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Emergent	phenomena 

•  Quark	current	mass…Higgs	boson.	
•  Hadron	physics	mass-scale	–	1	GeV		
				–	is	an	emergent	feature	of	the	Standard	Model	
						No	amount	of	staring	at	LQCD	can	reveal	that	scale	
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Holism=Emergentism 

•  Aristotle(亚里士多德): 383BC?-322 BC 
•  Holism: 

–  the idea that items can have properties,  
(emergent properties), as a whole that are not explainable from the 
sum of their parts. 

•  Summarized concisely (Aristotle):  
–  The whole is more than the sum of its parts 

 
•  Hegel(黑格尔) (Stuttgart 1770 – Berlin 1831):  
        Das Wahre ist das Ganze (The true is the whole) 

•  Anderson (1972) 
 More is different 
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Bound state and quantum field theory 

		

Field	theory	Successful:	
•  Nonrelativistic	quantum	

mechanics	to	handle	
bound	state;	

•  Perturbation	theory	to	
handle	relativistic	effects	

Field	theory	not	Successful	yet:	
•  Growth	of	the	running	coupling	constant	

in	the	infrared	region;	
•  Confinement;	
•  Dynamical	Chiral	Symmetry	Breaking;	
•  Possible	nontrivial	vacuum	structure	in	

hadron	

Trace	anomaly	
Ø  All	renormalisable	four-

dimensional	theories	
possess	a	trace	anomaly;	

Ø  The	size	of	the	trace	
anomaly	in	QED	must	be	
great	deal	smaller	than	
that	in	QCD.	
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Hadron	bound	state	problem 

Constituent	quark	
model->	intuitive	
understanding	of	
many	low	energy	
observables.	
	
Minimum	number	
of	constituents	
required	

Feynman’s	parton	
model->	intuitive	
understanding	of	high-
energy	phenomena.	
	
Constituent	picture;	
Probabilistic	
interpretation	of	
distribution	functions	

QCD	vacuum	in	the	hadron	is	very	complicated	medium	
Individual	quarks	and	gluons	are	lost	in	the	sea	

	
	

Both	the	constituent	quark	model	and	the	parton	model	
are	put	in	peril	by	QCD	with	a	possible	complicated	

vacuum	structure.	
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Emergent phenomena, 方法论 

•  Confinement	and	DCSB	are	emergent	phenomena	
							Not	revealed	by	any	amount	of	staring	at	Lagrangian	for	quantum	chromodynamics;	
								They	determine	the	character	of	the	QCD’s	spectrum,	the	structure	and		interactions	of	bound	states	
	
•  Can	one	understand	confinement	and	DCB	in	terms	of	properties	of	the	degrees-of-

freedom	used	to	formulate	QCD?	
					E.g.,	is	it	pointless	to	attempt	to	predict	the	nucleon’s	form	factor	on	a	domain	that	is	not	yet	accessible?	

If	YES:	
Must	rely	on	the	vase	array	of	
effective	field	theories,	
developed	for	different	
systems,	in	order,	to	express	
and	understand	the	
consequences	of	confinement	
and	DCSB,	without	identifying	
their	source	

If	NO:	
Must	develop	nonperturbative	calculational	methods	to	
define	and	tackle	QCD	
1)  Lattice-regularized	QCD	
2)  Continuum	methods	in	quantum	filed	theory	
3)  Combination	of	all	the	above	

Currently,	each	approach	has	strengths	and	weaknesses	
So	3)	is	probably	the	best:	
Combine	all	available	methods	to	fullest	extent	reasonably	
possible.	
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Dyson-Schwinger	Equation	scope	
Study	bound	state	problem	within	an	continuum	field	theory 
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OPENING	HIGHLIGHT	

i)  A Pattern for the Flavor Dependence of the Quark-Gluon Interaction,  
        arXiv: 1903.07808, Muyang Chen and Lei Chang; 
ii)  Excited Bc States via Continuum QCD, 
        arXiv: 1904.00399, Lei Chang, Muyang Chen and Yuxin Liu. 
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where F(s) = [1 � exp(�s2/[4m4
t ])]/s, �m = 12/(33 �

2Nf ), with mt = 1.0 GeV , ⌧ = e10 � 1, Nf = 5, and
⇤QCD = 0.21 GeV . GUV (s) keeps the one-loop pertur-
bative QCD limit in the ultraviolet. The values of mt

and ⌧ are chosen so that GUV (s) is well suppressed in the
infrared, not to disturb Gfg

IR(s).
In Eq.(4), Df,g and !f,g are parameters which express

the flavor dependent quark-gluon interaction. However,
the flavor dependence of these parameters is apriori un-
known. Herein we treat the Df and !f of each flavor as
free parameters. Working in the isospin symmetry limit,
we have 4 independent quarks up to the b quark mass: u
(or d), s, c and b. There are 3 parameters for each flavor:
Df , !f and mf . In total there are 12 parameters. !u

is treated as an independent variable, the other 11 pa-
rameters are dependent variables, which are fitted by 11
observables: the masses and decay constants of ⇡, K, ⌘c
and ⌘b, and the masses of D, Ds and B. All the masses
and decay constants of the rest ground state pseudoscalar
mesons(except ⌘ and ⌘0) and all the ground state vector
mesons are predicted.

Before discussing the results, we first elaborate on the
symmetry preservation of our model. When f = g, our
model returns to the original RL truncation[9–12], which
satisfies the axial-vector Ward-Takahashi identity(av-
WTI) exactly[9, 10],

Pµ�
fg
5µ(k;P ) = S�1

f (k+)i�5 + i�5S
�1
g (k�)

�i[mf +mg]�
fg
5 (k;P ), (6)

where �fg
5µ and �fg

5 are the axial-vector and pseu-
doscalar vertex respectively. Eq.(6) is crucial to guar-
antee the pseudoscalar mesons as pseudo-Goldstone
bosons of DCSB. Eq.(6) leads to the Gell-Mann–Oakes–
Renner(GMOR) relation[9, 10],

f̃0� := (mf +mg)⇢0�/M
2
0� = f0� . (7)

f0� and ⇢0� are defined by

f0�Pµ := Z2Nc tr

Z ⇤

dk
�5�µSf (k+)�

fg
0�(k;P )Sg(k�),(8)

⇢0� := Z4Nc tr

Z ⇤

dk
�5Sf (k+)�

fg
0�(k;P )Sg(k�), (9)

with f0� the leptonic decay constant, Z4 = Z2Zm, Nc the
color number, tr the trace of the Dirac index and �fg

0� the
BSA of pseudoscalar mesons. When f 6= g, Eq.(6) is not
explicitly preserved. We check the degree of preserva-
tion of the av-WTI, Eq.(6), by comparing the decay con-
stants f0� defined by Eq.(8) and f̃0� defined by Eq.(7)
and Eq.(9). f0� and f̃0� are depicted in Fig.1. They
deviate from each other by no more than 3% for all the
pseudoscalar mesons considered here. We conclude that
the av-WTI is perfectly preserved in our approach.

The masses and decay constants of the ground state
pseudoscalar mesons are listed Tab.I. Our outputs are
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FIG. 1. Decay constants of the ground state pseudoscalar
mesons: f0� defined by Eq.(8) and f̃0� defined by Eq.(7) and
Eq.(9) are our results, flQCD are the lattice QCD data in Tab.
I.

quite stable with !u varying 10% around 0.5 GeV. With
!u 2 [0.45, 0.55] GeV, the masses are almost unchanged
and the decay constants vary within 1.2%. Our output
of MB±

s
deviates from the experimental value by only

0.01 GeV, which is impossible in the original RL trun-
cated DSBSE. The flavor dependence of the quark gluon
interaction even has a significant e↵ect on the Bc meson.
MBc produced by the original RL truncated DSBSE is
0.11 GeV larger than the experimental value[26]. We re-
duce the error to less than 0.02 GeV herein. Our output
of fD, fD±

s
, fB , fB±

s
and fBc are all consistent with the

lattice QCD results, with the deviation less than 6%.
Note that our fD±

s
is also in good agreement with the

recent experimental measurement[27]. The only absent
mesons in Tab.I are ⌘ and ⌘0, which are a↵ected by the
axial anomaly[28, 29] and beyond our present purpose.

A further confirmation of our model is given by the
vector mesons. Our predictions of the static vector me-
son masses and decay constants are listed in Tab.II.
The vector mesons also show a weak dependence on
!u 2 [0.45, 0.55] GeV. The deviation from experimen-
tal or lQCD values decreases as the mass increases. The
mass deviation is about 6% for the ⇢ meson, decreas-
ing to about 1% for the heavy mesons. The decay con-
stant deviation is about 12% for the � meson, decreas-
ing to less than 7% for the heavy mesons. This de-
viation is attributed to the systematic error of the RL
truncation[11]. The successfulness of the pattern of the
flavor dependent interaction, Eq.(3) - Eq.(5), is shown
by the fact that the deviation is of the same order for
both the open-flavor mesons and the quarkonia. We
can see again that the flavor dependence has a signifi-
cant e↵ect on Bc mesons. While MB⇤

c
⇡ 6.54 GeV and

fB⇤
c
⇡ 0.43 GeV in the original RL truncated DSBSE[26],

our results MB⇤
c
⇡ 6.357 GeV and fB⇤

c
⇡ 0.305 GeV is

more consistent with the lQCD predictions. B⇤
c has not

•  They	deviate	from	each	other	by	no	more	than	
3%	for	all	the	pseudoscalar	mesons;	

•  We	conclude	that	the	av-WTI	is	perfectly	
preserved	in	our	approach.	
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FIG. 1. P 2 dependence of 1/�bc for JP = 0� state. The
black circles correspond to the ground state, and red dia-
monds correspond to the first radial excited state. The open
circles and diamonds correspond to the varying of the param-
eters in Table.I. The virtical dot-dashed is the contour border
on the right of which the direct calculation can be applied.
The blue stars present our extrapolated first radial excited
state with No = 1, see text for details.

the pseudoscalar meson (0�) and vector meson (1�) are
defined by

ffg
0�(P

2)Pµ = Z2Nc tr

Z ⇤

dk
�5�µ�

fg
0�(k;P ), (10)

ffg
1�(P

2)
p
�P 2 =

Z2Nc

3
tr

Z ⇤

dk
�µ�

fg
1�,µ(k;P ), (11)

with tr the trace of the Dirac index. ffg(P 2) is generally
fitted by

ffg(P 2) =
f0 +

PNo

n=1 cn(P 2 + s)n

1 +
PNo

n=1 dn(P 2 + s)n
, (12)

where f0, cn and dn are parameters, and s = M2 is
the square of the mass. The physical decay constant is
ffg(�M2) = f0. Note that Eq.(9) and (12) are

the general forms for regular functions. The er-

ror due to the extrapolation scheme could be es-

timated by comparing the results obtained with

No = 1, 2, 3, ... in Eq.(9) and (12). The param-

eters are fitted using the least square method,

i.e. by finding the minimum of the quantity � =
1
Np

PNp

i=1(F (P 2
i ) � Vi)2, where Np is the number of

the P 2
value calculated, F (P 2

i ) =
1

�fg(P 2
i )

or ffg(P 2
i ),

Vi the corresponding calculated values.

4. Results— An illustration of the mass extrapolation
is given by Fig. 1, which is the case of B+

c . The black
circles show the 1/�bc(P 2) of the ground state B+

c (1S).
The mass, MB+

c (1S), lies in the parabolic region defined
by the singularities of the quark propagator, so it is ob-
tained directly. The red diamonds show the 1/�bc(P 2) of

TABLE II. Masses of the first radial excited states of charm-
beauty system (in GeV). The experimental data for M⌘c(2S),
M (2S), M⌘b(2S) andM⌥ (2S) are taken from Ref.[25], MB+

c (2S)

and MB+
c (2S) � M rec

B⇤+
c (2S)

from Ref.[2]. The mass splitting,

MB⇤+
c (1S)�MB+

c (1S), is quoted from Ref.[22]. The uncertain-
ties of our results correspond to the varying of the parameters
in Table I.

M⌘c(2S) M (2S) M (2S) �M⌘c(2S)

here 3.606(18) 3.645(18) 0.039

expt. 3.638(1) 3.686(1) 0.048

MB+
c (2S) MB⇤+

c (2S) MB+
c (2S) �M rec

B⇤+
c (2S)

here 6.813(16) 6.841(18) 0.039

expt. 6.872(2) – 0.031

M⌘b(2S) M⌥ (2S) M⌥ (2S) �M⌘b(2S)

here 9.915(15) 9.941(15) 0.026

expt. 9.999(4) 10.023(1) 0.024

the first radial excited state B+
c (2S). MB+

c (2S) lies out-
side the parabolic region, and its value is extrapolated
and presented by the blue stars. The series Eq.(9)

converges very fast, a good fitting is obtained for

No = 1, with �No=1 ⇡ 1 ⇥ 10�6
. Higher orders in

Eq.(9) a↵ect the fitting very little, �No=2 ⇡ 4⇥10�7
,

�No=3 ⇡ 2⇥ 10�7
. The corrections from higher or-

ders are much less than that from the varying

of the parameters in Table I. The open circles and
diamonds correspond to the varying of the parameters,
which are the source of our uncertainty in Ta-

ble II. The other excited states, ⌘c(2S),  (2S), ⌘b(2S),
⌥ (2S) and B⇤+

c (2S), are analyzed by the similar method.
The masses of the first radial excited state of the

charm-beauty system are listed in Table II. The average
of the results with the three sets of parameters is quoted
as final result and the uncertainties are set from the dif-
ference between the average and the largest and smallest
value respectively. The excited meson masses increase
with the value of parameter !, showing more sensitivity
than the ground state as being pointed out by others (see,
e.g., Ref. [28]). The relative errors of our results to the
experimental date are within 1%. What’s more, the mass
di↵erences of the vector meson and pseudoscalar meson,
M (2S)�M⌘c(2S) and M⌥ (2S)�M⌘b(2S), are comparable
with the experimental value. The reconstructed masses
are defined by

M rec
B⇤+

c (2S)
= MB⇤+

c (2S) � (MB⇤+
c (1S) �MB+

c (1S)). (13)

The mass splitting, MB+
c (2S) � M rec

B⇤+
c (2S)

, is consistent

with the recent measurement [2]. There is no experimen-
tal measurements of MB+⇤

c (1S) and MB+⇤
c (2S) hitherto,

our predication waits for the future experimental verifi-
cation.

