 0.6 0.7 |η,,η,| < 0.8 0.6 √s = 200 GeV 0.5 0.4 0.3 ± 6.5% scale uncertainty 0.2 -0.02 from polarization not shown η=-1 η=0 n= 0.1 20 50 60 70 30 40 0⊑ 10^{_2} 10⁻¹ Di-jet Invariant Mass [GeV/c²] X_{Gluon}

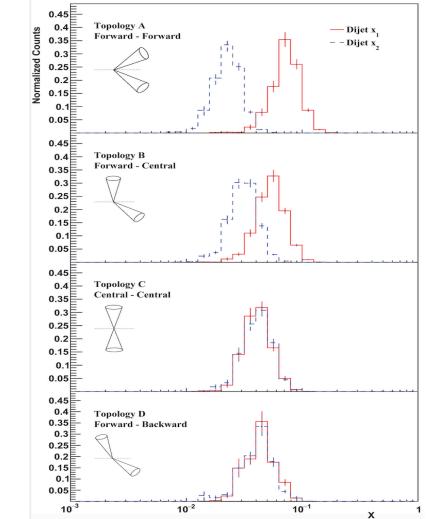

Central-forward Di-jet at 200 GeV at STAR

STAR, PRD98,032011(2018)

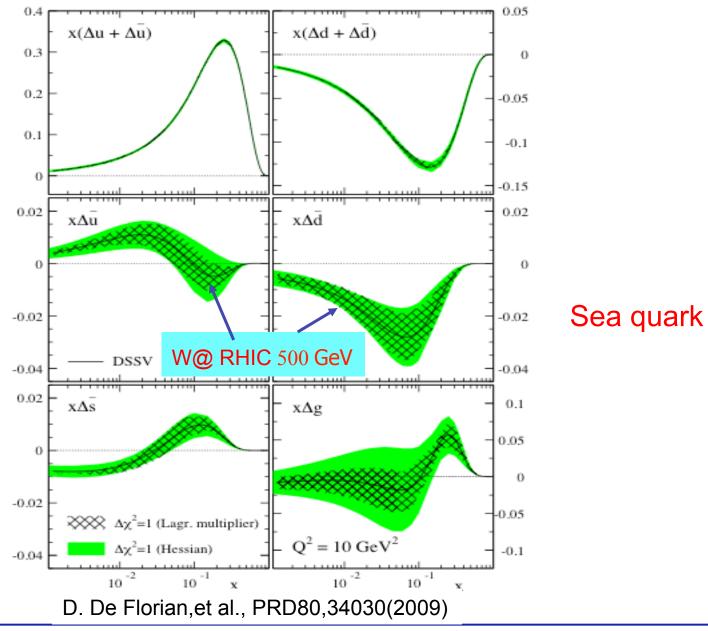
Wider rapidity coverage!



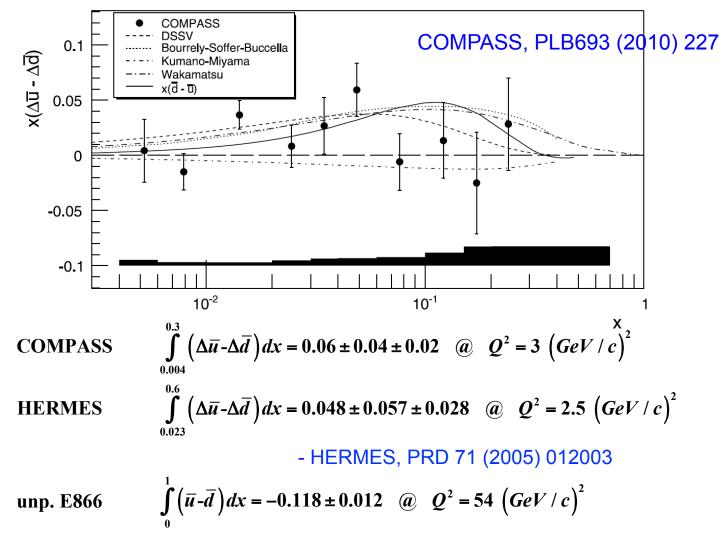
Impact of STAR di-jet A_{LL} to Δg global fit



