On decays of $X(3872)$ to $\chi_{c J} \pi^{0}$ and $J / \psi \pi^{+} \pi^{-}$

Zhi-Yong Zhou

Southeast University
October 20th, 2018
arXiv:1904.07509, with Zhiguang Xiao and Meng-ting Yu

Outline

(1) Motivation
(2) Gamow state and mathematical backgroud
(3) the Friedrichs model
(4) The Extended Friedrichs Scheme
(5) $X(3872) \rightarrow \chi_{c J} \pi^{0}, J / \psi \pi^{+} \pi^{-}, J / \psi \pi^{+} \pi^{-} \pi^{0}$

Motivation

Uniqueness of $X(3872)$, right on the $D^{0} \bar{D}^{0 *}$ threshold $M_{X(3872)}=3871.69 \pm 0.17 \mathrm{MeV}, \Gamma_{X(3872)}<1.2 \mathrm{MeV}$ Understandings:

- Molecular state
- Tetraquark state
- Mixing state of charmonium and continua
-
see Reviews:
H.-X. Chen, W. Chen, X. Liu, and S.-L. Zhu, Phys. Rept. 639, 1 (2016)
F.-K. Guo, C. Hanhart, U.-G. Meiner, Q. Wang, Q. Zhao, and B.-S. Zou, Rev. Mod.

Phys. 90, 015004 (2018)

Experiment efforts

BES $\quad e^{+} e^{-} \rightarrow \gamma X(3872)$ with $X(3872) \rightarrow \chi_{c J} \pi^{0}, \mathrm{~J}=0,1,2$
M. Ablikim et al., Phys.Rev.Lett. 122 (2019) no.20, 202001

Figure: Distributions of $\pi^{0} \chi_{c J}$ mass, $M_{\pi^{0} \chi_{c J}}$, from the process $e^{+} e^{-} \rightarrow \gamma \pi^{0} \chi_{c J}$ for (a) $\mathrm{J}=0$, (b) $\mathrm{J}=1$, and (c) $\mathrm{J}=2$. The dashed line is the total background in the fit and includes contributions from events with interchanged γ_{1} and γ_{2} and cross-feed among the search channels.

$$
\begin{equation*}
\frac{\mathcal{B}\left(X(3872) \rightarrow \chi_{c 1} \pi^{0}\right)}{\mathcal{B}\left(X(3872) \rightarrow J / \psi \pi^{+} \pi^{-}\right)}=0.88_{-0.27}^{+0.33} \pm 0.10 \tag{1}
\end{equation*}
$$

Experiment efforts

Belle $\quad B^{+} \rightarrow \chi_{c 1} \pi^{0} K^{+}$V. Bhardwaj et al. Phys. Rev. D 99,(2019) 111101

FIG. 2: 1D UML fit to the $M_{\chi_{c 1} \pi^{0}}$ distribution in the -30 $\mathrm{MeV}<\Delta E<20 \mathrm{MeV}$ signal region for the $B^{+} \rightarrow\left(\chi_{c 1} \pi^{0}\right) K^{+}$ decay mode. The curves show the $B^{+} \rightarrow X(3872)(\rightarrow$ $\left.\chi_{\mathrm{c} 1} \pi^{0}\right) K^{+}$signal (magenta dashed), $B^{+} \rightarrow X(3915)(\rightarrow$ $\left.\chi_{c 1} \pi^{0}\right) K^{+}$signal (red double dotted-dashed), and the background component (green dotted for combinatorial) as well as the overall fit (blue solid). Points with error bar represent the data.

No significant signal of $X(3872) \rightarrow \chi_{c 1} \pi^{0}$.

$$
\begin{equation*}
\frac{\mathcal{B}\left(X(3872) \rightarrow \chi_{c 1} \pi^{0}\right)}{\mathcal{B}\left(X(3872) \rightarrow J / \psi \pi^{+} \pi^{-}\right)}<0.97 \tag{2}
\end{equation*}
$$

at 90% confidence level.