To first order in the violation of unitary symmetry, the
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QCDs Dyson-Schwinger Equations
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QCDs	Dyson-Schwinger	Equations	
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Dyson-Schwinger	Equation	scope	

Bethe-Salpeter	Equations	
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Gluon	Propagator 

mg	≈	0.5	GeV	
	
rC	≈	0.5	fm	existing	an	
inflection	point:	
	
r<rc	Parton	structure;		
	
r>rc	Propagating	mode	
change,	massive	

胶子=汉尼拔	

REVIEW ARTICLE

m2(0), we find that the gluon masses before and after
renormalization are related by [80]

m2
R(q2) = ZAm2

0(q
2). (5.22)

Evidently, this particular “renormalization” is not asso-
ciated with a counter-term of the type δm2= m2

R −m2
0,

as is the case for hard boson masses (which is precisely
the essence of point (iii)).

(v) In order to fully determine the nonperturbative
∆(q2), one should, in principle, solve the coupled system
of Eq. (5.1). However, the derivation of the all-order inte-
gral equation for Jm(q2) is technically far more difficult,
primarily because of the presence of the fully dressed ver-
tex BQ3 [see (a5) in Fig. 6]. The latter is a practically
unexplored quantity with an enormous number of form
factors (for recent works on the subject see Refs. [81,
82]). Instead, we study Eq. (5.17) in isolation, treating
all full propagators appearing in this calculation as ex-
ternal quantities, the forms of which are determined by
resorting to information beyond the SDEs, such as the
large-volume lattice simulations. Therefore, Eq. (5.17) is
effectively converted into a homogeneous linear integral
equation for the unknown m2(q2).

We now turn to the numerical analysis of the gluon gap
equation. After its full renormalization has been care-
fully performed1) , Eq. (2.24) has been utilized, and the
substitution of ∆(k2) and F (q2) into Eq. (5.17) using
the lattice data of Refs. [14, 15] has been implemented,
one obtains positive-definite and monotonically decreas-
ing solutions, as shown in Fig. 10. This numerical solu-
tion can be accurately fit using the simple and physically
motivated function

m2(q2) =
m2

0(q2)
1 + (q2/M2)1+p

. (5.23)

Specifically, the numerical solution shown in Fig. 10 is
perfectly reproduced when the parameters (M, p) as-
sume the values (436 MeV, 0.15).

In addition, note that one can omit the 1 in the denom-
inator of Eq. (5.23) for asymptotically large momentum
values, yielding “power-law” behavior [83–85], where

m2(q2) ∼
q2≫M2

m2
0M2

q2
(q2/M2)−p. (5.24)

This particular behavior reveals that condensates of di-
mension two do not contribute to the operator product
expansion (OPE) of m2(q2), given that their presence
would have induced a logarithmic running of the so-
lutions. Indeed, in the absence of quarks, the lowest-
order condensates appearing in the OPE of the mass

Fig. 10 The numerical solution for m2 (q2 ) (black circles) com-
pared with the corresponding fit Eq. (5.23) (black, continuous).
The (blue) dashed curve represents the asymptotic fit given by Eq.
(5.24).

must be those of dimension four, namely, the (gauge-
invariant) ⟨0|:Ga

µνGµν
a :|0⟩, and possibly the ghost con-

densate ⟨0|:ca ! ca:|0⟩ [86–88]. As these condensates
must be divided by q2 on dimensional grounds, one ob-
tains (up to logarithms) the observed power-law behav-
ior.

We end this section by commenting that, as has been
argued recently [5], the nontrivial momentum depen-
dence of the gluon mass shown in Fig. 10 may be con-
sidered responsible for the fact that, in contradistinction
to a propagator with a constant mass, the ∆(q2) of Fig.
1 displays an inflection point. The presence of such a
feature, in turn, is a sufficient condition for the spectral
density of ∆(q2), ρ, to be non-positive definite.

Specifically, the Källén–Lehman representation of
∆(q2) reads

∆(q2) =
∫ ∞

0
dσ

ρ(σ)
q2+ σ

, (5.25)

and if ∆(q2) has an inflection point at q2
⋆ , then its second

derivative vanishes at that point (see Fig. 11), such that
[89]

∆′′(q2
⋆) = 2

∫ ∞

0
dσ

ρ(σ)
(q2

⋆ + σ)3
= 0. (5.26)

Given that q2
⋆ > 0, then the sign of ρ(σ) is forced to re-

verse at least once. This non-positivity of ρ(σ) may be
interpreted as an indication of confinement (see Ref. [5],
and references therein), because the resultant breeching
of the axiom of reflection positivity excludes the gluon
from the Hilbert space of observable states (for related
works, see Refs. [23, 25, 89–93]). As can be seen in Fig.
11, the first derivative of ∆(q2) exhibits a minimum at

1) This rather technical procedure, and the manner in which it affects the form of the renormalized kernel Kαβ , has been presented in
Ref. [80].

111203-14 A. C. Aguilar, D. Binosi, and J. Papavassiliou, Front. Phys. 11(2), 111203 (2016)
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111203-14 A. C. Aguilar, D. Binosi, and J. Papavassiliou, Front. Phys. 11(2), 111203 (2016)
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Quark	Propagator	
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•  Inflection	points	
•  Red	line:	running	gluon	propagator	
•  Blue	line:	vector	part	of	propagator	

•  at	around	k2≈	0.5	mg2	there	exists	an	inflection	point	in	quark	
propagator	consistently	
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•  Pion	is	Massless...	

Why	Pion-----Messager	of	QCD 

• 	In	October	1934,	Hideki	Yukawa	predicated	the	existence	of	a	“heavy	quantum”	
meson,	exchanging	nuclear	force	between	neutrons	and	protons.		
• 	It	was	discovered	by	Cecil	Powel	in	1949	in	cosmic	ray	tracks	in	a	photographic	
emulsion.	
• 	Pion	was	nicely	accommodated	in	the	Eight	Fold	way	of	Murray	Gell-Mann	in	1961.	
• 	Yoichiro	Nambu	associated	it	with	CSB	in	1960. 
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Pion’s	dichotomy 
Goldstone	boson	and	Bound	State 
Maris,	Roberts	and	Tandy,	Phys. Lett. B420(1998)	267-273 

Ø  Pion’s	Bethe-Salpeter	amplitude	
	Solution	of	the	Bethe-Salpeter	equation	

	
	
	
Ø  Dressed-quark	propagator	

Ø  Axial-vector	Ward-Takahashi	identity	entails(chiral	limit)	

•  Given	the	dichotomy	of	pion	the	fine-tuning	should	not	play	any	role	in	an	explanation	of	pion	properties;	
•  Descriptions	of	pion	within	frameworks	that	cannot	faithfully	express	symmetries	and	their	breaking	

patterns(such	as	constituent-quark	models)	are	unreliable;	
•  Hence,	pion	properties	are	an	almost	direct	measure	of	the	dressed-quark	mass	function.			
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π	N→	μ+	μ−	X	 p(e,	e’	π+)n	
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Hadron c, m,

Recoil

FIG. 1. Kinematics of muon-pair production in the hadron
center-of-momentum frame.

The dimensionless quantities x and xN are defined by
the equations

direction in the muon-pair rest frame. For the u-channel
frame the z axis is chosen to be antiparallel to the nucleon
direction, while in the Collins-Soper frame the z axis is
the bisector of the angle between the t- and u-channel z
axes. As pT~O the frames become identical and P be-
comes undefined. The angle 2P between the z axes in the
t- and the u-channel frames is, to very good approxima-
tion, given by f3=arctan(p T /m„„). In this experiment a
typical value of P is -0.2 rad.

B. Drell-Yan model

Drell and Yan' proposed that muon pairs with large
invariant mass from hadron-hadron interactions are pro-
duced through the electromagnetic annihilation of con-
stituent quarks and antiquark s. For massless spin- —,

'

quarks, the annihilation cross section is given by

and

XF=X~ XN 4~+ 20 e3~2
PP

X~XN—1—Pl /S2

where s =(p +pz) is the center-of-mass energy
squared. (Here p and p~ are the hadron four momenta. )
These equations together imply

x ~ =[+xF +(xF +4m )' ]/2 .

The quantities x and xN can be interpreted as the
momentum fractions of the annihilating quarks in the
had rons, neglecting transverse momentum and quark
mass, as s becomes very large.
The remaining degrees of freedom are those describing

the orientation of the muons in the pair rest frame (see
Fig. 2). The variables cos8 and P describe the direction
of the p+ relative to a set of axes in this frame. Ideally,
one would measure cos8 and P relative to the quark-
antiquark annihilation axis, but this is impossible because
the individual transverse momenta of the quarks are un-
known. Several choices of axes are commonly used. In
all these frames the y axis is taken to be perpendicular to
the plane formed by the pion and nucleon directions.
The different frames are then related by a rotation about
this y axis. One set of axes is the t-channel, or Gottfried-
Jackson frame, in which the z axis is taken to be the pion

pair c I

FICx. 2. Definition of angles in the muon-pair rest frame.

C7DY
2

X~dxN

2

g e; [q„'(x„)q Iv(x~)+q '„(x )q~(x~)].
9m

This relationship provides a means to measure these
functions for the pion and nucleon. In this expression the
transverse momentum of the pair has been integrated
over. The Drell-Yan cross section also leads to the result
that

=f(x,r),
df7l ppdXF

with f a function of xF and w only, independent of s.
The angular distribution of the p+ in the pair rest

frame can be written

0
cc ]+A, cos 0+@sin20cosg+v/2sin Ocos2$,2 2

d cos8dg
where k, p, and v are functions of the other kinematic
variables. In the Drell-Yan model the assumption of
massless quarks implies that the virtual photon is trans-
versely polarized so that A, = 1 and p =v=0, and one has

0 ~ 1+cos 0 .
d cosO

This relation holds only when 0 is measured relative to
the true quark-antiquark annihilation axis. As indicated
above, this axis is not directly measurable because of the
unobserved individual transverse momenta of the quarks
within the hadrons. The inAuence of this intrinsic trans-
verse momentum on A., p, and v has been evaluated and
the expected effects are very small.
A general relation based on the assumption of massless

quarks arises for the angular distribution parameters. It
is analogous to the Callan-Gross relation in deeply inelas-

where e is the quark charge. If q' (x ) [q '(x )] is the
probability density for finding a quark [antiquark] of
flavor i, any color, and momentum fraction x„ in a pion,
and if q~(x~ ) is a similar function for the nucleon, then
the Drell- Yan formula reads
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IV. PREDICTION FOR THE PION
VALENCE-QUARK DISTRIBUTION FUNCTION

A. Ward identity approximation for q⇡(x)

As illustrated in Ref. [71], it is challenging to solve
for the complete RL u and t channel scattering ampli-
tudes depicted in Figs. 2(A), (B) and needed to describe
�⇤⇡ ! �⇤⇡. Herein, we therefore use a simpler approach,
employing the approximations introduced in Ref. [36]:

i�n(k; x; ⇣H) = �x

n
(k⌘)n · @k⌘

S�1(k⌘) , (18a)

�n

⇡
(k⌘,�P ; ⇣H) = n · @k⌘

�⇡(k⌘,�P ; ⇣H) , (18b)

in which case

q⇡(x; ⇣H) = Nctr

Z

dk

�x

n
(k⌘)

⇥ n · @k⌘
[�⇡(k⌘,�P )S(k⌘)] �⇡(k⌘̄, P ) S(k⌘̄) , (19)

where the derivative acts only on the bracketed terms. It
is straightforward to prove algebraically that the result
obtained using Eq. (19) is: independent of ⌘; ensures

q⇡(x; ⇣H) = q⇡(1 � x; ⇣H) ; (20)

satisfies Eqs. (9); and possesses defined subcomponents
that comply with Eqs. (14), (16).

B. Computing the inputs for q⇡(x)

In order to calculate q⇡(x; ⇣H) from Eq. (19) one must
know the dressed light-quark propagator and pion Bethe-
Salpeter amplitude. Algebraic Ansätze were employed in
Ref. [36]. In contrast, herein we follow Ref. [40] and use
realistic numerical solutions. Consequently, the result for
q⇡(x; ⇣H) is completely determined once an interaction
kernel is specified for the RL Bethe-Salpeter equation.

We use the interaction explained in Ref. [87, 88]:

K ↵1↵
0
1,↵2↵

0
2

= Gµ⌫(k)[i�µ]↵1↵
0
1
[i�⌫ ]↵2↵

0
2
, (21a)

Gµ⌫(k) = G̃(k2)Tµ⌫(k) , (21b)

with k2Tµ⌫(k) = k2�µ⌫ � kµk⌫ and (s = k2)

1
Z

2
2

G̃(s) =
8⇡2D

!4
e�s/!

