Faddeev fixed center approximation to $\pi \bar{K} K^{*}$ system and the $\pi_{1}(1600)$

Xu Zhang（张旭）
（Institute of Modern Physics，CAS）
第十八届全国中高能核物理会议

OUTLINE

- Introduction
- Our model
- Numerical results
- Summary

QCD Exotic States

Baryons are red-bluegreen triplets

ordinary matter

Mesons are coloranticolor pairs

$$
\Lambda=\text { usd }
$$

Other possible combinations of quarks and gluons :

Tetraquark
Tightly bound diquark \& anti-diquark

u

q \bar{q}-gluon hybrid mesons

by Xiao-Rui Lyu

The observation of $\pi_{1}(1600)$ from VES collaboration

$J^{P C}=1^{+}$wave in $b_{1} \pi, \eta^{\prime} \pi$ and $\rho \pi$ channels

Nuclear Physics A663(2000) 596-599

The signal parameters obtained in the fit are:

$$
\begin{aligned}
& M\left(\pi_{1}(1600)\right)=1.61 \pm 0.02 \mathrm{GeV} \\
& \Gamma\left(\pi_{1}(1600)\right)=0.29 \pm 0.03 \mathrm{GeV}
\end{aligned}
$$

$f_{1} \pi$ channel was also include
Yu. P. Gouz et al. (VES Collaboration), AIP Conf. Proc. 272,572 (1993).

Comparing the results from VES collaboration and model calculations

Models for hybrid decays predict rates for $\pi_{1}(1600)$
P. R. Page, E. S. Swanson, and A. P. Szczepaniak, Phys. Rev. D59, 034016 (1999).
$b_{1} \pi: f_{1} \pi: \eta^{\prime} \pi: \rho \pi=24: 5: 2: 9$

Branching ratios from VES collaboration
D. V. Amelin et al., Phys. Atom. Nucl. 68, 359 (2005) [Yad. Fiz.68, 388 (2005)].
$b_{1} \pi: f_{1} \pi: \eta^{\prime} \pi: \rho \pi=1.0 \pm 0.3: 1.1 \pm 0.3:<0.3: 1.0$

The CLAS experiment result

Phys. Rev. Lett. 102,102002 (2009).
$\gamma p \rightarrow \pi^{+} \pi^{+} \pi^{-}(n)$

The COMPASS experiment result

$M\left(\pi_{1}(1600)\right)=1.660 \pm 0.010 \mathrm{GeV}$ $\Gamma\left(\pi_{1}(1600)\right)=0.269 \pm 0.021 \mathrm{GeV}$

There results imply that the $\pi_{1}(1600)$ is not strongly produced in photoproduction, the $\pi_{1}(1600)$ does not decay to 3π or both.

Our model: Fixd center approximation (FCA)

We investigate the three-body system of $\pi \bar{K} K^{*}$ using the FCA approximation to Faddeev equations

(a)

(b)

(c)

(d)
F.Aceti, Ju-JunXie and E.Oset, Physics Letters B 750(2015) 609-614
Ju-JunXie, E.Oset , Physics Letters B 753(2016) 591-594

We assume $\overline{\mathrm{K}} \mathrm{K}^{*}$ forming a cluster as $f_{1}(1285)$

$$
\begin{aligned}
& T_{1}=t_{1}+t_{1} G_{0} T_{2} \\
& T_{2}=t_{2}+t_{2} G_{0} T_{1} \\
& T=T_{1}+T_{2}
\end{aligned}
$$

t_{1} is the combination of the $I=1 / 2$ and $3 / 2 \pi \bar{K}$ scattering amplitude
t_{2} is the combination of the $\mathrm{I}=1 / 2$ and $3 / 2 \pi \mathrm{~K}^{*}$ scattering amplitude.
single-scattering FIG.1(a),

$$
S_{1}^{(1)}=-i t_{1}(2 \pi)^{4} \delta\left(k+k_{R}-k^{\prime}-k_{R}^{\prime}\right) \frac{1}{V^{2}} \frac{1}{\sqrt{2 w_{p_{1}}}} \frac{1}{\sqrt{2 w_{p_{1}^{\prime}}}} \frac{1}{\sqrt{2 w_{k}}} \frac{1}{\sqrt{2 w_{k^{\prime}}}} F_{R}\left(\frac{m_{K^{*}}\left(\vec{k}-\overrightarrow{k^{\prime}}\right)}{m_{K}+m_{K^{*}}}\right)
$$

