

Strangeness production and hypernuclear formation in hadron induced reactions

OUTLINE

- Introduction and motivation
- Transport approach for hadron induced nuclear reactions (LQMD)
- •Strangeness production and in-medium effect
- •Nuclear fragmentation and hypernuclear formation
- Summary

I. Introduction

状态方程(EOS-Equation of State): 范德瓦尔斯方程: $[p + a(\frac{n}{v})^2](v - nb) = nRT$

由中子和质子构成的物质如何随温度、密度变化? 核物质状态方程

 $E(\rho,\delta) = \frac{E(\rho,0) + E_{sym}(\rho)\delta^2 + O(\delta^4), \quad \delta = (\rho_n - \rho_p) / \rho$

0

中高能核物

PACS numbers: 25.70.-z, 21.65.+f

大会,¹·倪沙, 2019年6月²1⁵25日 **E_{lab} (GeV)**

E_{lab} [GeV]

1.2

40

20

0

20

soft EOS hard EOS

> 2 ρ/ρ_0

> > 1.6

KaoS

1.4

重离子碰撞中的奇异粒子产生探针高密对产能

Symmetry energy from K⁰/K⁺ production in HIC's around threshold energies (**RBUU: PRL97(2006)202301)** Time evolutions of pion, kaon and sigma in ¹⁹⁷Au+¹⁹⁷Au at 1.5A GeV by LQMD model (Phys. Rev. C 82 (2010) 057901)

1953年波兰物理学家M. Danysz和J. Pniewski 在宇宙线乳胶实验中首次发现Λ超核

H. Tamura, Prog. Theor. Exp. Phys. (2012) 02B012

A. Andronic, P. Braun-Munzinger, J. Stachel, H. Stöcker, Physics Letters B 697 (2011) 203–207

statistical model

Pb+Pb

A.S. Botvina, J. Steinheimer, E.Bratkovskaya et al., Physics Letters B 742 (2015)7–14

transport model+coalescence approach

HIAF (High-Intensity Heavy Ion Accelerator Facility)

Ring FRing

	lons	Energy	Intensity	
SECR	238U32+	14 keV/u	0.05- <mark>0.1</mark> pmA	
iLinac	238U35+	17 MeV/u	0.028-0.05 pmA	
FRing	238U32+	0.35 GeV/u	~2.0×10 ¹¹ ppp	
BRing	238U32+	1.0 GeV/u	~1.0×10 ¹² ppp	
	238U92+	3.8 GeV/u	~5.0×10 ¹¹ ppp	
SRing	RIBs: neutron-rich, proton-rich	0.84 GeV/u(A/q=3)	~10 ⁹⁻¹⁰ ppp	
	Fully stripped heavy ions H-like, He-like heavy ions	0.8 GeV/u(²³⁸ U ⁹²⁺)	~10 ¹¹⁻¹² ppp	

Provided by Jian-Cheng Yang

II. Lanzhou Quantum Molecular Dynamics (LQMD) transport model

Nuclear dynamics from 5 MeV/nucleon – 10 GeV/nucleon for HICs, antiproton (proton, π , K, etc)

- Dynamics of low-energy heavy-ion collisions (dynamical interaction potential, barrier distribution, neck dynamics, fusion/caption excitation functions etc)
- Isospin physics at intermediate energies (constraining nuclear symmetry energy at sub- and suprasaturation densities in HICs and probing isospin splitting of nucleon effective mass from HICs)
- > In-medium properties of hadrons in dense nuclear matter from heavy-ion

collisions (extracting optical potentials, i.e., $\Delta(1232)$, N*(1440), N*(1535)), hyperons ($\Lambda, \Sigma, \Xi, \Omega$) and mesons ($\pi, K, \eta, \rho, \omega, \phi...$), hypernucleus dynamics)

Hadron (antiproton, proton, π[±], K[±]) induced reactions (hypernucleus production, e.g., $\Lambda(\Sigma)X$, ΛΛX, ΞX, $\overline{\Lambda}X(S=1)$, in-medium modifications of hadrons, cold QGP)