2

+
8⇡2�mF(s)

ln
⇥
⌧ + (1 + s/⇤2

QCD)2
⇤ ,

(22)

where �m = 4/�0, �0 = 11 � (2/3)nf , nf = 4,
⇤QCD = 0.234 GeV, ⌧ = e2 � 1, and F(s) = {1 �

exp(�s/[4m2
t
])}/s, mt = 0.5 GeV. The development of

Eqs. (21), (22) is summarised in Ref. [87] and their con-
nection with QCD is described in Ref. [57].

Z2 in Eq. (22) is the dressed-quark wave function renor-
malisation constant. We employ a mass-independent
momentum-subtraction renormalisation scheme for the

gap and inhomogeneous vertex equations, implemented
by using the scalar WGT identity and fixing all renor-
malisation constants in the chiral limit [89]. In the first
applications of this DSE approach to hadron observables
[90, 91] (and many that have followed), the renormal-
isation scale was chosen deep in the spacelike region:
⇣ = ⇣19 := 19 GeV, primarily to ensure simplicity in the
nonperturbative renormalisation procedure. This choice
entails that the dressed quasiparticles obtained as solu-
tions to the DSEs remain intact and thus serve as the
dominant degrees-of-freedom for all observables. This is
adequate for infrared quantities, such as hadron masses:
flexibility of model parameters and the bridge with QCD
enable valid predictions to be made. However, it gen-
erates errors in form factors and parton distributions.
With form factors, the correct power-law behaviour is
obtained, but the scaling violations deriving from anoma-
lous operator dimensions are wrong (see, e.g. Ref.[92]);
and for parton distributions, the natural connection be-
tween the renormalisation scale and the reference scale
for evolution equations is lost, again because parton loops
are suppressed when renormalising a RL truncation study
at deep spacelike momenta so the computed anomalous
dimensions are wrong.

As explained elsewhere [39, 41, 43], the solution to
these problems is to renormalise the DSE solutions at
a typical hadronic scale, where the dressed quasiparti-
cles are the correct degrees-of-freedom. This recognises
that a given meson’s Poincaré covariant wave function
and correlated vertices, too, must evolve with ⇣ [93–95].
Such evolution enables the dressed-quark and -antiquark
degrees-of-freedom, in terms of which the wave function is
expressed at a given scale ⇣2 = Q2, to split into less well-
dressed partons via the addition of gluons and sea quarks
in the manner prescribed by QCD dynamics. These ef-
fects are automatically incorporated in bound-state prob-
lems when the complete quark-antiquark scattering ker-
nel is used; but aspects are lost when that kernel is trun-
cated, and so it is with RL truncation. We therefore
renormalise our DSEs at the hadronic scale ⇣ = ⇣H .

A natural value for the hadronic scale, ⇣H , must now
be determined. To that end, recall that QCD pos-
sesses a process-independent e↵ective charge [96, 97]:
↵PI(k2). This running-coupling saturates in the in-
frared: ↵PI(0)/⇡ ⇡ 1, owing to the dynamical genera-
tion of a gluon mass-scale [98, 99]. These features and a
smooth connection with pQCD (and hence Eq. (22)) are
expressed in the following algebraic expression:

↵PI(k
2) =

⇡�m

ln[(m2
↵

+ k2)/⇤2
QCD]

, (23)

m↵ = 0.30 GeV& ⇤QCD. Evidently, m↵ is an essen-
tially nonperturbative scale whose existence ensures that
modes with k2 . m2

↵
are screened from interactions. It

therefore serves to define the natural boundary between
soft and hard physics; hence, we identify

⇣H = m↵ . (24)

Hadronic	Scale	
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IV. PREDICTION FOR THE PION
VALENCE-QUARK DISTRIBUTION FUNCTION

A. Ward identity approximation for q⇡(x)

As illustrated in Ref. [71], it is challenging to solve
for the complete RL u and t channel scattering ampli-
tudes depicted in Figs. 2(A), (B) and needed to describe
�⇤⇡ ! �⇤⇡. Herein, we therefore use a simpler approach,
employing the approximations introduced in Ref. [36]:

i�n(k; x; ⇣H) = �x

n
(k⌘)n · @k⌘

S�1(k⌘) , (18a)

�n

⇡
(k⌘,�P ; ⇣H) = n · @k⌘

�⇡(k⌘,�P ; ⇣H) , (18b)

in which case

q⇡(x; ⇣H) = Nctr

Z

dk

�x

n
(k⌘)

⇥ n · @k⌘
[�⇡(k⌘,�P )S(k⌘)] �⇡(k⌘̄, P ) S(k⌘̄) , (19)

where the derivative acts only on the bracketed terms. It
is straightforward to prove algebraically that the result
obtained using Eq. (19) is: independent of ⌘; ensures

q⇡(x; ⇣H) = q⇡(1 � x; ⇣H) ; (20)

satisfies Eqs. (9); and possesses defined subcomponents
that comply with Eqs. (14), (16).

B. Computing the inputs for q⇡(x)

In order to calculate q⇡(x; ⇣H) from Eq. (19) one must
know the dressed light-quark propagator and pion Bethe-
Salpeter amplitude. Algebraic Ansätze were employed in
Ref. [36]. In contrast, herein we follow Ref. [40] and use
realistic numerical solutions. Consequently, the result for
q⇡(x; ⇣H) is completely determined once an interaction
kernel is specified for the RL Bethe-Salpeter equation.

We use the interaction explained in Ref. [87, 88]:

K ↵1↵
0
1,↵2↵

0
2

= Gµ⌫(k)[i�µ]↵1↵
0
1
[i�⌫ ]↵2↵

0
2
, (21a)

Gµ⌫(k) = G̃(k2)Tµ⌫(k) , (21b)

with k2Tµ⌫(k) = k2�µ⌫ � kµk⌫ and (s = k2)

1
Z

2
2

G̃(s) =
8⇡2D

!4
e�s/!

2

+
8⇡2�mF(s)

ln
⇥
⌧ + (1 + s/⇤2

QCD)2
⇤ ,

(22)

where �m = 4/�0, �0 = 11 � (2/3)nf , nf = 4,
⇤QCD = 0.234 GeV, ⌧ = e2 � 1, and F(s) = {1 �

exp(�s/[4m2
t
])}/s, mt = 0.5 GeV. The development of

Eqs. (21), (22) is summarised in Ref. [87] and their con-
nection with QCD is described in Ref. [57].

Z2 in Eq. (22) is the dressed-quark wave function renor-
malisation constant. We employ a mass-independent
momentum-subtraction renormalisation scheme for the

gap and inhomogeneous vertex equations, implemented
by using the scalar WGT identity and fixing all renor-
malisation constants in the chiral limit [89]. In the first
applications of this DSE approach to hadron observables
[90, 91] (and many that have followed), the renormal-
isation scale was chosen deep in the spacelike region:
⇣ = ⇣19 := 19 GeV, primarily to ensure simplicity in the
nonperturbative renormalisation procedure. This choice
entails that the dressed quasiparticles obtained as solu-
tions to the DSEs remain intact and thus serve as the
dominant degrees-of-freedom for all observables. This is
adequate for infrared quantities, such as hadron masses:
flexibility of model parameters and the bridge with QCD
enable valid predictions to be made. However, it gen-
erates errors in form factors and parton distributions.
With form factors, the correct power-law behaviour is
obtained, but the scaling violations deriving from anoma-
lous operator dimensions are wrong (see, e.g. Ref.[92]);
and for parton distributions, the natural connection be-
tween the renormalisation scale and the reference scale
for evolution equations is lost, again because parton loops
are suppressed when renormalising a RL truncation study
at deep spacelike momenta so the computed anomalous
dimensions are wrong.

As explained elsewhere [39, 41, 43], the solution to
these problems is to renormalise the DSE solutions at
a typical hadronic scale, where the dressed quasiparti-
cles are the correct degrees-of-freedom. This recognises
that a given meson’s Poincaré covariant wave function
and correlated vertices, too, must evolve with ⇣ [93–95].
Such evolution enables the dressed-quark and -antiquark
degrees-of-freedom, in terms of which the wave function is
expressed at a given scale ⇣2 = Q2, to split into less well-
dressed partons via the addition of gluons and sea quarks
in the manner prescribed by QCD dynamics. These ef-
fects are automatically incorporated in bound-state prob-
lems when the complete quark-antiquark scattering ker-
nel is used; but aspects are lost when that kernel is trun-
cated, and so it is with RL truncation. We therefore
renormalise our DSEs at the hadronic scale ⇣ = ⇣H .

A natural value for the hadronic scale, ⇣H , must now
be determined. To that end, recall that QCD pos-
sesses a process-independent e↵ective charge [96, 97]:
↵PI(k2). This running-coupling saturates in the in-
frared: ↵PI(0)/⇡ ⇡ 1, owing to the dynamical genera-
tion of a gluon mass-scale [98, 99]. These features and a
smooth connection with pQCD (and hence Eq. (22)) are
expressed in the following algebraic expression:

↵PI(k
2) =

⇡�m

ln[(m2
↵

+ k2)/⇤2
QCD]

, (23)

m↵ = 0.30 GeV& ⇤QCD. Evidently, m↵ is an essen-
tially nonperturbative scale whose existence ensures that
modes with k2 . m2

↵
are screened from interactions. It

therefore serves to define the natural boundary between
soft and hard physics; hence, we identify

⇣H = m↵ . (24)

•  Rainbow-Ladder truncation 
•  Renormalize our DSEs at the hadronic scale ζ=mα 
•  Pure valences 
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Pion	Compton	Scattering(RL	symmetry)	
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IV. PREDICTION FOR THE PION
VALENCE-QUARK DISTRIBUTION FUNCTION

A. Ward identity approximation for q⇡(x)

As illustrated in Ref. [71], it is challenging to solve
for the complete RL u and t channel scattering ampli-
tudes depicted in Figs. 2(A), (B) and needed to describe
�⇤⇡ ! �⇤⇡. Herein, we therefore use a simpler approach,
employing the approximations introduced in Ref. [36]:

i�n(k; x; ⇣H) = �x

n
(k⌘)n · @k⌘

S�1(k⌘) , (18a)

�n

⇡
(k⌘,�P ; ⇣H) = n · @k⌘

�⇡(k⌘,�P ; ⇣H) , (18b)

in which case

q⇡(x; ⇣H) = Nctr

Z

dk

�x

n
(k⌘)

⇥ n · @k⌘
[�⇡(k⌘,�P )S(k⌘)] �⇡(k⌘̄, P ) S(k⌘̄) , (19)

where the derivative acts only on the bracketed terms. It
is straightforward to prove algebraically that the result
obtained using Eq. (19) is: independent of ⌘; ensures

q⇡(x; ⇣H) = q⇡(1 � x; ⇣H) ; (20)

satisfies Eqs. (9); and possesses defined subcomponents
that comply with Eqs. (14), (16).

B. Computing the inputs for q⇡(x)

In order to calculate q⇡(x; ⇣H) from Eq. (19) one must
know the dressed light-quark propagator and pion Bethe-
Salpeter amplitude. Algebraic Ansätze were employed in
Ref. [36]. In contrast, herein we follow Ref. [40] and use
realistic numerical solutions. Consequently, the result for
q⇡(x; ⇣H) is completely determined once an interaction
kernel is specified for the RL Bethe-Salpeter equation.

We use the interaction explained in Ref. [87, 88]:

K ↵1↵
0
1,↵2↵

0
2

= Gµ⌫(k)[i�µ]↵1↵
0
1
[i�⌫ ]↵2↵

0
2
, (21a)

Gµ⌫(k) = G̃(k2)Tµ⌫(k) , (21b)

with k2Tµ⌫(k) = k2�µ⌫ � kµk⌫ and (s = k2)

1
Z

2
2

G̃(s) =
8⇡2D

!4
e�s/!

2

+
8⇡2�mF(s)

ln
⇥
⌧ + (1 + s/⇤2

QCD)2
⇤ ,

(22)

where �m = 4/�0, �0 = 11 � (2/3)nf , nf = 4,
⇤QCD = 0.234 GeV, ⌧ = e2 � 1, and F(s) = {1 �

exp(�s/[4m2
t
])}/s, mt = 0.5 GeV. The development of

Eqs. (21), (22) is summarised in Ref. [87] and their con-
nection with QCD is described in Ref. [57].

Z2 in Eq. (22) is the dressed-quark wave function renor-
malisation constant. We employ a mass-independent
momentum-subtraction renormalisation scheme for the

gap and inhomogeneous vertex equations, implemented
by using the scalar WGT identity and fixing all renor-
malisation constants in the chiral limit [89]. In the first
applications of this DSE approach to hadron observables
[90, 91] (and many that have followed), the renormal-
isation scale was chosen deep in the spacelike region:
⇣ = ⇣19 := 19 GeV, primarily to ensure simplicity in the
nonperturbative renormalisation procedure. This choice
entails that the dressed quasiparticles obtained as solu-
tions to the DSEs remain intact and thus serve as the
dominant degrees-of-freedom for all observables. This is
adequate for infrared quantities, such as hadron masses:
flexibility of model parameters and the bridge with QCD
enable valid predictions to be made. However, it gen-
erates errors in form factors and parton distributions.
With form factors, the correct power-law behaviour is
obtained, but the scaling violations deriving from anoma-
lous operator dimensions are wrong (see, e.g. Ref.[92]);
and for parton distributions, the natural connection be-
tween the renormalisation scale and the reference scale
for evolution equations is lost, again because parton loops
are suppressed when renormalising a RL truncation study
at deep spacelike momenta so the computed anomalous
dimensions are wrong.