Motivation

S. Dubynskiy and M. B. Voloshin, Phys. Rev., D77, 014013 (2008)
$\Gamma_{\chi_{c 0} \pi}: \Gamma_{\chi_{c 1} \pi}: \Gamma_{\chi_{c 2} \pi}=0: 2.7: 1$ when assuming the $X(3872)$ as a traditional charmonium state
$\Gamma_{\chi c 0 \pi}: \Gamma_{\chi_{c 1} \pi}: \Gamma_{\chi_{c 2} \pi}=2.88: 0.97: 1$ as a four-quark state.
Other calculations through EFT method
S. Fleming and T. Mehen, Phys. Rev., D78, 094019 (2008)
S. Fleming and T. Mehen, Phys. Rev., D85, 014016 (2012)
T. Mehen, Phys. Rev., D92, 034019 (2015)

Theoretical calculation of the ratios of $\chi_{c J} \pi^{0}, J / \psi \pi^{+} \pi^{-}, J / \psi \pi^{+} \pi^{-} \pi^{0}$ is absent.
Hadron level calculation is not found in the literature.

How to describe $X(3872)$

Uniqueness of $X(3872)$, right on the $D^{0} \bar{D}^{0 *}$ threshold
$M_{X(3872)}=3871.69 \pm 0.17 \mathrm{MeV}, \Gamma_{X(3872)}<1.2 \mathrm{MeV}$

We use the extended Friedrichs scheme.

Gamow state and mathematical background

Gamow state, a state with a complex eigenvalue, introduced by Gamow to describe nuclear α decay.G.Gamow, Z.Phys. 51 (1928) 204-212
In conventional QM, due to Hermitian of the Hamiltonian, its eigenvalue is real.
Rigged Hilbert Space (RHS) scheme, developed by Bohm and Gadella, provides a solid mathematical foundation for the unstable state.
A.Bohm, M.Gadella, Dirac kets, Gamow vectors, and Gelfund Triplets, Springer Lectures Notes in Physics Vol.348, Springer, Berlin
One of the properties of Gamow states:

$$
\begin{array}{r}
H\left|z_{R}\right\rangle=z_{R}\left|z_{R}\right\rangle \tag{3}\\
\left\langle z_{R}\right| H=z_{R}^{*}\left\langle z_{R}\right| \\
\left\langle z_{R} \mid z_{R}\right\rangle=0
\end{array}
$$

$\left|z_{R}\right\rangle$ is not a state in Hilbert space but in RHS.

The Friedrichs Model

[Friedrichs, Commun. Pure Appl. Math.,1(1948),361]
A free Hamiltonian H_{0} with a simple continuous spectrum, $\mathbb{R}^{+} \equiv[0, \infty)$, plus a discrete eigenvalue $\omega_{0}\left(\omega_{0}>0\right)$. An interaction V between the continuous and discrete parts is produced so that the discrete state of H_{0} is dissolved in the continuous spectrum and a resonance is produced.

$$
\begin{equation*}
H_{0}|1\rangle=\omega_{0}|1\rangle, H_{0}|\omega\rangle=\omega|\omega\rangle . \tag{4}
\end{equation*}
$$

The free Hamiltonian is then

$$
\begin{equation*}
H_{0}=\omega_{0}|1\rangle\langle 1|+\int_{0}^{\infty} \omega|\omega\rangle\langle\omega| \mathrm{d} \omega \tag{5}
\end{equation*}
$$

and the interaction V is written as

$$
\begin{equation*}
V=\lambda \int_{0}^{\infty}\left[f(\omega)|\omega\rangle\langle 1|+f(\omega)^{*}|1\rangle\langle\omega|\right] \mathrm{d} \omega . \tag{6}
\end{equation*}
$$

The eigenvalue problem of $H=H_{0}+V$ is exactly solvable.