Density, isospin and momentum-dependent single-nucleon potential

$$U_{\tau}(\rho, \delta, \mathbf{p}) = \alpha \frac{\rho}{\rho_{0}} + \beta \frac{\rho^{\gamma}}{\rho_{0}^{\gamma}} + E_{\text{sym}}^{\text{loc}}(\rho)\delta^{2} + \frac{\partial E_{\text{sym}}^{\text{loc}}(\rho)}{\partial \rho}\rho\delta^{2} + E_{\text{sym}}^{\text{loc}}(\rho)\rho \frac{\partial \delta^{2}}{\partial \rho_{\tau}} \quad \mathbf{ZQF, Phys. Rev. C 84 (2011) 024610}$$

$$+ \frac{1}{\rho_{0}}C_{\tau,\tau}\int d\mathbf{p}' f_{\tau}(\mathbf{r}, \mathbf{p})[\ln(\epsilon(\mathbf{p} - \mathbf{p}')^{2} + 1)]^{2}$$

$$+ \frac{1}{\rho_{0}}C_{\tau,\tau'}\int d\mathbf{p}' f_{\tau'}(\mathbf{r}, \mathbf{p})[\ln(\epsilon(\mathbf{p} - \mathbf{p}')^{2} + 1)]^{2}.$$

$$C_{\tau,\tau} = C_{mom}(1 + x), \ C_{\tau,\tau'} = C_{mom}(1 - x) \ (\tau \neq \tau')$$

Table 1: The parameters and properties of isospin symmetric EoS used in the LQMD model at the density of 0.16 fm⁻³.

Parameters	$\alpha \ ({\rm MeV})$	β (MeV)	γ	C_{mom} (MeV)	$\epsilon \; (c^2/MeV^2)$	m_∞^*/m	K_{∞} (MeV)
PAR1	-215.7	142.4	1.322	1.76	5×10^{-4}	0.75	230
PAR2	-226.5	173.7	1.309	0.	0.	1.	230

中高能核物理大会,长沙,2019年6月21-25日

Particle production channels in the LQMD model

π and resonances (Δ (1232), N*(1440), N*(1535), ...) production:

 $\begin{array}{ll} NN \leftrightarrow N\Delta, & NN \leftrightarrow NN^*, & NN \leftrightarrow \Delta\Delta, & \Delta \leftrightarrow N\pi, \\ N^* \leftrightarrow N\pi, & NN \leftrightarrow NN\pi(s-state), & N^*(1535) \leftrightarrow N\eta \end{array}$

Collisions between resonances, NN*↔N∆, NN*↔NN*

Strangeness channels:

$$\begin{array}{ll} BB \to BYK, & BB \to BBK\overline{K}, & B\pi \to YK, \\ B\pi \to NK\overline{K}, & Y\pi \to N\overline{K}, & N\overline{K} \to Y\pi, & YN \to \overline{K}NN \end{array}$$

Reaction channels with antiproton:

$$\overline{p}N \to \overline{N}N, \ \overline{N}N \to \overline{N}N, \ \overline{N}N \to \overline{B}B, \ \overline{N}N \to \overline{Y}Y$$

$$\overline{N}N \to \text{annihilation}(\pi, \eta, \rho, \omega, K, \overline{K}, K^*, \overline{K}^*, \phi)$$

Statistical model with SU(3) symmetry for annihilation (E.S. Golubeva et al., Nucl. Phys. A 537, 393 (1992))

The **PYTHIA** and **FRITIOF** code are used for baryon(meson)-baryon and antibaryon-baryon collisions at high invariant energies

Mean-field potentials for resonances, hyperons and mesons

1. Mean-field potentials for resonances (Δ (1232), N*(1440), ...) are considered based on nucleon potentials, but distinguishing isospin effect.

$$\begin{aligned} U_{\Delta^{++}} &= U_p(\rho, p), U_{\Delta^+} &= 2U_p(\rho, p)/3 + U_n(\rho, p)/3, U_{\Delta 0} &= U_p(\rho, p)/3 + \\ & 2U_n(\rho, p)/3, U_{\Delta^-} &= U_n(\rho, p) \end{aligned}$$

2. Mean-field potentials for hyperons and antiprotons in nuclear medium

$$H_{M} = \sum_{i=1}^{N_{M}} \left(V_{i}^{\text{Coul}} + \omega(\mathbf{p}_{i}, \rho_{i}) \right)$$
$$\omega(\mathbf{p}_{i}, \rho_{i}) = \sqrt{\left(m_{H} + \Sigma_{S}^{H}\right)^{2} + \mathbf{p}_{i}^{2}} + \Sigma_{V}^{H}$$
$$V_{opt}(\mathbf{p}, \rho) = \omega(\mathbf{p}, \rho) - \sqrt{\mathbf{p}^{2} + m^{2}}$$