As explained elsewhere [39, 41, 43], the solution to
these problems is to renormalise the DSE solutions at
a typical hadronic scale, where the dressed quasiparti-
cles are the correct degrees-of-freedom. This recognises
that a given meson’s Poincaré covariant wave function
and correlated vertices, too, must evolve with ⇣ [93–95].
Such evolution enables the dressed-quark and -antiquark
degrees-of-freedom, in terms of which the wave function is
expressed at a given scale ⇣2 = Q2, to split into less well-
dressed partons via the addition of gluons and sea quarks
in the manner prescribed by QCD dynamics. These ef-
fects are automatically incorporated in bound-state prob-
lems when the complete quark-antiquark scattering ker-
nel is used; but aspects are lost when that kernel is trun-
cated, and so it is with RL truncation. We therefore
renormalise our DSEs at the hadronic scale ⇣ = ⇣H .

A natural value for the hadronic scale, ⇣H , must now
be determined. To that end, recall that QCD pos-
sesses a process-independent e↵ective charge [96, 97]:
↵PI(k2). This running-coupling saturates in the in-
frared: ↵PI(0)/⇡ ⇡ 1, owing to the dynamical genera-
tion of a gluon mass-scale [98, 99]. These features and a
smooth connection with pQCD (and hence Eq. (22)) are
expressed in the following algebraic expression:

↵PI(k
2) =

⇡�m

ln[(m2
↵

+ k2)/⇤2
QCD]

, (23)

m↵ = 0.30 GeV& ⇤QCD. Evidently, m↵ is an essen-
tially nonperturbative scale whose existence ensures that
modes with k2 . m2

↵
are screened from interactions. It

therefore serves to define the natural boundary between
soft and hard physics; hence, we identify

⇣H = m↵ . (24)
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FIG. 2. Collection of diagrams required to complete a symmetry-preserving RL calculation of pion Compton scattering.
Amplitude-One (S1 ) = (A)+(B)-(C ). The “dots” in (A) and (B) indicate summation of infinitely many ladder-like rungs,
beginning with zero rungs. The other two amplitudes are obtained as follows: (S2 ) – switch vertices to which q and q0 are
attached; and (S3 ) – switch vertex insertions associated with q0 and P 0. In all panels: triangles (blue) – pion Bethe-Salpeter
amplitudes; circles (red) – amputated dressed-photon-quark vertices; and interior lines – dressed-quark propagators. � = q0�q.
Poincaré-covariance and electromagnetic current conservation, inter alia, are guaranteed so long as each of these elements is
computed in RL truncation. For later use, using (C ), we define line (a) to be that carrying momentum k; line (b), k + q; line
(c), k ��; and line (d), k � P .

contributions. On the other hand, if any one of the con-
tributions described and illustrated here is neglected in a
given calculation, then that calculation explicitly breaks
an array of relevant symmetries.

Consider now the �⇤⇡ forward pion Compton ampli-
tude in the Bjorken limit, Eq. (4). The (S3 ) permutation
of the diagrams in Fig. 2 corresponds to a collection of
so-called cat’s ears contributions. They are greatly sup-
pressed compared to the other two permutations in the
Bjorken limit; hence may be neglected. The (S2 ) permu-
tation corresponds simply to symmetrising the incoming
and outgoing photons and so need not explicitly be con-
sidered further. Consequently, in computing q⇡(x; ⇣H),
one may focus solely on those diagrams drawn explicitly
in Fig. 2; namely, in RL truncation [36]:

�⇤(q) + ⇡(P ) ! �⇤(q) + ⇡(P )
Fig. 2

= (A) + (B) � (C) .
(8)

In the forward and Bjorken limits, Fig. 2(C ) is the text-
book handbag contribution to �⇤⇡ Compton scattering.
It has often been used alone to estimate q⇡(x; ⇣H). (See,
e.g. Refs. [12, 73–76] and citations therein and thereof.)
If the pion’s Bethe-Salpeter amplitude is assumed to be
momentum-independent1 and a Poincaré-invariant regu-
larisation of the loop-integral is employed, then Fig. 2(C )
yields a result for q⇡(x; ⇣H) that preserves both the

1
This is the result obtained using an internally-consistent,

symmetry-preserving treatment of a vector⌦vector contact in-

teraction (CI) [77, 78].

baryon-number and momentum sum-rules; namely,
Z 1

0
dx q⇡(x; ⇣H) = 1 , (9a)

Z 1

0
dx xq⇡(x; ⇣H) =

1

2
. (9b)

(The right-hand-side of Eq. (9a) remains unity under
QCD evolution [79–82].) In fact, one finds [76]

q⇡

CI(x; ⇣H) ⇡ ✓(x)✓(1 � x) , (10)

where ✓(x) is the Heaviside step function. Eq. (10) de-
scribes a structureless pion, in which a given valence-
quark carries all light-front-fractions of the pion’s total
momentum with equal probability.

If the regularisation scheme for the loop in Fig. 2(C ) in-
troduces a mass-scale and/or the quark-antiquark inter-
action is momentum-dependent, then the result obtained
violates one or both of the sum rules in Eq. (9) [12, 73].
Consequently, Fig. 2(C ) alone is a poor approximation
when realistic interactions are used.

Consider now Fig. 2(A), which can be written thus:

q⇡

A
(x; ⇣H) = Nctr

Z

dk

�x

n
(k⌘) n · � H⇡(P, k) , (11)

where �x

n
(k⌘) := �(n · k⌘ � xn · P ); n is a light-like

four-vector, n2 = 0, n · P = �m⇡; and k⌘ = k + ⌘P ,
k⌘̄ = k � (1 � ⌘)P , ⌘ 2 [0, 1]. Owing to Poincaré covari-
ance, no observable can legitimately depend on ⌘, i.e. the
definition of the relative momentum.

In RL truncation, as illustrated in Fig. 2(A), H⇡(P, k)
in Eq. (11) is an infinite sum of laddered gluon-rungs,
beginning with zero rungs. Hence, one may write [83]

q⇡

A
(x; ⇣H) = Nctr

Z

dk

i�⇡(k⌘,�P )

⇥ S(k⌘) i�n(k; x; ⇣H) S(k⌘) i�⇡(k⌘̄, P ) S(k⌘̄) , (12)

5

FIG. 3. Employing the optical theorem, the diagrams in
Fig. 2 yield these two contributions to q⇡(x): upper panel,
Eq. (12); and lower panel, Eq. (15). The sum yields the com-
pletely symmetry-preserving RL truncation formula for q⇡(x).

where �n(k; x; ⇣H) is a generalisation of the quark-photon
vertex, describing a dressed-quark scattering from a zero
momentum photon and determined by a RL Bethe-
Salpeter equation with inhomogeneity n · � �x

n
(k⌘).

Eq. (12) is depicted in Fig. 3(A0); and now a compari-
son with Fig. 1 makes manifest that the RL treatment of
Fig. 2(A) is equivalent to the symmetry preserving anal-
ysis of the pion’s electromagnetic form factor (at Q2 = 0)
[47, 84]. Furthermore, Eq. (12) ensures Eq. (9a) because

Z 1

0
dx �n(k; x; ⇣H) = nµ�µ(k, k)/n · P ; (13)

thus, using Eq. (7),

Z 1

0
dx q⇡

A
(x; ⇣H) = F⇡(Q2 = 0) = 1 . (14)

On the other hand, as illustrated by existing calcula-
tions, e.g. Refs. [12, 83], Eq. (12) violates Eq. (9b). Hence,
as explained above, any result for q⇡(x; ⇣H) obtained
from Fig. 2(A) alone – equivalently, Fig. 3(A0) – is flawed
because it violates basic symmetry constraints. Typical
consequences include the following: an overestimate of
the sea and gluon content of a given bound-state; erro-
neous estimates of the relative size of the valence-quark
momentum fractions within di↵erent but related bound-
states; incorrect identification of ⇣H , if this scale is used
as a parameter to fit an empirically-determined distribu-
tion [85]; and since these errors are transmitted into the
evolved distributions, a lack of credibility in any conclu-
sions and interpretations drawn from the distributions.

Furthermore, the symmetry violations and associated er-
rors are amplified by including the H(P, k) resummation
in Fig. 2(A) [Fig. 3(A0)] alone because this unbalances
the interferences that a fully-consistent RL truncation
is guaranteed to preserve. Consequently, less damage is
done by working solely with Fig. 2(C ).

We turn now to the contribution (B)-(C ) in Eq. (8),
which has usually been overlooked in calculations of
q⇡(x; ⇣H); but whose importance was stressed and illus-
trated in Ref. [36]. Given that the combination (B)-(C )
is crucial if the WGT identities are to be satisfied in a
RL analysis of Compton scattering, let us consider their
content. A first observation is that (B0)-(C ) = 0, i.e. if
one omits all terms from the ladder-like sum in Fig. 2(B)
then it is completely cancelled by subtracting Fig. 2(C ).
Hence, (B0)-(C ) is a sum of infinitely many ladder-like
rungs, beginning with one rung. This is illustrated in
Fig. 3(B0). Studying this figure, the nature of (B)-(C )
becomes plain, viz. it expresses the impact of the deep-
inelastic event as felt by a dressed-quark line embedded
within the pion bound state. Thinking perturbatively,
one might imagine these processes to represent e↵ects
associated with initial/final-state interaction corrections
to the handbag diagram and thus to be suppressed. How-
ever, so long as the gluon exchanges are soft, which is the
limit exposed by the optical theorem analysis, that is not
the case because the resummation of ladder-like rungs is
resonant. Hence the contribution depicted in Fig. 3(B0)
is of precisely the same order as that from Fig. 3(A0).
In fact, akin to the final state interactions that produce
single spin asymmetries [86], the (B)-(C) contribution is
leading-twist and its appearance and importance signal
failure of the impulse approximation.

These considerations lead to the following form for the
(B)-(C ) contribution to q⇡(x; ⇣H) [36]:

q⇡

BC
(x; ⇣H) = Nctr

Z

dk

�n

⇡
(k⌘,�P ; ⇣H)

⇥ S(k⌘)�⇡(k⌘̄, P ) S(k⌘̄) , (15)

where �n

⇡
(k⌘,�P ; ⇣H) is a “pierced” pion Bethe-Salpeter

amplitude, computed by summing infinitely many inser-
tions of [�x

n
(k⌘)n ·@k⌘

S(k⌘)], between sequentially-chosen
adjacent gluon-rungs in the diagrammatic expansion of
the pion amplitude. Notably, independent of ⇣H , as a
consequence of symmetry preservation:

Z 1

0
dx q⇡

BC
(x; ⇣H) = 0 . (16)

We can now write the complete expression for the pion
valence-quark distribution function in RL truncation:

q⇡(x; ⇣H) = q⇡

A(x; ⇣H) + q⇡

BC(x; ⇣H) , (17)

i.e. one sums the terms in Eqs. (12) and (15).

Employing	the	optical	
theorem	
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IV. PREDICTION FOR THE PION
VALENCE-QUARK DISTRIBUTION FUNCTION

A. Ward identity approximation for q⇡(x)

As illustrated in Ref. [71], it is challenging to solve
for the complete RL u and t channel scattering ampli-
tudes depicted in Figs. 2(A), (B) and needed to describe
�⇤⇡ ! �⇤⇡. Herein, we therefore use a simpler approach,
employing the approximations introduced in Ref. [36]:

i�n(k; x; ⇣H) = �x

n
(k⌘)n · @k⌘

S�1(k⌘) , (18a)

�n

⇡
(k⌘,�P ; ⇣H) = n · @k⌘

�⇡(k⌘,�P ; ⇣H) , (18b)

in which case

q⇡(x; ⇣H) = Nctr

Z

dk

�x

n
(k⌘)

⇥ n · @k⌘
[�⇡(k⌘,�P )S(k⌘)] �⇡(k⌘̄, P ) S(k⌘̄) , (19)

where the derivative acts only on the bracketed terms. It
is straightforward to prove algebraically that the result
obtained using Eq. (19) is: independent of ⌘; ensures

q⇡(x; ⇣H) = q⇡(1 � x; ⇣H) ; (20)

satisfies Eqs. (9); and possesses defined subcomponents
that comply with Eqs. (14), (16).

B. Computing the inputs for q⇡(x)

In order to calculate q⇡(x; ⇣H) from Eq. (19) one must
know the dressed light-quark propagator and pion Bethe-
Salpeter amplitude. Algebraic Ansätze were employed in
Ref. [36]. In contrast, herein we follow Ref. [40] and use
realistic numerical solutions. Consequently, the result for
q⇡(x; ⇣H) is completely determined once an interaction
kernel is specified for the RL Bethe-Salpeter equation.

We use the interaction explained in Ref. [87, 88]:

K ↵1↵
0
1,↵2↵

0
2

= Gµ⌫(k)[i�µ]↵1↵
0
1
[i�⌫ ]↵2↵

0
2
, (21a)

Gµ⌫(k) = G̃(k2)Tµ⌫(k) , (21b)

with k2Tµ⌫(k) = k2�µ⌫ � kµk⌫ and (s = k2)

1
Z

2
2

G̃(s) =
8⇡2D

!4
e�s/!

2

+
8⇡2�mF(s)

ln
⇥
⌧ + (1 + s/⇤2

QCD)2
⇤ ,

(22)

where �m = 4/�0, �0 = 11 � (2/3)nf , nf = 4,
⇤QCD = 0.234 GeV, ⌧ = e2 � 1, and F(s) = {1 �

exp(�s/[4m2
t
])}/s, mt = 0.5 GeV. The development of

Eqs. (21), (22) is summarised in Ref. [87] and their con-
nection with QCD is described in Ref. [57].