The Friedrichs Model

[Friedrichs, Commun. Pure Appl. Math.,1(1948),361] solve the eigenstate $|\Psi(x)\rangle$ of $H=H_{0}+V$ with eigenvalue x,

$$
\begin{equation*}
H \Psi(x)=x|\Psi(x)\rangle \tag{7}
\end{equation*}
$$

Since $|1\rangle$ and $|\omega\rangle$ form a complete set, the eigenstate $|\Psi(x)\rangle$ can be expressed in terms of $|1\rangle$ and $|\omega\rangle$,

$$
\begin{equation*}
|\Psi(x)\rangle=\alpha(x)|1\rangle+\int_{0}^{\infty} \psi(x, \omega)|\omega\rangle \mathrm{d} \omega \tag{8}
\end{equation*}
$$

Note that here $|\Psi\rangle$ is a vector in Φ^{\times}, and it only make senses as an anti-linear functional on vector $|\phi\rangle \in \Phi,\langle\phi \mid \Psi\rangle$. So, $\psi(x, \omega)$ should be treated as a distribution. Substituting (8) into Eq.(7), one can obtain the following relations:

$$
\begin{align*}
\left(\omega_{0}-x\right) \alpha(x)+\lambda \int_{0}^{\infty} f(\omega) \psi(x, \omega) \mathrm{d} \omega & =0 \\
(\omega-x) \psi(x, \omega)+\lambda f(\omega) \alpha(x) & =0 \tag{9}
\end{align*}
$$

The Friedrichs Model

[Friedrichs, Commun. Pure Appl. Math.,1(1948),361]
Then, for real $x>0$, we have

$$
\begin{gather*}
\psi_{ \pm}(x, \omega)=-\frac{\lambda \alpha(x) f(\omega)}{\omega-x \pm i \epsilon}+\gamma(\omega) \delta(\omega-x) \\
\left(\omega_{0}-x\right) \alpha_{ \pm}(x)+\lambda f(x) \gamma(x)-\alpha_{ \pm}(x) \lambda^{2} \int_{0}^{\infty} \frac{|f(\omega)|^{2}}{\omega-x \pm i \epsilon} \mathrm{~d} \omega=0 \tag{10}
\end{gather*}
$$

one can define

$$
\begin{equation*}
\eta^{ \pm}(x)=x-\omega_{0}-\lambda^{2} \int_{0}^{\infty} \frac{|f(\omega)|^{2}}{x-\omega \pm i \epsilon} \mathrm{~d} \omega \tag{11}
\end{equation*}
$$

and analytically continue $\eta^{ \pm}$to the complex plane $\eta(x)$, and η^{+}and η^{-} are the boundary functions of $\eta(x)$ on the upper rim and lower rim of the cut on the positive axis, respectively.

Resonance state

If $\eta(x)=0$ has a pair of complex conjugate solutions $z_{R} \in \mathbb{C}_{-}$and $z_{R}^{*} \in \mathbb{C}_{+}$on the second sheet, the right eigenstates for eigenvalue z_{R} and z_{R}^{*} can be expressed as

$$
\begin{align*}
& \left|z_{R}\right\rangle=N_{R}\left(|1\rangle+\lambda \int_{0}^{\infty} \mathrm{d} \omega \frac{f(\omega)}{\left[z_{R}-\omega\right]_{+}}|\omega\rangle\right), \\
& \left|z_{R}^{*}\right\rangle=N_{R}^{*}\left(|1\rangle+\lambda \int_{0}^{\infty} \mathrm{d} \omega \frac{f(\omega)}{\left[z_{R}^{*}-\omega\right]_{-}}|\omega\rangle\right), \tag{12}
\end{align*}
$$

which are the Gamow states satisfying $H\left|z_{R}\right\rangle=z_{R}\left|z_{R}\right\rangle$ and $H\left|z_{R}^{*}\right\rangle=z_{R}^{*}\left|z_{R}^{*}\right\rangle$.