Double-scattering FIG.1(b)

$$
\begin{aligned}
& S_{1}^{(2)}=-i t_{1} t_{2}(2 \pi)^{4} \delta\left(k+k_{R}-k^{\prime}-k_{R}^{\prime}\right) \frac{1}{V^{2}} \frac{1}{\sqrt{2 w_{p_{1}}}} \frac{1}{\sqrt{2 w_{p_{1}^{\prime}}}} \frac{1}{\sqrt{2 w_{k}}} \frac{1}{\sqrt{2 w_{k^{\prime}}}} \\
& \frac{1}{\sqrt{2 w_{p_{2}}}} \frac{1}{\sqrt{2 w_{p_{2}^{\prime}}^{\prime}}} \int \frac{d^{3} q}{(2 \pi)^{3}} F_{R}\left(q-\frac{m_{k}\left(\vec{k}+\vec{k}^{\prime}\right)}{m_{k}+m_{k^{\prime}}}\right) \frac{1}{q^{02}-\vec{q}^{2}-m_{\pi}^{2}+i \varepsilon}
\end{aligned}
$$

To consider states above threshold, we project the form factor into the s-wave

$$
F_{R}\left(\frac{m_{K^{*}}\left(\vec{k}-\overrightarrow{k^{\prime}}\right)}{m_{K}+m_{K^{*}}}\right) \Rightarrow F F S_{1}(s)=\frac{1}{2} \int_{-1}^{1} F_{R}\left(k_{1}\right) d(\cos \theta)
$$

$F_{R}\left(q-\frac{m_{k^{\prime}}\left(\vec{k}+\vec{k}^{\prime}\right)}{m_{K}+m_{K^{*}}}\right)=\int d r^{3} \operatorname{Exp}\left(-i\left(q-\frac{m_{K^{*}}\left(\vec{k}+\vec{k}^{\prime}\right)}{m_{K}+m_{K^{*}}}\right) \vec{r}\right) \psi(\vec{r})^{2} \quad$ we will taken into account that $\quad \vec{k}+\overrightarrow{k^{\prime}}=0$ on average. Where ψ is an eigenfunction of H , the full Hamiltonian

$$
\langle\vec{p} \mid \psi\rangle=\int d^{3} k \int d^{3} k^{\prime}\langle\vec{p}| \frac{1}{E-H_{0}}\left|\overrightarrow{k^{\prime}}\right\rangle\left\langle\overrightarrow{k^{\prime}}\right| V|\vec{k}\rangle\langle\vec{k} \mid \psi\rangle
$$

The expression for the form factor $\mathrm{F}_{\mathrm{R}}(\mathrm{q})$

$$
\begin{aligned}
& F_{R}(q)=\frac{1}{N} \int|\vec{P}|<\Lambda,|\vec{P}-\vec{q}|<\Lambda \frac{1}{2 E_{1}(\vec{p})} \frac{1}{2 E_{2}(\vec{p})} \frac{1}{M_{R}-E_{1}(\vec{p})-E_{2}(\vec{p})} \\
& \frac{1}{2 E_{1}(\vec{p}-\vec{q})} \frac{1}{2 E_{2}(\vec{p}-\vec{q})} \frac{M_{R}-E_{1}(\vec{p}-\vec{q})-E_{2}(\vec{p}-\vec{q})}{}
\end{aligned}
$$

In this work we take $\Lambda=990 \mathrm{MeV}$
PHYSICAL REVIEW D 72, 014002 (2005)

The G_{0} is the loop function for the π meson propagating inside the cluster

$$
G_{0}=\frac{1}{2 M_{R}} \int \frac{d^{3} q}{(2 \pi)^{3}} F_{R}(q) \frac{1}{q^{0^{2}}-\vec{q}^{2}-m_{3}^{2}+i \varepsilon}
$$

The form factor $F_{R}(q)$ of $f_{1}(1285)$ as
a $\bar{K} K^{*}$ bound state

Solid, dashed and dotted line corresponding to different cutoff \wedge.