16

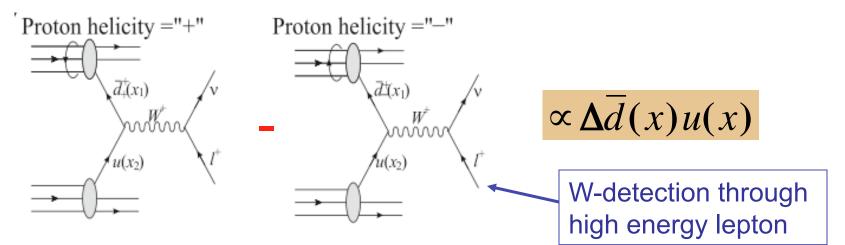

Di-jets A_{LL} at 500 GeV at STAR

• New results on di-jet A_{LL} at 500 GeV, further constraints on the shape of $\Delta g(x)$



 $\Delta q(x)$, $\Delta g(x)$ - global analysis of data

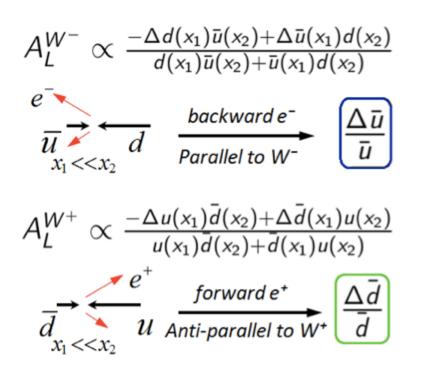
Flavor symmetry of the polarized sea?

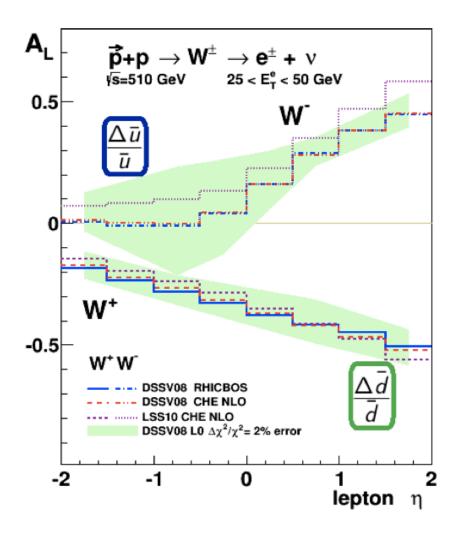

• Do we expect a symmetry breaking in the polarized sea?

- E866, Phys. Rev. D64 (2001) 052002

Probing sea quark polarization via W production

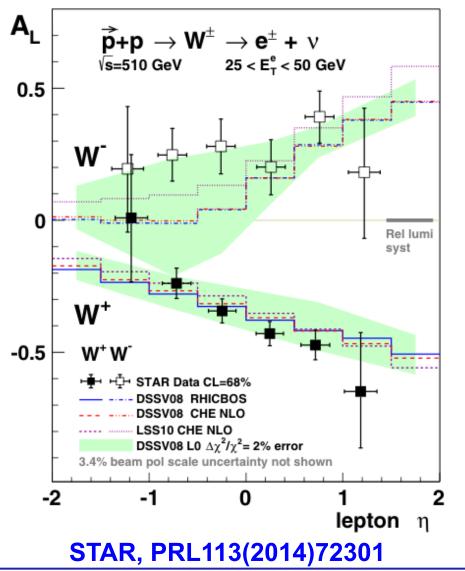
• Quark polarimetry with W-bosons:

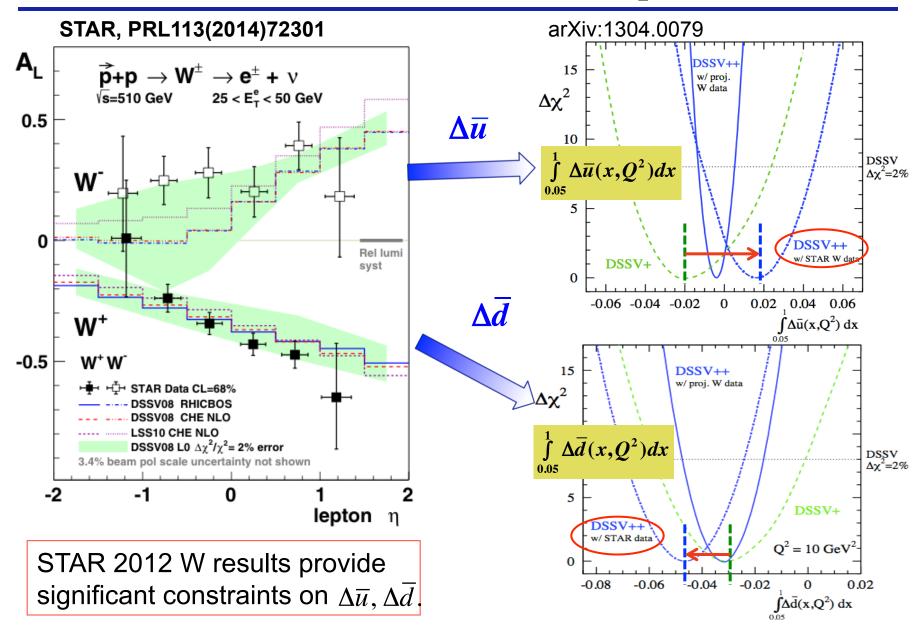

• Spin asymmetry measurements:


$$A_{L}^{W^{+}} = \frac{\sigma_{+} - \sigma_{-}}{\sigma_{+} + \sigma_{-}} = \frac{-\Delta u(x_{1})\overline{d}(x_{2}) + \Delta \overline{d}(x_{1})u(x_{2})}{u(x_{1})\overline{d}(x_{2}) + \overline{d}(x_{1})u(x_{2})} = \begin{cases} -\frac{\Delta u(x_{1})}{u(x_{1})}, y_{W^{+}} >> 0\\ \frac{\Delta \overline{d}(x_{1})}{\overline{d}(x_{1})}, y_{W^{+}} << 0 \end{cases}$$
$$A_{L}^{W^{-}} = \begin{cases} -\frac{\Delta d(x_{1})}{d(x_{1})}, y_{W^{-}} >> 0\\ \frac{\Delta \overline{u}(x_{1})}{\overline{u}(x_{1})}, y_{W^{-}} << 0 \end{cases}$$

 $\Lambda u(x_{\cdot})$

Expectation of W A_L at RHIC


- Large parity-violating asymmetries expected.
- Simplified interpretation at forward and backward rapidity:


STAR mid-rapidity W A_L –2011+2012

• First multiple-eta-bin A_L results from 2011+2012 data:

- A_L of W⁻ shows indication that data are larger than the DSSV predictions
- A_L of W⁺ is consistent with theoretical predictions with DSSV pdf.
- Indication of symmetry breaking of polarized sea.