Bound state

If $\eta(x)=0$ have a solution on the negative real axis on physical Riemann sheet, it represents a bound state. The bound state with eigenvalue z_{B} can then be represented as

$$
\begin{equation*}
\left|z_{B}\right\rangle=N_{B}\left(|1\rangle+\lambda \int_{0}^{\infty} \frac{f(\omega)}{z_{B}-\omega}|\omega\rangle \mathrm{d} \omega\right) \tag{13}
\end{equation*}
$$

where $N_{B}=\left(\eta^{\prime}\left(z_{B}\right)\right)^{-1 / 2}=\left(1+\lambda^{2} \int d \omega \frac{|f(\omega)|^{2}}{\left(z_{B}-\omega\right)^{2}}\right)^{-1 / 2}$.

Virtual state

If $\eta(x)=0$ has a solution on the negative real axis of the second Riemann sheet, it corresponds to a virtual state.
For the simple virtual poles, similar to resonant states, there are two kinds of states, $\left|z_{v}^{+}\right\rangle$by analytical continuation from the upper rim and $\left|z_{v}^{-}\right\rangle$ lower rim of the cut to the second sheet

$$
\begin{equation*}
\left|z_{v}^{ \pm}\right\rangle=N_{v}^{ \pm}\left(|1\rangle+\lambda \int_{0}^{\infty} \frac{f(\omega)}{\left[z_{v}-\omega\right]_{ \pm}}|\omega\rangle \mathrm{d} \omega\right), \quad\left\langle\tilde{z}_{v}^{ \pm}\right|=\left\langle z_{v}^{\mp}\right|, \tag{14}
\end{equation*}
$$

where $N_{v}^{-}=N_{v}^{+*}=\left(\eta^{\prime+}\left(z_{v}\right)\right)^{-1 / 2}=\left(1+\lambda^{2} \int d \omega \frac{|f(\omega)|^{2}}{\left[\left(z_{v}-\omega\right)+\right]^{2}}\right)^{-1 / 2}$.

The Extended Friedrichs Scheme

Z. Xiao and ZYZ, J. Math. Phys. 58, 072102 (2017)
Z. Xiao and ZYZ, J. Math. Phys. 58, 062110 (2017)

For a specific total angular momentum, the interaction between a discrete state $|0\rangle$ having a bare energy eigenvalue m_{0}, and some continuum two-particle states $|E ; n, S L\rangle$, where E is the bare energy eigenvalue in the center of mass system (c.m.s) and n, S, L denote the species, total spin and total orbital angular momentum, respectively, can be expressed in the form of extended Friedrichs scheme

$$
\begin{align*}
H & =m_{0}|0\rangle\langle 0|+\sum_{n, S, L} \int_{E_{t h, n}}^{\infty} \mathrm{d} E E|E ; n, S L\rangle\langle E ; n, S L| \\
& +\sum_{n, S, L} \int_{E_{t h, n}}^{\infty} \mathrm{d} E f_{S L}^{n}(E)|0\rangle\langle E ; n, S L|+\text { h.c. } \tag{15}
\end{align*}
$$

The coupling form factor between $|A\rangle$ and $|B C\rangle$ in the extended Friedrichs scheme by $f_{S L}(E)$ could be calculated by theoretical models as the QPC model.

The Extended Friedrichs Scheme

Scattering amplitudes could be expressed as

$$
\begin{equation*}
S_{f i}\left(E, E^{\prime}\right)=\delta\left(E-E^{\prime}\right)\left(\delta_{f i}-2 \pi i \frac{f_{i}(E) f_{f}^{*}(E)}{\eta^{+}(E)}\right) \tag{16}
\end{equation*}
$$

where the resolvent $\eta^{ \pm}(x)$ is defined as

$$
\begin{equation*}
\eta^{ \pm}(x)=x-m_{0}-\sum_{n, S, L} \int_{E_{n, t h}}^{\infty} \frac{\left|f_{S L}^{n}(E)\right|^{2}}{x-E \pm i 0} \mathrm{~d} E \tag{17}
\end{equation*}
$$

The bound states, virtual states, or resonance state correspond to the zero points of $\eta(z)$ on the different Riemann sheets.