The G_{0} as a function of the invariant mass of the $\pi \overline{\mathrm{K}} K *$ system

Real (solid line) and imaginary (dashed line) parts of the G_{0} function.

We project the form factor into the s-wave,the only one that we consider. Hence

$$
\begin{gathered}
F F S_{1}(s)=\frac{1}{2} \int_{-1}^{1} F_{R}\left(k_{1}\right) d(\cos \theta) \\
F F S_{2}(s)=\frac{1}{2} \int_{-1}^{1} F_{R}\left(k_{2}\right) d(\cos \theta)
\end{gathered}
$$

$$
k_{1}=\frac{m_{K^{*}}}{m_{\bar{K}}+m_{K^{*}}} k \sqrt{2(1-\cos \theta)}
$$

$$
k_{2}=\frac{m_{\bar{K}}}{m_{\bar{K}}+m_{K^{*}}} k \sqrt{2(1-\cos \theta)}
$$

$$
k=\frac{\sqrt{\left(s-\left(m_{\bar{K}}+m_{K^{*}}+m_{\pi}\right)^{2}\right)\left(s-\left(m_{\bar{K}}+m_{K^{*}}-m_{\pi}\right)^{2}\right)}}{2 \sqrt{s}}
$$

The solid and dashed curves are the results of FFS_{1} and FFS_{2}

The amplitudes for the single-scattering contribution

$$
\begin{aligned}
& t_{\pi \bar{K} K^{*}(1,1)}^{(t)}=\left\langle\pi \bar{K} K^{*}\right|\left(t_{31}+t_{32}\left|\pi \bar{K} K^{*}\right\rangle\right. \\
& =\left\{\langle 11| \otimes \sqrt{\frac{1}{2}}\left(\left\langle\frac{1}{2},-\frac{1}{2}\right|-\left\langle-\frac{1}{2}, \frac{1}{2}\right|\right)\left(t_{31}+t_{32}\right)\left\{|11\rangle \otimes \sqrt{\frac{1}{2}}\left(\left|\frac{1}{2},-\frac{1}{2}\right\rangle-\left|-\frac{1}{2}, \frac{1}{2}\right\rangle\right)\right\}\right. \\
& =\left(\frac{2}{3} t_{31}^{I=\frac{3}{2}}+\frac{1}{3} t_{31}^{I=\frac{1}{2}}\right)+\left(\frac{2}{3} t_{32}^{I-\frac{3}{2}}+\frac{1}{3} t_{32}^{t-\frac{1}{2}}\right)
\end{aligned}
$$

We obtain

$$
t_{1}=\frac{2}{3} t_{31}^{I-\frac{3}{2}}+\frac{1}{3} t_{31}^{I=\frac{1}{2}} \quad t_{2}=\frac{2}{3^{I-}}{ }_{32}^{I-\frac{3}{2}}+\frac{1}{3} t_{32}^{I=\frac{1}{2}}
$$

$\pi \bar{K} K *$ scattering amplitude (to consider states above threshold)

$$
T=\frac{\tilde{t}_{1}+\tilde{t}_{2}+2 \tilde{t}_{1} \tilde{t}_{2} G_{0}}{1-\tilde{t}_{1} \tilde{t}_{2} G_{0}^{2}}+\tilde{t}_{1}\left(F F S_{1}-1\right)+\tilde{t}_{2}\left(F F S_{2}-1\right)
$$

Two-body scattering

The amplitude of two-body scattering can be cast using the BSE

$T\left(p_{1}, k_{1} ; p_{2}, k_{2}\right)=V\left(p_{1}, k_{1} ; p_{2}, k_{2}\right)+i \int \frac{d^{4} q}{(2 \pi)^{4}} \frac{V\left(p_{1}, k_{1} ; q, p_{1}+k_{1}-q\right)}{\left(p_{1}+k_{1}-q\right)^{2}-m^{2}+i \varepsilon} \frac{T\left(q, p_{1}+k_{1}-q ; p_{2}, k_{2}\right)}{q^{2}-M^{2}+i \varepsilon}$