Global Analysis with STAR W $\rm A_{L}$ 2012

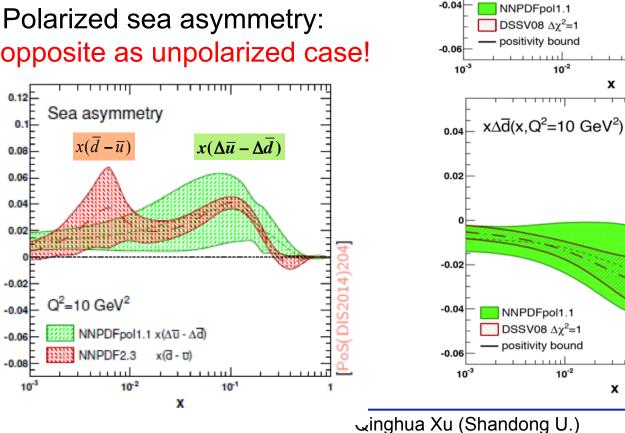
Global Analysis with STAR W A₁ results

0.04

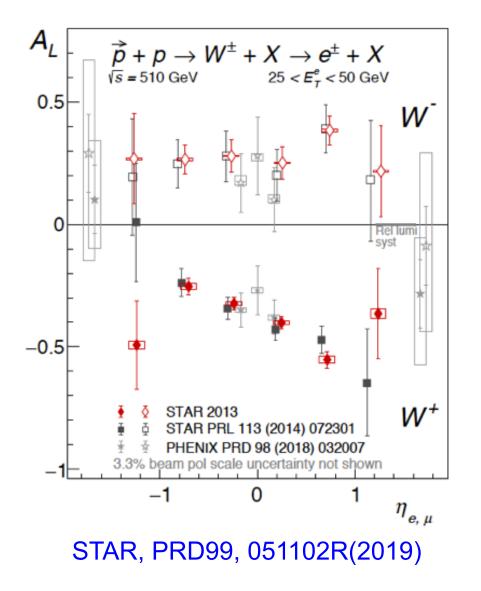
0.02

-0.02

 $x\Delta\overline{u}(x,Q^2=10 \text{ GeV}^2)$

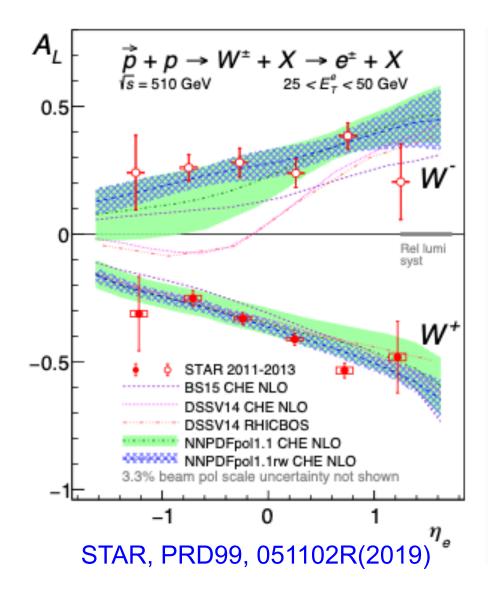

10⁻¹

10⁻¹


Big impact seen in NNPDFpol1.1 global analysis after including STAR A_1 data.

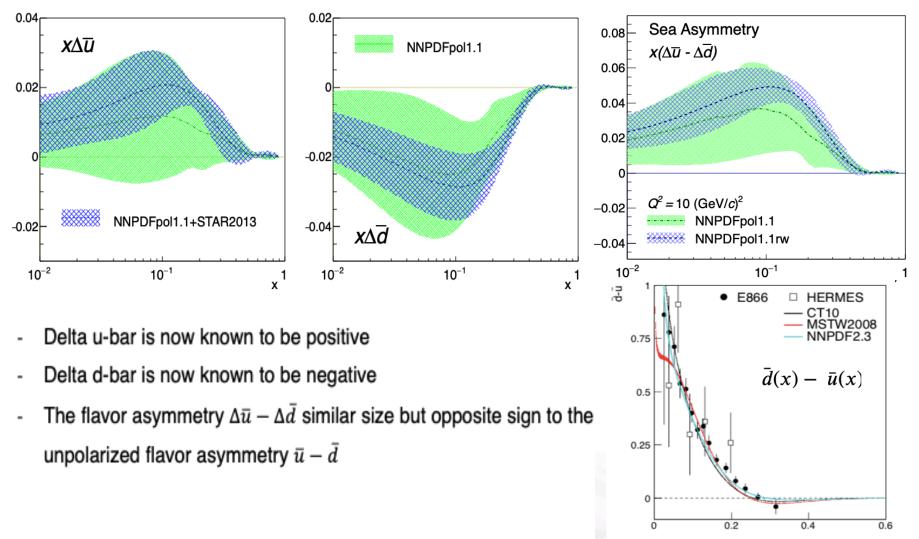
NNPDF1.1, NPB887,276 (2014)

Polarized sea asymmetry: opposite as unpolarized case!



W A_L results – STAR 2013

- Most precise W AL results from 2013 dataset
- Consistent with published RHIC results; with 40-50% smaller uncertainties than STAR 2011+2012
- Confirmed the larger than initially expected anti-up quark polarization first seen in the 2011+2012 data.


W A_L results – STAR 2013

- Most precise W AL results from 2013 dataset
- Consistent with published RHIC results; with 40-50% smaller uncertainties than STAR 2011+2012
- Confirmed the larger than initially expected anti-up quark polarization first seen in the 2011+2012 data.
- Combined results in comparison with theoretical predications

Impact of STAR 2013 W A_L results

• Reweighting based on NNPDF pol1.1 confirmed the polarized sea asymmetry: $\Delta \overline{u} > \Delta \overline{d}$ STAR, PRD99, 051102R(2019)

Is polarized sea asymmetry surprising?

 Asymmetric polarized sea, is compatible with Pauli suppression by the polarized valence quarks, among different models.