$X(3872)$

ZYZ and Z. Xiao, Phys. Rev. D96, 054031 (2017)

Table: Comparison of the experimental masses and the total widths (in MeV).

$n^{2 s+1} L_{J}$	$M_{\text {expt }}$	$\Gamma_{\text {expt }}$	$M_{B W}$	$\Gamma_{B W}$	pole	GI
$2^{3} P_{2}$	3927.2 ± 2.6	24 ± 6	3920	10	$3920-4 \mathrm{i}$	3979
$2^{3} P_{1}$	3942 ± 9	37_{-17}^{+27}			$3934-40 \mathrm{i}$	3953
	3871.69 ± 0.17	<1.2	3871	0	$3871-0 \mathrm{i}$	
$2^{3} P_{0}$	3862_{-45}^{+66}	201_{-149}^{+242}	3878	11	$3878-5 \mathrm{i}$	3917
$2^{1} P_{1}$			3895	37	$3902-27 \mathrm{i}$	3956

For X (3872), the "elementariness" and "compositeness"
$Z_{c \bar{c}}: X_{\bar{D}^{0} D^{0 *}}: X_{D^{+} D^{-*}}: X_{\bar{D}^{*} D^{*}}=1:(3.1 \sim 9.3):(0.45 \sim 0.46): 0.04$

Only one free parameter $\gamma=4.0$, so does the following calculation.

$X(3872)$ wave function

Wave function of the $X(3872)$ is expressed explicitly as

$$
\begin{align*}
|X(3872)\rangle & =N_{B}\left(|c \bar{c}\rangle+\int_{M_{00 v}}^{\infty} \mathrm{d} E \sum_{S, L} \frac{f_{S L}^{00 V}(E)}{z_{X}-E}\left(\left|E ; D^{0} \bar{D}^{0 *}, S L\right\rangle+\left|E ; D^{0 *} \bar{D}^{0}, S L\right\rangle\right)\right. \\
& +\int_{M_{+-v}}^{\infty} \mathrm{d} E \sum_{S, L} \frac{f_{S L}^{+-V}(E)}{z_{X}-E}\left(\left|E ; D^{+} D^{-*}, S L\right\rangle+\left|E ; D^{+*} D^{-}, S L\right\rangle\right) \\
& +\int_{M_{0 v o v}}^{\infty} \mathrm{d} E \sum_{S, L} \frac{f_{S L}^{0 V 0}(E)}{z_{X}-E}\left|E ; D^{0 *} \bar{D}^{0 *}, S L\right\rangle \\
& \left.+\int_{M_{+V-v}}^{\infty} \mathrm{d} E \sum_{S, L} \frac{f_{S L}^{+V-v}(E)}{z_{X}-E}\left|E ; D^{+*} D^{-*}, S L\right\rangle\right) \tag{18}
\end{align*}
$$

where $N_{B}=\eta^{\prime}\left(z_{X}\right)^{-1 / 2}$ is the normalization factor and z_{X} the mass of $X(3872)$.

$X(3872) \rightarrow \chi_{c J} \pi^{0}, J / \psi \pi^{+} \pi^{-}, J / \psi \pi^{+} \pi^{-} \pi^{0}$

$d \Gamma(\alpha \rightarrow \beta)=2 \pi\left|M_{\beta \alpha}\right|^{2} \delta^{4}\left(p_{\beta_{1}}+p_{\beta_{2}}-p_{\alpha}\right) d^{3} \vec{p}_{\beta_{1}} d^{3} \vec{p}_{\beta_{2}}$ where $M_{\beta \alpha}$ is the transition amplitude.