V can be factorized on shell in the BSEs, and so that the integral equations become algebraic equations
E. Oset, A. Ramos, NPA 635, (1998) 99

$$
t=(1-V G)^{-1} V
$$

loop propagator

$$
G(s)=i \int \frac{d^{4} q}{(2 \pi)^{4}} \frac{1}{\left(p_{1}+k_{1}-q\right)^{2}-m^{2}+i \varepsilon} \frac{1}{q^{2}-M^{2}+i \varepsilon}
$$

Leading ordering Lagrangian $L_{\text {PPPP }}$ for $\mathrm{SU}(3)$ ChPT reads

$$
L_{P P P P}=\frac{1}{12 f^{2}} \operatorname{Tr}\left(\left[P^{\mu}, \partial^{\nu} P_{\mu}\right]^{2}-M P^{4}\right)
$$

The pseudoscalar meson mass matrix M is given by

$$
M=\left(\begin{array}{ccc}
m_{\pi}^{2} & 0 & 0 \\
0 & m_{\pi}^{2} & 0 \\
0 & 0 & 2 m_{K}^{2}-m_{\pi}^{2}
\end{array}\right)
$$

The corresponding coupled channels in $\pi \mathrm{K}$ scattering

$$
\begin{aligned}
& |\pi \mathrm{K}\rangle_{\mathrm{I}=\frac{1}{2}, \mathrm{I}=-\frac{1}{2}}=\sqrt{\frac{1}{3}}\left|\pi^{0} \mathrm{~K}^{0}\right\rangle-\sqrt{\frac{2}{3}}\left|\pi^{-} \mathrm{K}^{+}\right\rangle \quad|\eta \mathrm{K}\rangle_{\mathrm{I}=\frac{1}{2}, \mathrm{I}=-\frac{1}{2}}=\left|\eta \mathrm{K}^{0}\right\rangle \\
& \left|\eta^{\prime} \mathrm{K}\right\rangle_{\mathrm{I}=\frac{1}{2}, \quad \mathrm{E}=\frac{1}{2}}=\left|\eta^{\prime} \mathrm{K}^{0}\right\rangle \\
& |\pi \mathrm{K}\rangle_{\mathrm{I}=\frac{3}{2}, \mathrm{I}=-\frac{1}{2}}=\sqrt{\frac{2}{3}}\left|\pi^{0} \mathrm{~K}^{0}\right\rangle+\sqrt{\frac{1}{3}}\left|\pi^{-} \mathrm{K}^{+}\right\rangle
\end{aligned}
$$

The tree level on-shell and s-wave $\pi \mathrm{K}, \eta \mathrm{K}$ and $\eta^{\prime} \mathrm{K}$ amplitude is

$$
\begin{array}{ll}
V_{11}^{1 / 2}=-\frac{1}{4 f^{2}}\left(4 s+3 t-4 m_{\pi}^{2}-4 m_{K}^{2}\right) & V_{12}^{1 / 2}=-\frac{\sqrt{2}}{6 f^{2}}\left(-3 t+2 m_{K}^{2} 4 m_{\eta}^{2}\right) \\
V_{13}^{1 / 2}=-\frac{1}{12 f^{2}}\left(-3 t+3 m_{\pi}^{2}+8 m_{K}^{2}+m_{\eta}^{2}\right) & V_{22}^{1 / 2}=-\frac{2}{9 f^{2}}\left(3 t-m_{K}^{2}-2 m_{\eta}^{2}\right) \\
V_{23}^{1 / 2}=\frac{\sqrt{2}}{18 f^{2}}\left(3 t-3 m_{\pi}^{2}+2 m_{K}^{2}-m_{\eta}^{2}-m_{\eta}^{2}\right) & V_{33}^{1 / 2}=-\frac{1}{36 f^{2}}\left(3 t-6 m_{\pi}^{2}+32 m_{K}^{2}-2 m_{\eta}^{2}\right) \\
V_{11}^{3 / 2}=\frac{1}{2 f^{2}}\left(s-m_{\pi}^{2}-m_{K}^{2}\right) &
\end{array}
$$

Leading ordering Lagrangian $L_{\text {vVPP }}$ for $\mathrm{SU}(3) \mathrm{ChPT}$ reads

$$
L_{V V P P}=\frac{1}{4 f} \operatorname{Tr}\left(\left[V^{\mu}, \partial^{\gamma} V_{\mu}\right]\left[P, \partial^{\nu} P\right]\right)
$$