-W. Chang, J. C. Peng, Prog. Part. Nucl. Phys. 79: 95 (2014)

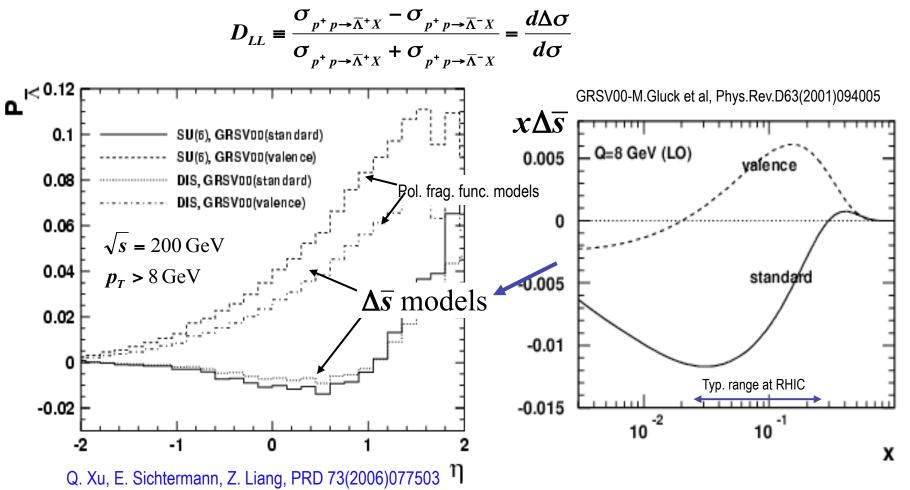
Table 5: Prediction of various theoretical models on the integral $I_{\Delta} = \int_0^1 [\Delta \bar{u}(x) - \Delta \bar{d}(x)] dx$.

Model	I_{Δ} prediction	Ref.
Meson cloud (π -meson)	0	31, 127
Meson cloud (ρ -meson)	$\simeq -0.0007$ to -0.027	[117]
Meson cloud $(\pi - \rho \text{ interf.})$	$= -6 \int_0^1 g^p(x) dx$	118
Meson cloud (ρ and $\pi - \rho$ interf.)	$\simeq -0.004$ to -0.033	119
Meson cloud (ρ -meson)	< 0	[120]
Meson cloud $(\pi - \sigma \text{ interf.})$	$\simeq 0.12$	132
Pauli-blocking (bag-model)	$\simeq 0.09$	[119]
Pauli-blocking (ansatz)	$\simeq 0.3$	128
Pauli-blocking	$= \frac{5}{3} \int_0^1 [\bar{d}(x) - \bar{u}(x)] dx \simeq 0.2$	129
Chiral-quark soliton	0.31	[130]
Chiral-quark soliton	$\simeq \int_0^1 2x^{0.12} [\bar{d}(x) - \bar{u}(x)] dx$	131
Instanton	$= \frac{5}{3} \int_0^1 [\bar{d}(x) - \bar{u}(x)] dx \simeq 0.2$	123
Statistical	$\simeq \overline{\int_0^1} [\overline{d}(x) - \overline{u}(x)] dx \simeq 0.12$	41
Statistical	$> \int_0^1 [\bar{d}(x) - \bar{u}(x)] dx > 0.12$	126

Is polarized sea asymmetry surprising?

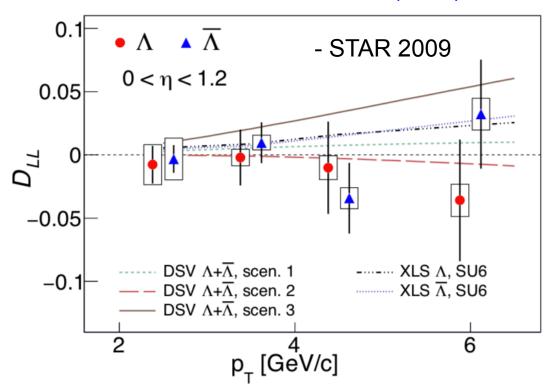
 Asymmetric polarized sea, is compatible with Pauli suppression by the polarized valence quarks, among different models.

-W. Chang, J. C. Peng, Prog. Part. Nucl. Phys. 79: 95 (2014)


• Recent model calculations by B. Q. Ma et al.