$$
\begin{align*}
& \Gamma(\alpha \rightarrow \beta)=\sum_{l^{\prime} s^{\prime}} 2 \pi\left|M_{l^{\prime} s^{\prime}}\right|^{2} \mu^{\prime} k^{\prime}=\sum_{l^{\prime} s^{\prime}} 2 \pi\left|F_{l^{\prime} s^{\prime}}\right|^{2} \tag{19}\\
& F_{l^{\prime} s^{\prime}}=l_{l^{\prime} s^{\prime}}\left\langle\chi_{c s} \pi^{0}\right| H_{l}|X(3872)\rangle=N_{B}\left(\chi_{c l^{\prime} \pi^{\prime} s^{\prime}}^{0}\left\langle E^{\prime}\right| H_{l}|c \bar{c}\rangle\right. \\
& +\int_{M_{00}}^{\infty} \mathrm{d} E \sum_{l, s} \frac{f_{l s}^{00}(E)}{z_{X}-E}\left(\chi_{c l^{\prime} s^{\prime}}^{0}\left\langle E^{\prime}\right| H_{l}|E\rangle_{I s}^{D^{0} \bar{D}^{0 *}}+\text { C.C. }\right) \\
& +\int_{M_{+-}}^{\infty} \mathrm{d} E \sum_{l, s} \frac{f_{l s}^{+-}(E)}{z_{X}-E}\left(\begin{array}{c}
\chi_{c l^{\prime} I^{\prime} s^{\prime}}^{0}
\end{array}\left\langle E^{\prime}\right| H_{l}|E\rangle_{I s}^{D^{+} D^{-*}}+\text { C.C. }\right) \\
& +\cdots) \tag{20}
\end{align*}
$$

$X(3872) \rightarrow \chi_{c} \pi^{0}, J / \psi \pi^{+} \pi^{-}, J / \psi \pi^{+} \pi^{-} \pi^{0}$

The Barnes-Swanson model
T. Barnes and E. S. Swanson, Phys. Rev. D 46, 131 (1992)
T. Barnes, N. Black, D. J. Dean, and E. S. Swanson, Phys. Rev. C60, 045202 (1999)
T. Barnes, N. Black, and E. S. Swanson, Phys. Rev. C63, 025204 (2001)

The interaction Hamiltonian of the Barnes-Swanson model in the momentum space is

$X(3872) \rightarrow \chi_{c J} \pi^{0}, J / \psi \pi^{+} \pi^{-}, J / \psi \pi^{+} \pi^{-} \pi^{0}$

The Barnes-Swanson Model
Four kinds of diagrams are considered, among which the quark-antiquark interactions are denoted as Capture $_{1}$, Capture 2 , and the quark-quark(antiquark-antiquark) interactions are denoted as Transfer $_{1}$, and Transfer 2 .

FIG. 2. The four quark rearrangement diagrams of $A B \rightarrow C D$ meson-meson scatterings. The arrows represent the quark line directions.

To reduce the so-called "prior-poster" ambiguity, the four "poster" diagrams are considered similarly and averaged to obtain the final result.

$X(3872) \rightarrow \chi_{c J} \pi^{0}, J / \psi \pi^{+} \pi^{-}, J / \psi \pi^{+} \pi^{-} \pi^{0}$

$$
\begin{aligned}
& +\int_{M_{00}}^{\infty} \mathrm{d} E \sum_{l, s} \frac{f_{l s}^{00}(E)}{z_{X}-E}\left(\chi_{l^{\prime} I^{\prime} s^{\prime}}^{\pi^{0}}\left\langle E^{\prime}\right| H_{l}|E\rangle_{I s}^{D^{0} \bar{D}^{0 *}}+\text { C.C. }\right)
\end{aligned}
$$

Figure: Comparison of the integrands $\frac{f_{l s} \mathcal{M}_{l^{\prime} s^{\prime}, l s}}{\left(z_{X}-E\right)}$ for $D^{0} \bar{D}^{0 *} \rightarrow \chi_{c 1} \pi^{0}$ (solid) and $D^{+} \bar{D}^{-*} \rightarrow \chi_{c 1} \pi^{0}$ (dashed).