3. Mean-field potentials for kaons and antikaons

J.Schaffner-Bielich et al., Nucl. Phys. A 625 (1997) 325, Z. Q. Feng, Nucl. Phys. A 919 (2013) 32-45

$$\omega_{K}(\mathbf{p}_{i},\rho_{i}) = \left[m_{K}^{2} + \mathbf{p}_{i}^{2} - a_{K}\rho_{i}^{S} - \tau_{3}c_{K}\rho_{i3}^{S} + (b_{K}\rho_{i} + \tau_{3}d_{K}\rho_{i3})^{2}\right]^{1/2} + b_{K}\rho_{i} + \tau_{3}d_{K}\rho_{i3}$$

$$\omega_{\overline{K}}(\mathbf{p}_{i},\rho_{i}) = \left[m_{\overline{K}}^{2} + \mathbf{p}_{i}^{2} - a_{\overline{K}}\rho_{i}^{S} - \tau_{3}c_{K}\rho_{i3}^{S} + (b_{K}\rho_{i} + \tau_{3}d_{K}\rho_{i3})^{2}\right]^{1/2} - b_{K}\rho_{i} - \tau_{3}d_{K}\rho_{i3}$$

$$b_{K} = 3/(8f_{\pi}^{*2}) \approx 0.333 \text{ GeV fm}^{3} \text{ with assuming } f_{\pi}^{*} = f_{\pi}, \text{ the } a_{K} \text{ and } a_{\overline{K}} \text{ are } 0.18 \text{ GeV}^{2} \text{ fm}^{3} \text{ and } 0.31 \text{ GeV}^{2} \text{ fm}^{3}, \text{ respectively},$$

$$The parameters c_{K} = 0.0298 \text{ GeV}^{2} \text{ fm}^{3} \text{ and } d_{K} = 0.111 \text{ GeV fm}^{3} \qquad \frac{d\mathbf{p}_{i}}{dt} = -\frac{\partial V_{i}^{Coul}}{\partial \mathbf{r}_{i}} - \frac{\partial \omega_{K(\overline{K})}(\mathbf{p}_{i},\rho_{i})}{\partial \mathbf{r}_{i}} \pm \mathbf{v}_{i} \frac{\partial V_{i}}{\partial \mathbf{r}_{i}}$$

$$\mathbf{v}_{i} \frac{\partial V_{i}}{\partial \mathbf{r}_{i}} = \frac{1}{2} \int_{0}^{0} \frac{(\mathbf{p}_{i} - \mathbf{p}_{i})}{\partial \mathbf{r}_{i}} + \mathbf{v}_{i} \frac{\partial V_{i}}{\partial \mathbf{r}_{i}} + \mathbf{v}_{i} \frac{\partial V_{i}}{\partial \mathbf{r}_{i}}$$

$$\mathbf{v}_{i} \frac{\partial V_{i}}{\partial \mathbf{r}_{i}} = \frac{1}{2} \int_{0}^{0} \frac{(\mathbf{p}_{i} - \mathbf{p}_{i})}{\partial \mathbf{r}_{i}} + \mathbf{v}_{i} \frac{\partial V_{i}}{\partial \mathbf{r}_{i}} + \mathbf{v}_{i$$

V_{K+}(ρ₀)= 28 MeV, V_{K-}(ρ₀)= -100 MeV 中高能核物理大会,长沙,2019年6月21-25日

III Results and discussion: 1. Strangeness production in HICs

Exp. data: H. Herrmann, FOPI Collaboration, Prog. Part. Nucl. Phys. 42 (1999) 187; J. L. Ritman, FOPI Collaboration, Z. Phys. A 352 (1995) 355.

Z.-Q. Feng / Nuclear Physics A 919 (2013) 32-45

The ratio of K^-/K^+ as a function of transverse mass (kinetic energy) in collisions of ¹²C + ¹²C and protons on ¹²C and ¹⁹⁷Au at the beam energies of **1.8A** GeV and **2.5** GeV, respectively.