- M.Y. Liu, B. Q. Ma, PRD98, 036024 (2018) - F. Tian, C. Gong, B. Q. Ma, NPA 961, 154(2017)

D_{LL}-Longitudinal spin transfer & strange quark polarization


• Expectations at LO show sensitivity of D_{LL} for anti-Lambda to $\Delta \overline{s}$:

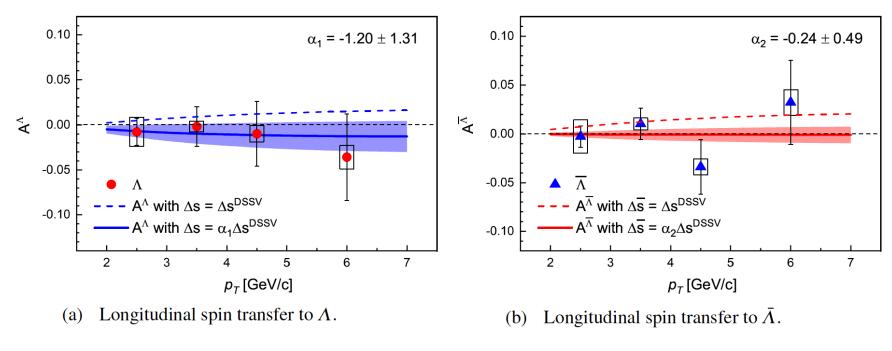
- Λ D_{LL} is less sensitive to Δs , due to large u,d quark fragmentation.
- $\overline{\Lambda}$ Promising measurements for anti-strange quark polarization.

 D_{LL} results of (anti-)Lambda at STAR

Improved D_{LL} measurements from STAR 2009 data:
 -STAR, PRD98, 112009 (2018)

- D.de Florian, M.Stratmann, and W.Vogelsang, PRL81 (1998)530

- Q. Xu, Z.T. Liang, E. Sichtermann, PRD 73(2006)077503


 $\checkmark~\rm D_{LL}$ results are still consistent with zero within the uncertainties.

 \checkmark The statistics are similar to the spread of different models.

 D_{LL} results of (anti-)Lambda at STAR

• Theoretical studies show impact on asymmetry of strange and anti-strange quark polarization:

X.N. Liu, B. Q. Ma, Eur. Phys. J. C79, 409(2019)

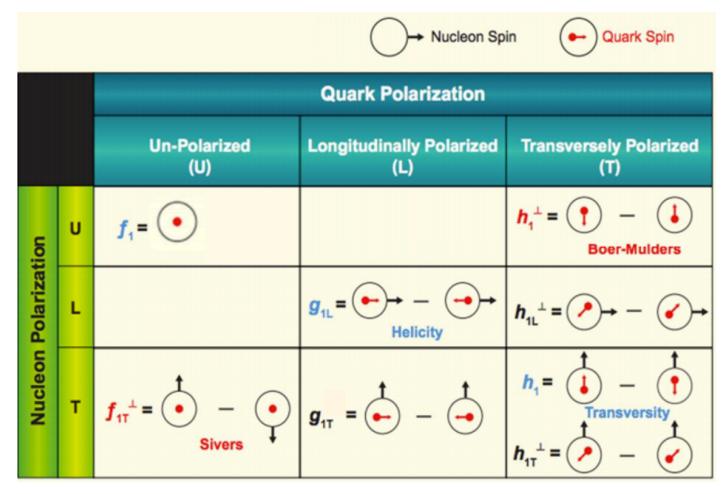
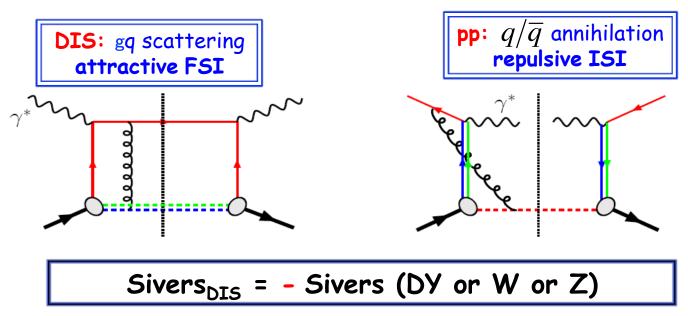


Table 1	Fitting results	of α_i and calculated	results of Δs and $\Delta \bar{s}$
---------	-----------------	------------------------------	--

coefficient	value	Δs	$\Delta \bar{s}$	$\chi^2_{ m min}$
α_1	-1.20 ± 1.31	(-0.014 ± 0.015)		0.37
α_2	$-0.24{\pm}0.49$		-0.003 ± 0.005	2.48

Transverse spin asymmetry & TMD

• Transverse momentum dependent distribution (TMD):