$X(3872) \rightarrow J / \psi \rho, \omega$

With the Barnes-Swanson model, one could obtain

$$
\begin{gathered}
D \bar{D}^{*} \rightarrow \chi_{c 0} \pi^{0}, \chi_{c 1} \pi^{0}, \chi_{c 2} \pi^{0}, J / \psi \rho, J / \psi \omega(\rho \rightarrow \pi \pi \text { and } \omega \rightarrow \pi \pi \pi) \\
\Gamma_{J / \psi \pi \pi}=\int_{2 m_{\pi}}^{m_{X}-m_{J / \psi}} \sum_{l, s} \frac{\left|F_{l, s}(X \rightarrow J / \psi \rho)\right|^{2} \Gamma_{\rho}}{\left(E-m_{\rho}\right)^{2}+\Gamma_{\rho}^{2} / 4} \mathrm{~d} E, \\
\Gamma_{J / \psi \pi \pi \pi}=\int_{3 m_{\pi}}^{m_{X}-m_{J / \psi}} \sum_{l, s} \frac{\left|F_{l, s}(X \rightarrow J / \psi \omega)\right|^{2} \Gamma_{\omega}}{\left(E-m_{\omega}\right)^{2}+\Gamma_{\omega}^{2} / 4} \mathrm{~d} E,
\end{gathered}
$$

the branch fraction will be

$$
\begin{equation*}
\Gamma_{\chi_{c 0} \pi}: \Gamma_{\chi_{c 1} \pi}: \Gamma_{\chi_{c 2} \pi}: \Gamma_{J / \psi 2 \pi}: \Gamma_{J / \psi 3 \pi}=1.5: 1.3: 1.0: 16: 26 . \tag{22}
\end{equation*}
$$

This numerical results of $\Gamma_{J / \psi 2 \pi}: \Gamma_{J / \psi 3 \pi}$ are consistent with the measured ratio $1.0 \pm 0.4 \pm 0.3$ by Belle, 0.8 ± 0.3 by $B A B A R$, and $1.6_{-0.3}^{+0.4} \pm 0.2$ by BESIII. hep-ex/0505037, PRD82,011101,PRL122, 232002

Comparisons with experiments

FIG. 2: 1D UML fit to the $M_{\chi_{c 1 \pi^{0}}}$ distribution in the -30 $\mathrm{MeV}<\Delta E<20 \mathrm{MeV}$ signal region for the $B^{+} \rightarrow\left(\chi_{\text {cl }} \pi^{0}\right) K^{+}$ decay mode. The curves show the $B^{+} \rightarrow X(3872)(\rightarrow$ $\left.\chi_{c 1} \pi^{0}\right) K^{+}$signal (magenta dashed), $B^{+} \rightarrow X(3915)(\rightarrow$ $\left.\chi_{c 1} \pi^{0}\right) K^{+}$signal (red double dotted-dashed), and the background component (green dotted for combinatorial) as well as the overall fit (blue solid). Points with error bar represent the data.

BES

$$
\begin{equation*}
\frac{\mathcal{B}\left(X(3872) \rightarrow \chi_{c 1} \pi^{0}\right)}{\mathcal{B}\left(X(3872) \rightarrow J / \psi \pi^{+} \pi^{-}\right)}=0.88_{-0.27}^{+0.33} \pm 0.10 \tag{23}
\end{equation*}
$$

Belle
No significant signal of $X(3872) \rightarrow \chi_{c 1} \pi^{0}$.
Still an open question.

Summary

- The Extended Friedrichs Scheme might shed more light on hadron physics.
- With only one free parameter, the properties of $X(3872)$ could be understood.
- The isospin breaking effect of $X(3872)$ is understood easily.
- A rough prediction of $X(3872)$ decaying to P -wave $\chi_{c J} \pi^{0}, J=0,1,2$, is about one order smaller than its decay to S-wave $J / \psi \pi \pi$.

Thanks for your patience!

Extra slides

Extra slides