Z2 in Eq. (22) is the dressed-quark wave function renor-
malisation constant. We employ a mass-independent
momentum-subtraction renormalisation scheme for the

gap and inhomogeneous vertex equations, implemented
by using the scalar WGT identity and fixing all renor-
malisation constants in the chiral limit [89]. In the first
applications of this DSE approach to hadron observables
[90, 91] (and many that have followed), the renormal-
isation scale was chosen deep in the spacelike region:
⇣ = ⇣19 := 19 GeV, primarily to ensure simplicity in the
nonperturbative renormalisation procedure. This choice
entails that the dressed quasiparticles obtained as solu-
tions to the DSEs remain intact and thus serve as the
dominant degrees-of-freedom for all observables. This is
adequate for infrared quantities, such as hadron masses:
flexibility of model parameters and the bridge with QCD
enable valid predictions to be made. However, it gen-
erates errors in form factors and parton distributions.
With form factors, the correct power-law behaviour is
obtained, but the scaling violations deriving from anoma-
lous operator dimensions are wrong (see, e.g. Ref.[92]);
and for parton distributions, the natural connection be-
tween the renormalisation scale and the reference scale
for evolution equations is lost, again because parton loops
are suppressed when renormalising a RL truncation study
at deep spacelike momenta so the computed anomalous
dimensions are wrong.

As explained elsewhere [39, 41, 43], the solution to
these problems is to renormalise the DSE solutions at
a typical hadronic scale, where the dressed quasiparti-
cles are the correct degrees-of-freedom. This recognises
that a given meson’s Poincaré covariant wave function
and correlated vertices, too, must evolve with ⇣ [93–95].
Such evolution enables the dressed-quark and -antiquark
degrees-of-freedom, in terms of which the wave function is
expressed at a given scale ⇣2 = Q2, to split into less well-
dressed partons via the addition of gluons and sea quarks
in the manner prescribed by QCD dynamics. These ef-
fects are automatically incorporated in bound-state prob-
lems when the complete quark-antiquark scattering ker-
nel is used; but aspects are lost when that kernel is trun-
cated, and so it is with RL truncation. We therefore
renormalise our DSEs at the hadronic scale ⇣ = ⇣H .

A natural value for the hadronic scale, ⇣H , must now
be determined. To that end, recall that QCD pos-
sesses a process-independent e↵ective charge [96, 97]:
↵PI(k2). This running-coupling saturates in the in-
frared: ↵PI(0)/⇡ ⇡ 1, owing to the dynamical genera-
tion of a gluon mass-scale [98, 99]. These features and a
smooth connection with pQCD (and hence Eq. (22)) are
expressed in the following algebraic expression:

↵PI(k
2) =

⇡�m

ln[(m2
↵

+ k2)/⇤2
QCD]

, (23)

m↵ = 0.30 GeV& ⇤QCD. Evidently, m↵ is an essen-
tially nonperturbative scale whose existence ensures that
modes with k2 . m2

↵
are screened from interactions. It

therefore serves to define the natural boundary between
soft and hard physics; hence, we identify

⇣H = m↵ . (24)

•  Numerical m=0,1,2,3,4,5 
•  SPM extrapolation to m=11 
•  PDF extraction 

DCSB	
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Ø  Solid Blue=nonsinglet 
evolution for valence-quark 

Ø  glue& sea quarks distribution 
are generated by singlet 
evolution 

Ø  dot-dot-dashed(grey)=lQCD 
result for the pion valence-
quark distribution 

Ø  Pointwise form of the lQCD 
prediction agrees with our 
result(with errors). 

Ø  Significant: two disparate 
treatments of the pion have 
arrived at the same prediction. 
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hxvalencei = 0.48(3) , (46a)

hxgluei = 0.41(2) , (46b)

hxseai = 0.11(2) , (46c)

confirming the large gluon momentum-fraction found in
earlier continuum analyses [12, 37]. Furthermore, our
prediction for q⇡(x, ⇣5) [Fig. 7] agrees with ⇡N Drell-Yan
data [9] rescaled as suggested by the complete next-to-
leading-order (NLO) reanalysis in Ref. [14].

Of particular importance is the agreement between our
parameter-free result for q⇡(x, ⇣5) and that obtained in
a recent, exploratory lQCD calculation [31]. With this
confluence, two disparate treatments of the pion bound-
state problem have arrived at the same prediction for the
pion’s valence-quark distribution function. This should
stimulate a reconsideration of extant phenomenological
analyses so that the next attempts involve a complete
NLO analysis of data, including the threshold resumma-
tion e↵ects which seem so crucial to obtaining a sound
extraction of q⇡(x). The results presented herein also
support e↵orts to obtain new data on pion distribution
functions, such as those approved at the Thomas Je↵er-
son National Accelerator Facility [15–17] and identified
as high priority at other facilities [18–22].

A worthwhile extension of the analysis described herein

is the calculation of analogous kaon distribution func-
tions. This will enable a sophisticated reevaluation of
predictions from an earlier algebraic analysis [37], which
indicated that the gluon content of the kaon is signifi-
cantly smaller than that of the pion and identified the
origin of this e↵ect to be DCSB and its role in forming
the almost-massless pion [116].
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Pion	valence	quark	distribution	from	matrix	element	calculated	in	Lattice	QCD.	
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lQCD	result,	T.	Izubuchi	et	al,	arXiv:1905.06349.	
Valence	parton	distribution	function	of	pion	from	fine	lattice	
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π valence-quark distributions
20 Years of Evolution

➢ 2010/09 … Reconsideration of data: 
Aicher et al., Phys. Rev. Lett. 105
(2010) 252003 

– Consistent next-to-leading-order 
analysis

➢ 2019/04 … Ding, et al. 
– Continuum QCD prediction, using 

bound-state approach that explained 
and predicted Fπ(Q2) etc.

➢ 2019/01 … Sufian, et al. 
– 1st exploratory lattice-QCD 

calculation, 
– using lattice-calculable matrix 

element obtained through spatially-
separated current-current 
correlations in coordinate space

– mπ
2 = 9 mπ

2-physical

ECT* - QCD at New Generation Facilities (pgs = 84)

Craig Roberts. DSEs in Hadroparticle Physics: Past, Present, and Future

70

Modellers still insist on ignoring QCD 
& its symmetries

Phenomenologists question analysis 
of Aicher et al. 

Large-x exponent and momentumζ = 5 GeV

Continuum … 2.7(1) & <2x> = 0.42±0.04
Lattice         … 2.5(6) & <2x> = 0.34±0.03

Pion	PDF	20年	

•  1989…Conway et al. Phys. Rev.D 39 
(1989) 92 

        Leading-order analysis of Drell-Yan data 

•  2000…Hecht et al. Phys. Rev.C 63 
(2001)025213 

        QCD connected model calculation 

•  2010...Aicher et al. Phys. Rev. Lett.
105 (2010) 252003 

         Consistent next-to-leading order anaylsis 

•  2019/04...Ding, et al. 
         Continuum QCD prediction 

•  2019/01...Sufian, et al. 
         1st exploratory lattice-QCD calculation 
         Using lattice-calculated matrix element 
obtained through spatially separated current-
current correlations in coordinate space 

Sufian…extending lattice calculation on 
three other ensembles and the 
preliminary result gives an indication  
MORE COINCIDE.	
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Meson Form Factor Data Evolution

1984 1997 2003 2004 2017+

JLab 6 GeV JLab 12 GeV

1981 1986 1976 1979 1971 

EIC

2025+1959 

Theory

• Extraction of meson form factor from data

• Electroproduction formalism

• Accessing the form factor through electroproduction

Experiment

Major progress on large Q2

behavior of meson form factor

Theory

Capability to reliably 
access large Q2 regime

From	
T.Horn	

12

Fp +(Q2) and FK+(Q2) in 2018

� Factor ~3 from hard QCD calculation evaluated with asymptotic valence-
quark Distribution Amplitude (DA)
– Trend consistent with time like meson form factor data up to Q2=18 GeV2

[Seth et al, PRL 110 (2013) 022002]

� Recent developments: when comparing the hard QCD prediction with a pion 
valence-quark DA of a form appropriate to the scale accessible in 
experiments, magnitude is in better agreement with the data

[L. Chang, et al., PRL 111 (2013) 141802;  PRL 110 (2013) 1322001]
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•  如何理解不在壳的pion？	
•  如何理解基于第一性原理计算的格点

QCD结果	

O↵-shell persistence of composite pions and kaons

Si-Xue Qin,1 Chen Chen,2 Cédric Mezrag,1 and Craig D. Roberts1

1Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
2Instituto de F́ısica Teórica, Universidade Estadual Paulista, 01140-070 São Paulo, Brazil

(Dated: 08 February 2017)

In order for a Sullivan-like process to provide reliable access to a meson target as t becomes
spacelike, the pole associated with that meson should remain the dominant feature of the quark-
antiquark scattering matrix and the wave function describing the related correlation must evolve
slowly and smoothly. Using continuum methods for the strong-interaction bound-state problem, we
explore and delineate the circumstances under which these conditions are satisfied: for the pion, this
requires �t . 0.6GeV2, whereas �t . 0.9GeV2 will su�ce for the kaon. These results should prove
useful in planning and evaluating the potential of numerous experiments at existing and proposed
facilities.

1. Introduction. The notion that a nucleon possesses a
meson cloud is not new [1]. In e↵ect, this feature is kin-
dred to the dressing of an electron by virtual photons in
quantum electrodynamics [2] or the existence of dressed
quarks with a running mass generated by a cloud of glu-
ons in quantum chromodynamics (QCD) [3–7]. Natu-
rally, any statement that each nucleon is accompanied
by a meson cloud is only meaningful if observable conse-
quences can be derived therefrom. A first such suggestion
is canvassed in Ref. [8], which indicates, e.g. that a calcu-
lable fraction of the nucleon’s anti-quark distribution is
generated by its meson cloud. Mirroring this e↵ect, one
may argue that a nucleon’s meson cloud can be exploited
as a target and thus, for instance, the so-called Sullivan
processes can provide a means by which to gain access
to the pion’s elastic electromagnetic form factor [9–13],
Fig. 1(a), and also its valence-quark parton distribution
functions (PDFs) [14–16], Fig. 1(b).

One issue in using the Sullivan process as a tool for ac-
cessing a “pion target” is that the mesons in a nucleon’s
cloud are virtual (o↵-shell) particles. This concept is
readily understood when such particles are elementary
fields, e.g. photons, quarks, gluons. However, providing
a unique definition of an o↵-shell bound-state in quantum
field theory is problematic.

Physically, for both form factor and PDF extractions,
t < 0 in Figs. 1, so the total momentum of the ⇡

⇤ is
spacelike.1 Therefore, in order to maximise the true-
pion content in any measurement, kinematic configura-
tions are chosen in order to minimise | � t|. This is
necessary but not su�cient to ensure the data obtained
thereby are representative of the physical pion. Addi-
tional procedures are needed in order to suppress non-
resonant (non-pion) background contributions; and mod-
ern experiments and proposals make excellent use of, e.g.
longitudinal-transverse cross-section separation and low-
momentum tagging of the outgoing nucleon.

1
We use a Euclidean metric: {�µ, �⌫} = 2�µ⌫ ; �5 = �4�1�2�3,
tr[�5�µ�⌫�⇢�� ] = �4✏µ⌫⇢� ; �µ⌫ = (i/2)[�µ, �⌫ ]; a · b =P4

i=1 aibi; and Pµ spacelike ) P 2 > 0.

1

FIG. 1: Triangle diagram for the form factor.

FIG. 2

I. MOMENTUM ASSIGNMENT

The definition of the form factor is shown in Fig. 1, where

k1 = k � P

2
, (1)

k2 = k +
P

2
� Q

2
, (2)

k3 = k +
P

2
+

Q

2
. (3)

Because of the momentum conservation, the triangle diagram has two independent momenta P and Q with

Pi = P � Q

2
, (4)

Pf = P +
Q

2
. (5)

The components of P and Q are defined as

P = (0, 0, P3, iP4), (6)

Q = (0, 0, Q3, iQ4), (7)

FIG. 1. Sullivan processes, in which a nucleon’s pion cloud
is used to provide access to the pion’s (a) elastic form factor
and (b) parton distribution functions. t = �(k � k0)2 is a
Mandelstam variable and the intermediate pion, ⇡⇤(P = k �
k0), P 2 = �t, is o↵-shell.

Notwithstanding their ingenuity, such experimental
techniques cannot directly address the following ques-
tion: supposing it is sensible to speak of an o↵-shell
pion with total-momentum P , where P

2 = (v � 1)m2
⇡,

m⇡ ⇡ 0.14 GeV, so that v � 0 defines the pion’s virtu-
ality, then how do the qualities of this system depend
on v? If the sensitivity is weak, then ⇡

⇤(v) is a good
surrogate for the physical pion; but if the distributions
of, e.g. charge or partons, change significantly with v ,
then the processes in Figs. 1 can reveal little about the
physical pion. Instead, they express features of the entire
compound reaction. Since there is no unique definition
of an o↵-shell bound-state, the question we have posed
does not have a precise answer. However, as will become
clear, that does not mean there is no rational response.

2. Pions: on- and o↵-shell. All correlations with pion-
like quantum numbers, both resonant and continuum,
are accessible via the inhomogeneous pseudoscalar Bethe-
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Pseudoscalar meson elastic form factor: DSE prediction compared with JLab lQCD
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The approach described in Ref. [1] is used to compute properties of a pion-like meson with mass

m0�/GeV = 0.39 and its electromagnetic form factor on a spacelike domain that extends to Q2 .
10GeV

2
. This mass is chosen because it matches that used by the JLab lQCD Group.