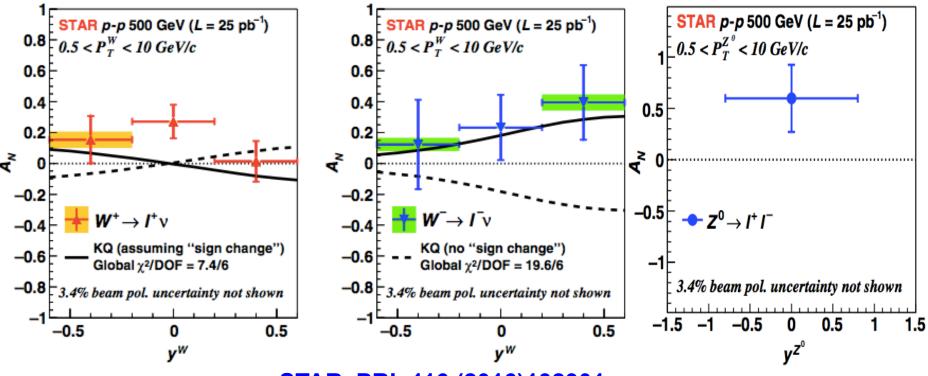


Sivers function: $f_q(x,k_\perp;S_\perp) = f_q(x,k_\perp) + \frac{1}{M}(\vec{k}_\perp \times \hat{\vec{p}}) \cdot \vec{S}_\perp f_{1T}^\perp(x,k_\perp)$

- correlation between parton transverse momentum, proton momentum and proton spin

Transverse single spin asymmetry (A_N) of W boson

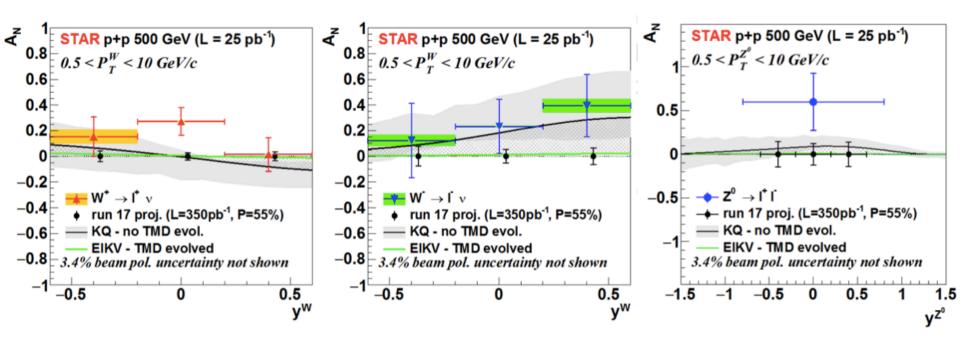
• Sivers sign change in DIS and DY/W/Z process:


-Critical test for our understanding of TMD's and TMD factorization

- Active experimental programs at CERN-COMPASS (DY), Fermi -SpinQuest (E1039,DY), and RHIC (W production).
- Advantages of weak boson production
 - Low background
 - High Q²-scale (~ W/Z boson mass)

First W, Z A_N results at 500 GeV from STAR

Data: STAR 2011 transverse run at 500 GeV, total luminosity ~25 pb⁻¹

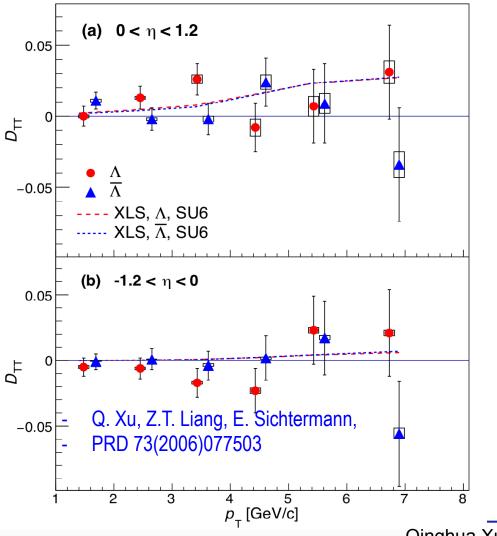

• First
$$A_N$$
 for W[±] and Z results : $A_N \equiv \frac{\sigma^{\uparrow} - \sigma^{\downarrow}}{\sigma^{\uparrow} + \sigma^{\downarrow}}$

STAR, PRL 116 (2016)132301

- Sivers sign-change scenario preferred over no-sign change scenario.
- Precision measurements from run 17, x14 times in integrated luminosity!