P and V are the $S U(3)$ matrices containing the octet of pseudoscalar and the nonet of vector mesons respectively:

$$
P=\left(\begin{array}{ccc}
\frac{1}{\sqrt{2}} \pi^{0}+\frac{1}{\sqrt{6}} \eta_{8} & \pi^{+} & K^{+} \\
\pi^{-} & -\frac{1}{\sqrt{2}} \pi^{0}+\frac{1}{\sqrt{6}} \eta_{8} & K^{0} \\
K^{-} & \bar{K}^{0} & -\frac{2}{\sqrt{6}} \eta_{8}
\end{array}\right) \quad V_{\mu}=\left(\begin{array}{ccc}
\frac{1}{\sqrt{2}} \rho^{0}+\frac{1}{\sqrt{6}} \omega & \rho^{+} & K^{*+} \\
\rho^{-} & -\frac{1}{\sqrt{2}} \rho^{0}+\frac{1}{\sqrt{2}} \omega & K^{* 0} \\
K^{*-} & \bar{K}^{* 0} & \phi
\end{array}\right)_{\mu}
$$

The tree level on-shell and s-wave amplitude is

$$
V_{i j}=-\frac{1}{8 f^{2}} C_{i j}\left[3 s-\left(M^{2}+m^{2}+M^{\prime 2}+m^{\prime 2}\right)-\frac{1}{s}\left(M^{2}-m^{2}\right)\left(M^{\prime 2}-m^{\prime 2}\right)\right]
$$

C_{ij} coefficients in isospin base for $\mathrm{I}=1 / 2$

PHYSICAL REVIEW D 72, 014002 (2005)

	ϕK	ωK	ρK	$K^{*} \eta$	$K^{*} \pi$
ϕK	0	0	0	$-\sqrt{\frac{3}{2}}$	$-\sqrt{\frac{3}{2}}$
ωK	0	0	0	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{2}$
ρK	0	0	-2	$-\frac{3}{2}$	$\frac{1}{2}$
$K^{*} \eta$	$-\sqrt{\frac{3}{2}}$	$\frac{\sqrt{3}}{2}$	$-\frac{3}{2}$	0	0
$K^{*} \pi$	$-\sqrt{\frac{3}{2}}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	0	-2

For $\mathrm{I}=3 / 2$, there are two channels $\pi \mathrm{K}^{*}$ and $\mathrm{K} \rho$

$$
C_{11}=1 \quad C_{12}=1 \quad C_{22}=1
$$

In the dimensional regularization scheme the loop function gives

$$
\begin{aligned}
& G_{l}(\sqrt{s})=\frac{1}{16 \pi^{2}}\left\{a(\mu)+\ln \frac{M_{l}^{2}}{\mu^{2}}+\frac{m_{l}^{2}-M_{l}^{2}+s}{2 s} \ln \frac{m_{l}^{2}}{M_{l}^{2}}+\frac{q_{l}}{\sqrt{s}}\left[\ln \left(s-\left(M_{l}^{2}-m_{l}^{2}\right)+2 q_{l} \sqrt{s}\right)\right.\right. \\
& \left.\left.+\ln \left(s+\left(M_{l}^{2}-m_{l}^{2}\right)+2 q_{l} \sqrt{s}\right)-\ln \left(-s+\left(M_{l}^{2}-m_{l}^{2}\right)+2 q_{l} \sqrt{s}\right)-\ln \left(-s-\left(M_{l}^{2}-m_{l}^{2}\right)+2 q_{l} \sqrt{s}\right)\right]\right\}
\end{aligned}
$$

Where μ is the scale of dimensional regularization, $a(\mu)$ the subtraction constant

$\pi \overline{\mathrm{K}}$ scattering

$$
\begin{array}{rlr}
\text { for } I=1 / 2 & a(\mu)=-1.383 \pm 0.006 & \mu=m_{K} \\
I=3 / 2 & a(\mu)=-4.643 \pm 0.083 . & \mu=m_{K}
\end{array}
$$