FIG. 1. Elastic form factor of a pion-like pseudoscalar with

massm0� = 0.39GeV. Curves: Solid green curve within green

bands – our prediction: obtained with w = 0.5 ± 0.1GeV in

the interaction kernel (see Ref. [1] for details); long-dashed

green curve – single-pole vector meson dominance result ob-

tained with vector meson mass, m1� , computed consistent

with the form factor prediction, see Eq. (1); short-dashed

black curve within yellow bands – range of uncertainty in

single-monopole fit to lQCD results following from the error

on rlQCD
0� ; and dot-dashed blue curve within blue bands –

result from QCD hard-scattering formula, Eq. (2), computed

with the consistent meson decay constant and PDA, as pre-

dicted by the DSE analysis. For comparison, the dashed red

curve is the DSE prediction for the physical-pion. Red aster-

isks – JLab lattice results drawn from available presentations.

Members of JLab’s lQCD group (M.Chakraborty:
APS April Meeting 2018, Columbus, Ohio;
D.G.Richards: ECT⇤ Workshop on Parton Distri-
butions, September 2018) have recently spoken about
their preliminary results for the elastic form factor of a
pion-like meson with mass m0� = 0.39GeV. Using the
approach detailed in Ref. [1], we have computed this
form factor and related properties for such a meson with
this mass. Comparisons are presented here:

r0�/fm m1�/GeV f0�/GeV

DSE 0.58(1) 0.86+0.04
�0.02 0.109(1)

lQCD 0.55(10) 0.88+0.19
�0.13 ?

(1)

FIG. 2. Dressed-valence-quark distribution amplitude of

pion-like pseudoscalar mesons. Solid green curve within green

bands – prediction for m0� = 0.39GeV; long-dashed blue

curve within blue bands – prediction from Ref. [1] for the

physical pion; and dotted black curve – asymptotic profile,

'1(x) = 6x(1� x).

and in Figure 1. Evidently, within existing errors, the
JLab lQCD results confirm the DSE prediction. Miss-
ing at present is a lQCD result for f0� , but the DSE
prediction stands to be validated.
As background we recall that perturbation theory

in quantum chromodynamics [QCD] is applicable to
hard exclusive processes; and for almost forty years the
leading-order factorised result for the electromagnetic
form factor of a pseudoscalar meson has excited exper-
imental and theoretical interest. Namely [2–5], 9Q0 >
⇤QCD such that

Q2F0�(Q
2)

Q2>Q2
0⇡ 16⇡↵s(Q

2)f2
0�w2

0�(Q
2), (2)

where: f0� is the meson’s leptonic decay constant;
↵s(Q2) is the leading-order strong running-coupling

↵s(Q
2) = 4⇡/[�0 ln(Q2/⇤2

QCD)], (3)

with �0 = 11� (2/3)nf [nf is the number of active quark
flavours]; and

w0�(Q
2) =

1

3

Z 1

0
dx

1

x
'0�(x;Q

2) , (4)
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thought to be typical of PRL.  An article in PRL should meet one or more of four criteria.  As we have 
detailed above, our submission meets two of the four, viz. 

1. it solves, or make essential steps towards solving, a critical problem, 
2. and introduces new techniques or methodologies with significant impact. 

Moreover, it addresses the interests of a large community of specialists.  In consequence, we maintain 
that it is appropriate for the Rapid Communication section of Physical Review.  

 
Conclusion. 

With this note and the corresponding amendments of the submission, we have addressed in detail all 
issues raised by the referee.  We therefore submit the revised version for further consideration as a Rapid 
Communication in the Physical Review. 

Appendix: JLab results 

 

The lattice results in Figure 2 were drawn from a 
presentation by D. G. Richards at the ECT* Workshop on 
Mapping Parton Distribution Amplitudes and Functions.  
That presentation is available here  

https://indico.ectstar.eu/event/22/contributions/503/attachments/387/532/pion_pdf_richards.pdf  

Notably, in common with the Adelaide lattice-QCD results (Fig. 1C in our submission), the JLab results are 
consistent with our predictions.  The Glasgow results (Fig. 1D in our submission) alone appear to be 
inconsistent with physics expectations. 

 

Figure 2. Elastic form factor of a pion-like 

pseudoscalar meson with mass m0- = 0.39 GeV.  Red 

asterisks -- JLab lattice results drawn from the ECT* 

presentation by D.G. Richards.  Curves: Solid green 

curve within green bands -- our prediction, 

obtained using the methods described in our 

submission; long-dashed green curve --  single-pole 

vector meson dominance result obtained with 

vector meson mass, m1-=0.86 GeV, computed 

consistent with the form factor prediction; short-

dashed black curve within yellow bands -- range of 

uncertainty in single-monopole fit to lQCD results 

following from the JLab-quoted error on the 

meson’s radius; and dot-dashed blue curve within 

blue bands -- result from QCD hard-scattering 

formula, Eq. (1) in our submission, computed with 

the consistent meson decay constant and PDA, as 

predicted by the our analysis.  For comparison, the 

dashed red curve is the DSE prediction for the 

physical-pion, taken from Fig. 1A in our submission.   

Mass-dependence	of	pseudoscalar	meson	elastic	form	factors,		
Muyang	Chen,	Minghui	Ding,	Lei	Chang	and	Craig	D.	Roberts,		
arXiv:1808.09461	[nucl-th],	Phys.	Rev.	D	98	(2018)	091505	
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FIG. 1: Twist-two parton distribution amplitudes at a re-
solving scale ⇣ = 2GeV. A solid (green) curve – pion (
emergent mass is dominant; B dot-dashed (blue) curve – ⌘c
meson ( Higgs mechanism is the primary source of mass
generation; C solid (thin, purple) curve – asymptotic profile,
6x(1 - x); and D dashed (black) curve – “heavy-pion”, i.e.
a pion-like pseudo-scalar meson in which the valence-quark
current masses take values corresponding to a strange quark
( the boundary, where emergent and Higgs mass generation
are equally important.

light.
In this picture, no significant mass-scale is possible in

QCD unless one of commensurate size is expressed in
the dressed-propagators of gluons and quarks. It follows
that the mechanism(s) responsible for the generation of
mass in QCD can be exposed by measurements that are
sensitive to such dressing e↵ects.

This potential is o↵ered by many observables, includ-
ing hadron elastic and transition form factors; but as an
illustrative example, consider a particular class of me-
son “wave functions”, i.e. twist-two parton distribution
amplitudes (PDAs), a number of which are depicted in
Fig. 1. This image answers the following question: When
does the Higgs mechanism begin to influence mass gen-
eration? In the limit of infinitely-heavy quark masses;
namely, when the Higgs mechanism has overwhelmed ev-
ery other mass generating force, the PDA becomes a �-
function at x = 1

2 . The su�ciently heavy ⌘c meson,
constituted from a valence charm-quark and its antimat-
ter partner, feels the Higgs mechanism strongly. On the
other hand, contemporary continuum- and lattice-QCD
calculations predict that the PDA for the light-quark
pion is a broad, concave function [32, 33]. Such fea-
tures are a definitive signal that pion properties express
emergent mass generation. The remaining example in
Fig. 1 shows that the PDA for a system composed of s-
quarks almost matches that of QCD’s asymptotic (scale-
free) limit: this system lies at the boundary, with strong
(emergent) mass generation and the weak (Higgs) mass
playing a roughly equal role.

These observations indicate that comparisons between
distributions of truly light quarks and those describing

FIG. 2: Lattice-QCD computations of the pion’s electro-
magnetic charge radius (green circles [34], blue up-triangle
[35], red down-triangle [36], cyan cross [37]) as a function
of m2

⇡, compared with a continuum theory prediction [38]
(blue curve within bands, which indicate response to rea-
sonable parameter variation). The continuum analysis estab-
lishes f⇡r⇡ ⇡ constant, from which it follows that the size of
a Nambu-Goldstone mode decreases in inverse proportion to
the active strength of the dominant mass generating mecha-
nism. The empirical value of r⇡ is marked by the gold star.

strange quarks are ideally suited to exposing measurable
signals of dynamical mass generation.

In selecting measurements that will enable the origin
of mass in the pion and kaon to be identified and the
mass distributions charted, one will also be led naturally
to experiments and analyses that reveal the distribution
of charge, momentum, spin, etc., within these most fun-
damental of bosons. For example, measuring the pion’s
electromagnetic size and mapping its charge distribution
have long been central problems in nuclear physics. The
radius is known [6], banner experiments at the Thomas
Je↵erson National Accelerator Facility (JLab) have pro-
vided precise data on the elastic electromagnetic form
factor out to Q2 ⇡ 2.5GeV2 [39–43], planned experi-
ments will extend this upper bound to Q2 ⇡ 8.5GeV2

[44–46], and continuum- and lattice-QCD analyses are
making predictions which connect these properties to the
origin of mass, through the pion’s leptonic decay con-
stant and also the distribution amplitudes in Fig. 1. Re-
cent progress is illustrated in Figure 2, which displays
contemporary lattice-QCD [34–37], and continuum com-
putations [38] of the pion’s charge radius and correlates
them with the source of mass in the Standard Model.
The program described herein will therefore have a wide-
ranging impact on our understanding of the strong forces
that shape hadrons, nuclei and nuclear matter.
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[65] J. Rodŕıguez-Quintero, D. Binosi, C. Mezrag, J. Papavas-
siliou and C. D. Roberts, Few Body Syst. 59, 121 (2018).

[66] G. P. Lepage and S. J. Brodsky, Phys. Lett. B 87, 359
(1979).

[67] A. V. Efremov and A. V. Radyushkin, Phys. Lett. B 94,
245 (1980).

[68] G. P. Lepage and S. J. Brodsky, Phys. Rev. D 22, 2157
(1980).
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π valence-quark distributions
20 Years of Evolution

➢ 2010/09 … Reconsideration of data: 
Aicher et al., Phys. Rev. Lett. 105
(2010) 252003 

– Consistent next-to-leading-order 
analysis

➢ 2019/04 … Ding, et al. 
– Continuum QCD prediction, using 

bound-state approach that explained 
and predicted Fπ(Q2) etc.

➢ 2019/01 … Sufian, et al. 
– 1st exploratory lattice-QCD 

calculation, 
– using lattice-calculable matrix 

element obtained through spatially-
separated current-current 
correlations in coordinate space

– mπ
2 = 9 mπ

2-physical

ECT* - QCD at New Generation Facilities (pgs = 84)
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Modellers still insist on ignoring QCD 
& its symmetries

Phenomenologists question analysis 
of Aicher et al. 

Large-x exponent and momentumζ = 5 GeV

Continuum … 2.7(1) & <2x> = 0.42±0.04
Lattice         … 2.5(6) & <2x> = 0.34±0.03
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π valence-quark distributions
20 Years of Evolution

➢ 2010/09 … Reconsideration of data: 
Aicher et al., Phys. Rev. Lett. 105
(2010) 252003 

– Consistent next-to-leading-order 
analysis

➢ 2019/04 … Ding, et al. 
– Continuum QCD prediction, using 

bound-state approach that explained 
and predicted Fπ(Q2) etc.

➢ 2019/01 … Sufian, et al. 
– 1st exploratory lattice-QCD 

calculation, 
– using lattice-calculable matrix 

element obtained through spatially-
separated current-current 
correlations in coordinate space

– mπ
2 = 9 mπ

2-physical
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Modellers still insist on ignoring QCD 
& its symmetries

Phenomenologists question analysis 
of Aicher et al. 

Large-x exponent and momentumζ = 5 GeV

Continuum … 2.7(1) & <2x> = 0.42±0.04
Lattice         … 2.5(6) & <2x> = 0.34±0.03
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It is argued that the gauge invariance of a vector field does not necessarily imply zero mass for an associ-
ated particle if the current vector coupling is sufficiently strong. This situation may permit a deeper under-
standing of nucleonic charge conservation as a manifestation of a gauge invariance, ~vithout the obvious
confIict ~ith experience that a massless particle entails.

&~OES the requirement of gauge invariance for a.
vector Geld coupled to a dynamical current imply

the existence of a corresponding particle with zero
mass? Although the answer to this question is invari-
ably given in the affirmative, ' the author has become
convinced that there is no such necessary implication,
once the assumption of weak coupling is removed. Thus
the path to an understanding of nucleonic (baryonic)
charge conservation as an aspect of a gauge invariance,
in strict analogy with electric charge, ' may be open for
the Grst time.
One potential source of error should be recognized at

the outset. A gauge-invariant system is not the con-
tinuous limit of one that fails to admit such an arbitrary
function transformation group. The discontinuous
change of invariance properties produces a correspond-
ing discontinuity of the dynamical degrees of freedom
and of the operator commutation relations. No reliable
conclusions about the mass spectrum of a gauge-
invariant system can be drawn from the properties of
an apparently neighboring system, with a smaller in-
variance group. Indeed, if one considers a vector Geld
coupled to a divergenceless current, where gauge
invariance is destroyed by a so-called mass term with
parameter mt, it is easily shown' that the mass spectrum
must extend below mp. The lowest mass value will
therefore become arbitrarily small as mo approaches
zero. Nevertheless, if m, o is exactly zero the commutation
relations, or equivalent properties, upon which this
conclusion is based become entirely different and the
argument fails.
If invariance under arbitrary gauge transformations

is asserted, one should distinguish sharply between
numerical gauge .functions and operator gauge func-
tions, for the various operator gauges are not on the
same quantum footing. In each coordinate frame there
is a unique operator gauge, characterized by three-
dimensional transversality (radiation gauge), for which
one has the standard operator construction in a vector
space of positive norm, with a physical probability
interpretation. When the theory is formulated with the
aid of vacuum expectation values of time-ordered
operator products, the Green's functions, the freedom
of formal gauge transformation can be restored. ' The
' For example, J. Schwinger, Phys. Rev. 75, 651 (1949).' T. D. Lee and C. N. Yang, Phys. Rev. 98, 1501 (1955).' K. Johnson, Nuclear Phys. 25, 435 (1961).' J. Schwinger, Phys. Rev. 115, '121 (1959).