• STAR collected ~400 pb⁻¹ transverse pp in 2017:

Goal:


✓Constrain TMD evolution sea-quark Sivers function

✓Test sign-change if TMD-evolution suppression factor ~5 or less

Transverse spin transfer D_{TT} results at STAR

• First D_{TT} measurements in p+p collision at 200 GeV at RHIC:

-STAR, PRD98, 091103R (2018)

- ✓ 1st transverse spin transfer measurement in p+p collisions at RHIC.
- ✓ Most precise measurement on hyperon polarization in p+p collision at RHIC, which reach p_T ~6.7 GeV/c with statistical uncertainty of 0.04.
- ✓ D_{TT} of $\Lambda / \overline{\Lambda}$ are consistent with a model prediction, also consistent with zero within uncertainty.

Qinghua Xu (Shandong U.)

Future RHIC Spin in 2021+

Year	√s (GeV)	Delivered Luminosity	Scientific Goals	Observable	Required Upgrade		4 LL.
2021/22	p [†] p @ 510	1.1 fb ⁻¹ 10 weeks	TMDs at low and high <i>x</i>	$\begin{array}{c} A_{UT} \text{ for Collins observables,} \\ \text{i.e. hadron in jet modulations} \\ \text{at } \eta > 1 \end{array}$	Ecal + Hcal +Tracking	Ţ	h b a fr a fr b a fr a fr a fr a fr b a
2021/22	$ \begin{array}{c} \overrightarrow{p} \overrightarrow{p} \\ \overrightarrow{a} 510 \end{array} $	1.1fb ⁻¹ 10 weeks	$\Delta g(x)$ at small x	$\begin{array}{c} A_{LL} \text{ for jets, di-jets, h/\gamma-jets} \\ \text{ at } \eta > 1 \end{array}$	Ecal + HCal		for 2017 to 2023 A Portal to the EIC
2024	p [↑] p @ 200	300 pb ⁻¹ 8 weeks	Subprocess driving the large A_N at high x_F and η	A_N for charged hadrons and flavor enhanced jets	Ecal + Hcal +Tracking	а	arXiv:1602.03922
2024	p [↑] Au @ 200	1.8 pb ⁻¹ 8 weeks	Nature of the initial state and hadronization in nuclear collisions	R_{pAu} direct photons and DY Dihadrons, γ -jet, h-jet,	Ecal + Hcal +Tracking		Forward
			Clear signatures for Saturation	diffraction		>	detector upgrade
	p [†] Al @ 200	12.6 pb ⁻¹ 8 weeks	A-dependence of nPDF,	R_{pAl} : direct photons and DY	Ecal + Hcal +Tracking		required
			A-dependence for Saturation	Dihadrons, γ-jet, h-jet, diffraction		5	

- RHIC is the world's only polarized hadron hadron collider
- Unique physics opportunities in pp and pA

EIC

detector

Summary & outlook

□ Observation of positive gluon polarization from RHIC:

- Probes with jets and pion, are providing important constraints on ΔG
 Global analysis indicates non-zero gluon polarization (0.05<x<0.2)
- □ Unique probe of sea quark polarization via W production:
 - Final A_L results for W[±] from RHIC run 13 data concludes RHIC W program, further confirm the SU(2) symmetry breaking: $\Delta \overline{u} > \Delta \overline{d}$
- □ Transverse spin physics: Sivers sign-change
 - A_N for W,Z at STAR: 1st results obtained, run 17 to study Sivers sign change
- □ Future RHIC spin in 2021⁺ -- Cold QCD plan
 - Unique physics opportunities in pp and pA, essential to fully realize the scientific promise of the EIC.

Summary & outlook

Observation of positive gluon polarization from RHIC:

- Probes with jets and pion, are providing important constraints on ΔG
 Global analysis indicates non-zero gluon polarization (0.05<x<0.2)
- □ Unique probe of sea quark polarization via W production:
 - Final A_L results for W[±] from RHIC run 13 data concludes RHIC W program, further confirm the SU(2) symmetry breaking: $\Delta \overline{u} > \Delta \overline{d}$
- □ Transverse spin physics: Sivers sign-change
 - A_N for W,Z at STAR: 1st results obtained, run 17 to study Sivers sign change
- □ Future RHIC spin in 2021⁺ -- Cold QCD plan
 - Unique physics opportunities in pp and pA, essential to fully realize the scientific promise of the EIC.