F.-K. Guo, R.-G. Ping, P.-N. Shen, H.-C. Chiang and B.-S. Zou,
Nuclear Physics A 773 (2006) 78-94
πK^{*} scattering

$$
\begin{array}{rll}
\text { for } I=1 / 2 & a(\mu)=-1.85 & \mu=900 \\
I=3 / 2 & a(\mu)=-1.85 & \mu=900
\end{array}
$$

> L. Roca, E. Oset, and J. Singh, PHYSICAL REVIEW D 72, 014002 (2005)

Numerical results

$\pi \bar{K} K^{*}$ scattering amplitude

The resonant structure around 1650 MeV shows up in the modulus squared We suggest that this is the origin of the present $\pi_{1}(1600)$

Xu Zhang, Ju-Jun Xie and Xurong Chen,
Phys. Rev. D 95, 056014 (2017)

$\eta \overline{K K}^{*}$ system

We assume $\bar{K} K^{*}$ forming a cluster as $f_{1}(1285)$ and ηK^{*} forming a cluster as $\mathrm{K}_{1}(1270)$

Solid, dashed and dotted line corresponding to $f_{1}(1285)$ and $K_{1}(1270)$ respectively. In this work we take $\Lambda=990 \mathrm{MeV} \Lambda=1000 \mathrm{MeV}$ for $\mathrm{f}_{1}(1285)$ and $\mathrm{K}_{1}(1270)$ respectively.

Xu Zhang, Ju-Jun Xie, arXiv: 1906.07340

The G_{0} as a function of the invariant mass of the $\eta\left(\bar{K} K^{*}\right)_{f_{1}(1285)}$ system

Real (solid line) and imaginary (dashed line) parts of the G_{0} function.

The G_{0} as a function of the invariant mass of the $\bar{K}\left(\eta K^{*}\right)_{\mathrm{K}_{1}(1270)}$ system

Real (solid line) and imaginary (dashed line) parts of the G_{0} function.

Xu Zhang, Ju-Jun Xie, arXiv: 1906.07340

Numerical results

$\eta\left(\overline{\mathrm{K}} \mathrm{K}^{*}\right)_{\mathrm{f}_{1}(1285)}$ scattering amplitude

We find evidence of a bound state $I^{G}\left(J^{\mathrm{PC}}\right)=0^{+}\left(1^{+}\right)$below the $\eta\left(\overline{\mathrm{K}} K^{*}\right)_{\mathrm{f}_{1} 12855}$ threshold with mass around 1700 MeV and width about 180 MeV

Xu Zhang, Ju-Jun Xie, arXiv: 1906.07340

Numerical results

$\overline{\mathrm{K}}\left(\eta \mathrm{K}^{*}\right)_{\mathrm{K}_{1}(1270)}$ scattering amplitude

We obtain a bound state $I\left(J^{P}\right)=0\left(1^{-}\right)$below the $\bar{K}\left(\eta K^{*}\right)_{\mathrm{K}_{1}(1270)}$ threshold with mass around 1680 MeV and width about 160 MeV

Xu Zhang, Ju-Jun Xie, arXiv: 1906.07340

Summary

We study the three body systems of $\pi \overline{\mathrm{K}} \mathrm{K}^{*}$ by using the fixed center approximation to the Faddeev equations.
There is a resonantstructure around 1650 MeV in the module squared, with quantum numbers $I^{G}\left(J^{P C}\right)=1^{-}\left(1^{-+}\right)$. We associated this resonance to the exotic state $\pi_{1}(1600)$ with mass 1660 MeV and large uncertainties for the width.

We also study the three body systems of $\eta \bar{K} K^{*}$. We find evidence of a bound state $I^{G}\left(J^{\mathrm{PC}}\right)$ $=0^{+}\left(1^{+}\right)$below the $\eta\left(\overline{\mathrm{K}} K^{*}\right)_{\mathrm{f}_{1}(1285)}$ threshold with mass around 1700 MeV and width about 180 MeV .
And also we obtain a bound state $I\left(J^{\mathrm{P}}\right)=0\left(1^{-}\right)$below the $\overline{\mathrm{K}}\left(\eta \mathrm{K}^{*}\right)_{\mathrm{K}_{1}(1270)}$ threshold with mass around 1680 MeV and width about 160 MeV .

Thank you very much!