A„P(P)=B(m') g„.—(P.
~.+P.~,) (~P)+P.P

P'+(&P)'

Here B(m') is a real non-negative number. It obeys the
sum rule

1= dm' B(m')

which is a full expression of all the fundamental equal-
time commutation relations.
The Geld equations supply the analogous construction

for the vacuum expectation value of current products
(j„(x)j„(x')), in terms of the non-negative matrix

j"(P)=m'B( ')(P»P g"P'). —
The factor m' has the derisive consequence that m=0
is not contained in the current vector's spectrum of
vacuum fluctuations. The latter determines B(m') for
ns&0, but leaves unspeciGed a possible delta function
contribution at m=0,

B(m') =Bob(m')+Bi(m')
The non-negative constant 80 is then Gxed by the sum
rule,

1=Be+ dms Bi(m').
0

Green's functions of other gauges have more compli-
cated operator realizations, however, and will generally
lack the positiveness properties of the radiation gauge.
Let us consider the simplest Green's function associ-

ated with the field A „(x),which can be derived from the
unordered product

(A„(x)A„(x'))

(dP) .a'vt* "&dm-s st+(p)b(p'+m')A„, (p),
(2or)s

where the factor +st(p)8(p'+ m) enforces the spectral
restriction to states with mass m& 0 and positive energy.
The requirement of non-negativeness for the matrix
A„„(p) is satisfied by the structure associated with the
radiation gauge, in virtue of the gauge-dependent asym-
metry between space and time (the time axis is specified
by the unit vector rt„):
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Dynamical mass generation in continuum quantum chromodynamics

John M. Cornwall
Department of Physics, University of California, Los Angeles, California 90024

(Received 30 April 1982)

We study the formation of a mass gap, or effective gluon mass (and consequent dimen-
sionful parameters such as the string tension, glueball mass, (Trg„„2), correlation
lengths) in continuum QCD, using a special set of Schwinger-Dyson equations. These
equations are derived from a resummation of the Feynman graphs which represent cer-
tain gauge-invariant color-singlet Green s functions, and are themselves essentially gauge
invariant. This resummation is essential to the multiplicative renormalizability of QCD
in the light-cone gauge, which we adopt for technical reasons. We close the dynamical
equations by "solving" a Ward identity, a procedure which, while exact in the infrared re-
gime, is subject to ambiguities and corrections in the ultraviolet regime which are beyond
the scope of the present work. (These ambiguities are less prominent for QCD in three
dimensions, which we discuss also. ) As discussed in an earlier work, quark confinement
arises from a vortex condensate supported by the mass gap. Numerical calculations of
the mass gap are presented, suggesting an effective gluon mass of 500+200 MeV and a
0+ glueball mass of about twice this value.

I. INTRGDUCTION

The extraction of dimensionful quantities (e.g.,
the string tension) in continuum QCD is a truly
quantum-mechanical problem since the classical
Lagrangian has no fixed scale of mass. The
pioneering instanton/meron work of Callan,
Dashen, and Gross' emphasized classical solutions
which themselves have no fixed mass scale, and
then attempted to introduce the renormalization-
group mass through one-loop quantum corrections.
However, even this difficult calculation failed to
provide a definitive cutoff mechanism for infrared
singularities, and it appears that the proposed
phase transition to a baglike state takes one un-
comfortably close to the momentum scale at which
the square of the one-loop running charge

g (k)=[bin( —k /A )]
turns negative and unphysical. [Here

11'b=
48m

is the lowest-order coefficient in the P function
P= bg + . . ;C~—is the Casimir eigenvalue of
the adjoint representation if no quarks are present,
as we shall assume, and C„=N for SU(N.]
Other authors have attempted to account for the

presence of fluctuating color-magnetic fields in the
QCD vacuum, beginning with the famous one-loop
correction to the QCD Lagrangian for constant

fields. But this has a minimum only for unphysi-
cal values of g; moreover, the minimum is un-
stable. Even in three-dimensional (d =3) QCD
(or equivalently, d =4 QCD at very high tempera-
tures) which has a dimensionful parameter in the
Lagrangian (g -mass) perturbation theory is only
useful at large momenta, just as for d =4, and the
problem of infrared singularities remains un-
resolved.
It may well happen that continued work on

merons, instantons, corrections to the Lagrangian,
etc., ultimately leads to a systematic and practical
picture of confinement in continuum QCD. But it
would clearly be valuable to have a picture which
allowed for a direct, intuitive grasp of the role of
the infrared cutoff and how it is used in calculat-
ing various dimensionful quantities. Moreover, it
must be shown that such a picture is systematically
derivable from first principles. We offer here the
first steps in such a derivation, which leads to the
conclusion that the gauge fields are effectively
described as massive. The gluon "mass" is not a
directly measurable quantity, but must be related
to other physical parameters by difficult calcula-
tions not yet done. Nevertheless the ideas behind
these calculations are easily grasped, and semi-
quantitative estimates of, e.g., the string tension
and glueball mass can be made.
We begin with a description of massive gluons at

the Lagrangian level, emphasizing that this can be
made locally gauge invariant. Although we speak
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notoriously complex task [7–11]. In fact, the purely non-
perturbative character of the problem is compounded by
the need to demonstrate, at every step, the compatibility
of any proposed mechanism with the crucial concepts of
gauge invariance and renormalizability.

The notion that gluons acquire a dynamical,
momentum-dependent mass due to their self-interactions
was originally put forth in the early 1980s [1, 12, 13], but
has only gained particular impetus relatively recently;
this is primarily the result of the continuous accumula-
tion of indisputable evidence from large-volume lattice
simulations, both for SU(3) [14–17] and SU(2) [18–21].
As shown in Fig. 1, according to these high-quality sim-
ulations, the Landau gauge gluon propagator saturates
at a nonvanishing value in the deep infrared range, a fea-
ture that corresponds to an unequivocal signal of gluon
mass generation [22] (for related but somewhat different
approaches to this issue, see Refs. [23–41]).

The primary theoretical concept underlying this en-
tire topic is none other than Schwinger’s fundamental
observation [42, 43]. That is, a gauge boson may acquire
mass even if the gauge symmetry forbids a mass term at
the level of the fundamental Lagrangian, provided that
its vacuum polarization function develops a pole at zero
momentum transfer. In this paper, which is based upon
a brief series of lectures [44], we outline the implementa-
tion of this fascinating concept in QCD, using the general
formalism of the Schwinger-Dyson equations (SDEs) [24,
45]. In particular, we focus on a variety of subtle concep-
tual issues, and explain how they can be self-consistently
addressed within a particularly suitable framework that
has been developed in recent years.

The present work is organized as follows. In Section 1,
we present the main characteristics and advantages of the
new SDE framework that emerges from the combination
of the pinch technique (PT) [1, 46–49] with the back-
ground field method (BFM) [50, 51], which is simply re-
ferred to as “PT-BFM” [52–54]. In Section 2, we conduct
a detailed study of the special identity that enforces the

masslessness of the gluon propagator when the Schwinger
mechanism is non-operational, and demonstrate conclu-
sively that the seagull graph is not responsible for the
mass generation, nor does it give rise to quadratic di-
vergences once such a mass has been generated [55]. In
Section 3, we explain how the massless poles required for
the implementation of the Schwinger mechanism enter
the treatment of the gluon SDE, and why their inclu-
sion is crucial for maintaining the Becchi–Rouet–Stora–
Tyutin (BRST) symmetry of the theory in the presence
of a dynamical gluon mass [56]. Then, in Section 4, we
derive the “gluon gap equation” [57], namely, the homo-
geneous integral equation that governs the dependence of
the gluon mass function on the momentum. In Section
5, we proceed to the numerical treatment of this equa-
tion, and discuss its compatibility with some basic field-
theoretic criteria. Finally, we present our conclusions in
Section 6.

2 General considerations

In this section, we present a general overview of the con-
ceptual and technical tools necessary for the analysis that
follows.

2.1 Preliminaries

The Lagrangian density of the SU(N) Yang–Mills theory
can be expressed as the sum of three terms:

L = LYM + LGF + LFPG. (2.1)

The first term represents the gauge covariant action,
which is usually expressed in terms of the field strength
of the gluon field A

LYM = −1
4
F a

µνFµν
a ;

F a
µν = ∂µAa

ν − ∂νAa
µ + gfabcAb

µAc
ν , (2.2)

Fig. 1 The SU(3) (a) and SU(2) (b) gluon propagator ∆ measured on the lattice. Lattice data are from Refs. [14, 15]
[SU(3)] and Ref. [21] [SU(2)].
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Modellers	still	insist	on...	

γu ≡
2χpγp þ χnγn
2χp þ χn

; γd ≡
2χnγn þ χpγp
2χn þ χp

; ð19Þ

where the higher Fock probabilities γp;n represent the large
distance pion contribution and have the values γp ¼ 0.27
and γn ¼ 0.38 [56]. Our results for Eq

vðx; tÞ are displayed
in Fig. 3.
Pion GPD.—The expression for the pion GPD

Hu;d̄
v ðx; tÞ ¼ qu;d̄v ðxÞ exp ½tfðxÞ& follows from the pion FF

in [81], where the contribution from higher Fock compo-
nents was determined from the analysis of the timelike
region [81]. Up to twist 4,

qu;d̄v ðxÞ ¼ ð1 − γÞqτ¼2ðxÞ þ γqτ¼4ðxÞ; ð20Þ

where the PDFs are normalized to the valence quark
content of the pion

R
1
0 dxq

u;d̄
v ðxÞ ¼ 1, and γ ¼ 0.125

represents the meson cloud contribution determined in [28].
The pion PDFs are evolved to μ2 ¼ 27 GeV2 at next-to-

leadingorder (NLO) to comparewith theNLOglobal analysis
in [82,83] of the data [84]. The initial scale is set at μ0 ¼
1.1'0.2 GeV from the matching procedure in Ref. [75] at
NLO. The result is shown in Fig. 4, and the t dependence of
Hq

vðx; tÞ is illustrated in Fig. 5. We have also included the
NNLO results in Fig. 4, to comparewith future data analysis.
Our results are in good agreement with the data analysis

in Ref. [82] and consistent with the nucleon global fit
results through the GPD universality described here. There
is, however, a tension with the data analysis in [83] for
x ≥ 0.6 and with the Dyson-Schwinger results in [85],
which incorporate the ð1 − xÞ2 pQCD falloff at large x from
hard gluon transfer to the spectator quarks. In contrast, our
nonperturbative results falloff as 1 − x from the leading

twist-2 term in (20). A softer falloff ∼ð1 − xÞ1.5 in Fig. 4
follows from DGLAP evolution. Our analysis incorporates
the nonperturbative behavior of effective LFWFs in the
limit of zero quark masses. However, if we include a
nonzero quark mass in the LFWFs [28,86,87], the PDFs
will be further suppressed at x → 1.
Effective LFWFs.—Form factors in light-front quantiza-

tion can be written in terms of an effective single-particle
density [88]

FðQ2Þ ¼
Z

1

0
dxρðx;QÞ; ð21Þ

where ρðx;QÞ ¼ 2π
R∞
0 dbbJ0½bQð1 − xÞ&jψ effðx; bÞj2

with transverse separation b ¼ jb⊥j. From (8), we find
the effective LFWF

ψτ
effðx;b⊥Þ ¼

1

2
ffiffiffi
π

p

ffiffiffiffiffiffiffiffiffiffiffi
qτðxÞ
fðxÞ

s

ð1 − xÞ exp
"
−
ð1 − xÞ2

8fðxÞ
b2⊥

#
;

ð22Þ

FIG. 3. Nucleon GPDs for different values of −t ¼ Q2 at
the scale μ0 ¼ 1.06'0.15 GeV. (Top) Spin nonflip Hq

vðx; tÞ.
(Bottom) Spin-flip Eq

vðx; tÞ.

FIG. 4. Comparison for xqðxÞ in the pion from LFHQCD (red
band) with the NLO fits [82,83] (gray band and green curve) and
the LO extraction [84]. NNLO results are also included (light blue
band). LFHQCD results are evolved from the initial scale μ0 ¼
1.1'0.2 GeV at NLO and the initial scale μ0 ¼ 1.06'0.15 GeV
at NNLO.

FIG. 5. Pion GPD for different values of −t ¼ Q2 at the scale
μ0 ¼ 1.1'0.2 GeV.
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Introduction.—Generalized parton distributions (GPDs)
[1–3] have emerged as a comprehensive tool to describe the
nucleon structure as probed in hard scattering processes.
GPDs link nucleon form factors (FFs) to longitudinal parton
distributions (PDFs), and their first moment provides the
angular momentum contribution of the nucleon constituents
to its total spin through Ji’s sum rule [2]. The GPDs also
encode information of the three-dimensional spatial structure
of the hadrons: the Fourier transform of the GPDs gives the
transverse spatial distribution of partons in correlation with
their longitudinal momentum fraction x [4].
Since a precise knowledge of PDFs is required for the

analysis and interpretation of the scattering experiments in
the LHC era, considerable efforts have been made to
determine PDFs and their uncertainties by global fitting
collaborations such as MMHT [5], CT [6], NNPDF [7], and
HERAPDF [8]. Lattice QCD calculations are using differ-
ent methods, such as path-integral formulation of the deep-
inelastic scattering hadronic tensor [9–11], the inversion
method [12,13], quasi-PDFs [14–18], pseudo-PDFs
[19,20], and lattice cross sections [21], to obtain the
x dependence of the PDFs. The current status and chal-
lenges for a meaningful comparison of lattice calculations
with the global fits of PDFs can be found in [22].