2. Coalescence approach for hypernuclear formation

Classical coalescence approach in phase space $|r_i\text{-}r_j|{\leq}3$ fm, $|r_i\text{-}r_\gamma|{\leq}4.5$ fm , $|p_i\text{-}p_j|{\leq}3$ GeV/c

The rapidity and kinetic energy distributions of nucleonic fragments, Λ -hypernuclide fragments and free hyperons

中高能重离子碰撞中奇异粒子产生和超核形成机制

冯兆庆

论文

中国科学院近代物理研究所, 兰州 730000 E-mail: fengzhq@impcas.ac.cn

Production of Λ -hypernuclide in ¹⁹⁷Au+¹⁹⁷Au at the beam energy of 2 GeV/nucleon

Nuclear Science and Techniques 29 (2018) 40

3. Pion-nucleus scattering

Z. Q. Feng, Phys. Rev. C 94, 054617 (2016)

4. Hypernuclear formation in meson K⁻ induced reactions

5. Nuclear dynamics induced by antiprotons

Particle multiplicities on different nuclei at stopped energy

Nuclei	π^+	π ⁰	π-	K+/K ⁰	K⁻∕ K ⁰	$\Lambda + \Sigma^0$	Σ+	Σ-
¹² C	0.6	1.2	1.5	0.027/0.034	0.013/0.008	0.021	0.009	0.01
¹⁹⁷ Au	0.8	1.4	1.6	0.045/0.051	0.01/0.007	0.051	0.011	0.017

(1) Particle production in antiproton-nucleus collisions

Z. Q. Feng and H. Lenske, Phys. Rev. C 89, 044617 (2014)

LEAR (Low-Energy Antiproton Ring) at CERN (P. L. McGaughey et al., Phys. Rev. Lett. 56, 2156 (1986))

Slope parameters: 105 MeV (pion), 140 MeV (kaon), <u>125 MeV (antikaon) and 95 MeV (hyperon)</u> KEK data: 135±13 MeV (K_{S}^{0}), 97±6 MeV (Λ) (Phys. Rev. C 38 (1988) 2788)

 $\frac{E\,d\sigma}{p^2\,dp} = CE\exp(-E_{kin}/T)$

Multiplicities of particles **p**+ ¹²C, ²⁰Ne, ⁴⁰Ca, ¹¹²Sn, ¹⁸¹Ta, ¹⁹⁷Au and ²³⁸U at 4 GeV/c

System size dependence of neutral particles at incident momentum of 4 GeV/c Z. Q. Feng, Nuclear Science and Techniques 26 (2015) S20512

 \bar{p} +¹²C, 1 GeV/c

 \bar{p} +⁴⁰Ca, 4 GeV/c

(2) The isospin effect in low-energy antiproton-induced reactions

(Z. Q. Feng, Phys. Rev. C 96, 034607 (2017), arXiv: 1701.0630)

The n/p ratios in antiproton induced reactions with different stiffness of symmetry energies and compared with the LEAR data

(3) Nuclear fragmentation and hyperfragment formation in antiproton-nucleus collisions (Z. Q. Feng, Phys. Rev. C 93, 041601(R) (2016))

Experimental data: LEAR at CERN, B. Lott *et al.*, Phys. Rev. C 63, 034616 (2001) with 1.22 GeV antiproton 中高能核物理大会,长沙,2019年6月21-25日

Nuclear fragmentation with low-energy antiproton Z. Q. Feng, Phys. Rev. C 94, 064601 (2016)

$$\Delta A = A_T - 1 - \int_{A_{\min}}^{A_T - 2} \sigma(A) A dA / \int_{A_{\min}}^{A_T - 2} \sigma(A) dA$$

Mass and charge distributions of nucleonic fragments produced in the p + 63Cu reaction at incident momenta of 105 MeV/c and 4 GeV/c, respectively

The data from LEAR facility at CERN. J. Jastrzebski et al., Phys. Rev. C 47, 216 (1993)

(4) Hypernuclear formation: Rapidity and kinetic energy distributions

Hyperfragments production in the antiproton induced reactions

Phys. Rev. C 93, 041601(R) (2016)

IV. Summary

> Nuclear dynamics induced by antiprotons has been investigated within the Lanzhou quantum molecular dynamics (LQMD) model.

> In-medium effect of strangeness production is investigated. It is concluded that the weakly repulsive KN potential of V(ρ_0)=28 MeV, strongly attractive \overline{KN} potential of V(ρ_0)= -100 MeV, weak attractive ΛN potential of V(ρ_0)= -32 MeV.

> Hypernuclear dynamics in heavy-ion collisions and in hadron induced reactions has been investigated, in particular for producing the double strangeness $_{\Lambda\Lambda}X$.