There has been recent interest in the study of parton
distributions using the framework of light-front holo-
graphic QCD (LFHQCD), an approach to hadron structure
based on the holographic embedding of light-front dynam-
ics in a higher dimensional gravity theory, with the
constraints imposed by the underlying superconformal
algebraic structure [23–29]. This effective semiclassical
approach to relativistic bound-state equations in QCD
captures essential aspects of the confinement dynamics
that are not apparent from the QCD Lagrangian, such as the
emergence of a mass scale λ ¼ κ2, a unique form of the
confinement potential, and a zero mass state in the chiral
limit: the pion and universal Regge trajectories for mesons
and baryons.
Various models of parton distributions based on

LFHQCD [30–51] use as a starting point the analytic form
of GPDs found in Ref. [52]. This simple analytic form
incorporates the correct high-energy counting rules of FFs
[53,54] and the GPD’s t-momentum transfer dependence.
One can also obtain effective light-front wave functions
(LFWFs) [28,55] that are relevant for the computation of
FFs and PDFs, including polarization-dependent distribu-
tions [43,44,47]. LFWFs are also used to study the skew-
ness ξ dependence of the GPDs [41,45,48,50,51] and other
parton distributions such as the Wigner distribution func-
tions [38,43]. The downside of the above phenomenologi-
cal extensions of the holographic model is the large number
of parameters required to describe simultaneously PDFs
and FFs for each flavor.
Motivated by our recent analysis of the nucleon FFs in

LFHQCD [56], we extend here our previous results for

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
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Introduction.—Generalized parton distributions (GPDs)
[1–3] have emerged as a comprehensive tool to describe the
nucleon structure as probed in hard scattering processes.
GPDs link nucleon form factors (FFs) to longitudinal parton
distributions (PDFs), and their first moment provides the
angular momentum contribution of the nucleon constituents
to its total spin through Ji’s sum rule [2]. The GPDs also
encode information of the three-dimensional spatial structure
of the hadrons: the Fourier transform of the GPDs gives the
transverse spatial distribution of partons in correlation with
their longitudinal momentum fraction x [4].
Since a precise knowledge of PDFs is required for the

analysis and interpretation of the scattering experiments in
the LHC era, considerable efforts have been made to
determine PDFs and their uncertainties by global fitting
collaborations such as MMHT [5], CT [6], NNPDF [7], and
HERAPDF [8]. Lattice QCD calculations are using differ-
ent methods, such as path-integral formulation of the deep-
inelastic scattering hadronic tensor [9–11], the inversion
method [12,13], quasi-PDFs [14–18], pseudo-PDFs
[19,20], and lattice cross sections [21], to obtain the
x dependence of the PDFs. The current status and chal-
lenges for a meaningful comparison of lattice calculations
with the global fits of PDFs can be found in [22].

There has been recent interest in the study of parton
distributions using the framework of light-front holo-
graphic QCD (LFHQCD), an approach to hadron structure
based on the holographic embedding of light-front dynam-
ics in a higher dimensional gravity theory, with the
constraints imposed by the underlying superconformal
algebraic structure [23–29]. This effective semiclassical
approach to relativistic bound-state equations in QCD
captures essential aspects of the confinement dynamics
that are not apparent from the QCD Lagrangian, such as the
emergence of a mass scale λ ¼ κ2, a unique form of the
confinement potential, and a zero mass state in the chiral
limit: the pion and universal Regge trajectories for mesons
and baryons.
Various models of parton distributions based on

LFHQCD [30–51] use as a starting point the analytic form
of GPDs found in Ref. [52]. This simple analytic form
incorporates the correct high-energy counting rules of FFs
[53,54] and the GPD’s t-momentum transfer dependence.
One can also obtain effective light-front wave functions
(LFWFs) [28,55] that are relevant for the computation of
FFs and PDFs, including polarization-dependent distribu-
tions [43,44,47]. LFWFs are also used to study the skew-
ness ξ dependence of the GPDs [41,45,48,50,51] and other
parton distributions such as the Wigner distribution func-
tions [38,43]. The downside of the above phenomenologi-
cal extensions of the holographic model is the large number
of parameters required to describe simultaneously PDFs
and FFs for each flavor.
Motivated by our recent analysis of the nucleon FFs in

LFHQCD [56], we extend here our previous results for
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while the PDF for the valence antiquark is given by
fð1 − xÞ. In our basis representation of Eq. (4), the trans-
verse integrals in Eq. (5) can be evaluated analytically using
the orthonormal property of the 2D HO functions.
We notice that finite Lmax leads to a basis artifact:

oscillations in the obtained PDFs. The amplitudes of such
oscillations diminish with increasing Lmax. Therefore, we
fit the PDFs at different Lmax ∈ f8; 12; 16; 20; 24; 28; 32g
using a smooth parametrized form fðxÞ ¼ xað1 − xÞb=
B ðaþ 1; bþ 1Þ. Here B ðaþ 1; bþ 1Þ is the Euler Beta
function that ensures the normalization of the PDF. We then
fit the Lmax dependence of these fitting parameters ða; bÞ
by quadratic functions on L−1

max and extrapolate to
Lmax → þ∞. The resulting parameters are a ¼ b ¼
0.5961 for the pion, while a ¼ 0.6337 and b ¼ 0.8546
for the kaon.
We now have our PDFs for the pion and the kaon at

scales relevant to constituent quark masses which are
several hundred MeV. At the model scales, both PDFs
for the valence quark and the valence antiquark are
normalized to 1:

Z
1

0
fðxÞdx ¼

Z
1

0
fð1 − xÞdx ¼ 1: ð6Þ

Meanwhile, we have the following momentum sum rule:
Z

1

0
xfðxÞdxþ

Z
1

0
xfð1 − xÞdx ¼ 1; ð7Þ

which is a consequence of Eq. (6). Equation (7) states that
the valence quark and antiquark together carry the entire
light front momentum of the meson, as is appropriate to a
low-resolution model.
The QCD evolution of PDFs.—Next, we adopt the next-

to-next-to-leading order (NNLO) Dokshitzer-Gribov-
Lipatov-Altarelli-Parisi (DGLAP) equations [54–56] of
QCD, to evolve our PDFs from our model scales, defined
as μ20, to higher scales μ2 needed for the comparison with
experiments. The scale evolution allows quarks to emit and
absorb gluons, with the emitted gluons allowed to create
quark-antiquark pairs as well as additional gluons [20]. In
this picture, the higher scale reveals the sea quark and gluon
components of the constituent quarks through QCD.
Explicitly, we evolve our initial PDFs from the BLFQ-

NJL model for the mesons to the relevant experimental
scales μ2 ¼ 16 GeV2 and μ2 ¼ 20 GeV2 using the Higher
Order Perturbative Parton Evolution toolkit to numerically
solve the NNLO DGLAP equations [57]. We determine
μ20π ¼ 0.240% 0.024 GeV2 for the pion and μ20K ¼
0.246% 0.024 GeV2 for the kaon by requiring the results
after QCD evolution to fit both the pion PDF data from the
FNAL-E615 experiment [7] and the ratio uKv =uπv data from
the CERN-NA3 experiment [6]. The value of χ2 per degree
of freedom (d.o.f.) for the fit of the pion PDF is 3.64,

whereas for the ratio uKv =uπv the value of χ2=d:o:f: is 0.50.
We estimate a 10% uncertainty in the initial scales. We also
note that the best-fit initial scales increase 17% when we
advance the DGLAP equations from NLO to NNLO, with
reduced χ2=ðd:o:f:Þ and qualitatively comparable fit-
ted PDFs.
In Fig. 1, we show our result for the valence quark PDF

of the pion, where we compare the valence quark distri-
bution after QCD evolution with the data from the FNAL-
E615 experiment for the pion-nucleus-induced DY process
[7]. The error bands in our evolved valence quark distri-
butions are due to the spread in the initial scale
μ20π ¼ 0.240% 0.024 GeV2. Our pion valence PDF falls
off as ð1 − xÞ1.44, favoring the slower falloff in the large x
region of the original analysis of the FNAL-E615 data [7].
Our results differ from others in the same large x region:
Refs. [8,39] favor the ð1 − xÞ2 perturbative QCD falloff,
while Ref. [24] supports a softer falloff of ð1 − xÞ1.51.
Looking further into the approach of Ref. [24], which is

based on the light front holographic QCD of Ref. [53], sea
quark contributions to the pion PDFs were calculated using
a nonvanishing jqq̄qq̄i Fock sector at their model scale
μ20 ¼ ð1.12% 0.32Þ GeV2. At this scale, in their model the
valence quarks carry 54% of the pion’s momentum, close to
our model prediction of 57%. However, we note that there
are significant differences between our model and theirs in
how the remaining fraction of the pion momentum is
distributed. Specifically, at this scale our model has 35%
of the total pion momentum in the gluons, while the
corresponding contribution in Ref. [24] is zero.
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FIG. 1. xfπðxÞ as a function of x for the pion. The black bands
are BLFQ-NJL results evolved from the initial scale ð0.240%
0.024 GeV2Þ using the NNLO DGLAP equations to the exper-
imental scale of 16 GeV2. The brown dot-dashed line and the
pink long-dashed line represent our sea quark and gluon
distributions, respectively, at the experimental scale using the
same approach without uncertainties in our model scale, while the
red band corresponds to light front holographic QCD predictions
[24]. Results are compared with the original analysis of the
FNAL-E615 experiment data [7] and with its reanalysis (E615
Mod-data) [8].
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Introduction.—The parton distribution function (PDF),
the probability that a parton (quark or gluon) carries a certain
fraction of the total light front momentum of a hadron,
encodes the nonperturbative structure of hadrons, attracting
numerous dedicated experimental and theoretical efforts
[1–19]. Since experimental results span a large range of
momentum transfers, one must address the dependence of
these results on the resolving power (scale) of the exper-
imental probe, which is equivalent to addressing the physics
of scale evolution based on quantum chromodynamics
(QCD) [20]. Starting with an effective Hamiltonian for a
constituent quark and an antiquark (masses of several
hundredMeV), suitable for low-resolution probes, we solve
for the light front wave functions (LFWFs) of the pion and
the kaon to produce the initial PDFs. We then apply QCD
evolution from the initial PDFs to account for the emission
and absorption of sea quarks and gluons in order to
incorporate degrees of freedom relevant to higher-resolution
probes. This then allows us to compare our QCD-evolved
PDFs with various sets of experimental data over a wide
range of scales.
Two salient issues can be addressed with this approach.

The first issue is the valence PDF of the pion, which has
been investigated in theory by Refs. [12,19,21–29].
Experimentally, this PDF is measured with the pion-
nucleus-induced Drell-Yan (DY) process, in which a quark
annihilates with an antiquark and produces a dilepton pair
[1–5]. Specifically, there is a disagreement on the behavior
of the pion valence PDF when either the quark or the
antiquark approaches the limit of taking all of the pion’s

light front momentum (i.e., the annihilating parton’s light
front momentum fraction x approaches unity) [8,10,
30–36]. The second issue concerns the description of the
experimental data on the kaon valence PDF, which exists in
the form of the ratio of the up (u) quark distribution in the
kaon to that in the pion [6,7]. The valence PDF of the kaon
has been theoretically investigated in Refs. [9,11,37–44].
Similar to the scale dependence of the angular momentum
observables [45,46], addressing these two issues requires a
unified approach, such as we describe here, that success-
fully encapsulates properties of both the pion and the kaon
at their respective model scales, while the available data
across various other scales are then modeled with reason-
able precision after QCD evolution.
With the theoretical framework of basis light front

quantization (BLFQ) [47–49], we adopt an effective light
front Hamiltonian [50] and solve for its mass eigenstates at
the scales suitable for low-resolution probes. With quarks
being the only explicit degrees of freedom for the strong
interaction, our Hamiltonian incorporates the holographic
QCD confinement potential [24] supplemented by the
longitudinal confinement [51]. Our Hamiltonian also
includes the color-singlet Nambu–Jona-Lasinio (NJL)
interactions [35,52] to account for the dynamical chiral
symmetry breaking of QCD. By solving this Hamiltonian
in the constituent quark-antiquark Fock space (the valence
space) and fitting the quark masses and coupling constants,
one obtains via the pion and the kaon LFWFs the good
quality descriptions of their charge radii, distribution
amplitudes, and electromagnetic form factors [50].
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effective Hamiltonian in the constituent quark-antiquark representation suitable for low-momentum scale
applications. By taking these scales as the only free parameters, the valence quark distribution functions of
the pion, after QCD evolution, are consistent with the data from the FNAL-E615 experiment. The ratio of
the up quark distribution of the kaon to that of the pion also agrees with the CERN-NA3 experiment.
Supplemented by known parton distribution functions for the nucleons, we further obtain the cross section
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Introduction.—The parton distribution function (PDF),
the probability that a parton (quark or gluon) carries a certain
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light front momentum (i.e., the annihilating parton’s light
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fully encapsulates properties of both the pion and the kaon
at their respective model scales, while the available data
across various other scales are then modeled with reason-
able precision after QCD evolution.
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front Hamiltonian [50] and solve for its mass eigenstates at
the scales suitable for low-resolution probes. With quarks
being the only explicit degrees of freedom for the strong
interaction, our Hamiltonian incorporates the holographic
QCD confinement potential [24] supplemented by the
longitudinal confinement [51]. Our Hamiltonian also
includes the color-singlet Nambu–Jona-Lasinio (NJL)
interactions [35,52] to account for the dynamical chiral
symmetry breaking of QCD. By solving this Hamiltonian
in the constituent quark-antiquark Fock space (the valence
space) and fitting the quark masses and coupling constants,
one obtains via the pion and the kaon LFWFs the good
quality descriptions of their charge radii, distribution
amplitudes, and electromagnetic form factors [50].
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