A Bridge Between Euclidean Space and
Minkowski Space Physics
—Combine the DSE approach with MIT bag model

Langtian Liu

Based on Phys. Rev. D 99, 074013 and the work in preparation.

Together with Lei Chang, Yuxin Liu.

June 24, 2019

1/33


https://journals.aps.org/prd/abstract/10.1103/PhysRevD.99.074013

Table of contents

1. Aims

2. Introduction of DSE approach

3. Beyond Rainbow Ladder Approximation

4. Distribution function in bag model

5. Combine MIT bag model with DSE approach

6. Summary and outlook

2/33



Table of Contents

Aims

3/33



Aims
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with DSE approach so that we can explore the dress effects
of the distribution functions in hadrons partly.
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Aims

Here we give a method that combine the MIT bag model
with DSE approach so that we can explore the dress effects
of the distribution functions in hadrons partly.

In principle, the distribution functions are defined in the
Minkowski space, while the dress effects are usually studied
in Euclidean space (e.g., LQCD, DSE, FEG). We can not
combine them in general case.

There is one way that can solve this gap partly, that is the
quasi parton distribution functions. They can exact the
quasi parton distribution functions from the LQCD
calculations. But the procedure is quite complicated.

Here we give out a much simpler way to study the dress
effect (under the rainbow ladder approximation and
beyond rainbow ladder approximation) of parton
distribution functions partly.
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Dyson-Schwinger Equation
Dyson-Schwinger Equations describe the relations of different
green functions in the QFT. They are infinitely coupled
equations.

6/33



Dyson-Schwinger Equation
Dyson-Schwinger Equations describe the relations of different
green functions in the QFT. They are infinitely coupled
equations.
e.g., in scalar field theory:

7] = / (4] exp{ / FaL() + I} (1)

6/33



Dyson-Schwinger Equation
Dyson-Schwinger Equations describe the relations of different
green functions in the QFT. They are infinitely coupled
equations.
e.g., in scalar field theory:

7] = / (4] exp{ / FaL() + I} (1)
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Dyson-Schwinger Equation
Dyson-Schwinger Equations describe the relations of different
green functions in the QFT. They are infinitely coupled
equations.
e.g., in scalar field theory:

ﬂﬂ=/m%wﬁ/ﬁMWHJwﬂm} (1)

field placement ¢(z) — ¢(z) + €(z), from §Z[.J] = 0 we can get
the equation of motion for the scalar field with external field

1
< (5 2 =J 2
77 < O i0(@) > 1= Ja) 2)
Do the successive derivative with respect to the external field
J(x), we can get the general expression

0
<o | 442 00| o ot > ®)
= < T{o(m) - (~id" (@~ 2)) - d(za)} >
=1
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Dyson-Schwinger Equation

The schematic representation of DSEs in QCD:

-1 -1
—)—’— = —_— +
—1 —1
@™ = Ovooo o + )

7/33



Bethe-Salpeter Equation

In the special case of two body systems, they are describe by

the Bethe-Salpeter equations.
+
= + WC{: K
_‘_
>
= K
———

By solving these equations, we can get the wave function of two
body bound states, such as mesons, diquarks etc. and give out
the predictions for their properties.
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DSE Approach

Since DSEs are infinitely coupled, to make them functional in

real calculations, we need to make a truncation.
T~

7

— K ")

A

S (p) = %S, (p) + Zg’ /d Dos(K)t*vaS(q)t°T3(q, p)  (4)
A
[F(k;O)]EFZZv[Fo(k;O)]EFJr/d [K(k, ¢;0)]5E [x(4:0)]u ()
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Rainbow ladder approximation

The most successful truncation is the rainbow ladder

approximation.
I (p+ k& p) =" (6)
For the consistency between DSE and BSE  (prysrevn 524756 Muncaek
1995]
6% (p)
K(p, ¢0)=——~ 7
(r50) = 55 7)

>
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The gluon propagator

Usually, one would model the gluon propagator as
kak
7 Dap(k) = G(K)(dap — =527

871'2 3 —k/w?
gzr(kz) = Fmge (9)
872y 1 — e /4m3

guv(kQ) =

I[r+ (I + /A ] R

A quenched gluon propagator!

The rainbow-ladder approximation had showed successes in
light quark ground state mesons.

Then what about beyond rainbow ladder approximation?
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Truncation Beyond Rainbow Ladder

We use the longitudinal part of Munczek vertex: (physrevD 524730

Munczek 1995]

o 1
iLy(p+kp) = 329"/0 daS™(p+ ak) (11)

It satisfies the Ward-Takahashi identity:

ik, Lo(p+kp) =5 (p+k -5 '(p) (12)
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Truncation Beyond Rainbow Ladder

We use the longitudinal part of Munczek vertex: (physrevD 524730
Munczek 1995]
o 1
T+ k) = 5 / oS (p+ ak) (11)
0

It satisfies the Ward-Takahashi identity:

ik, Dy(p+kp) =9 (p+ k) — S (p) (12)

> drawback: we can’t represent it with Feynman diagram.

> advantage: It’s an analytical expression. then we may
derive the scattering kernel analytically.

13/33


https://journals.aps.org/prd/abstract/10.1103/PhysRevD.52.4736
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.52.4736

Scattering Kernel

The scattering kernel for the Munczek quark gluon vertex can
be calculated out as

L e T

® = _ZQQZD;J,V<q - k)ta [’YM]EG ¢ [FV(Q7 k)]HF (14)
A
@ = Zyg° /dl Dyuv (L= k)t (] g [SD] prn t°
0
X ;
x 0W (k+a(l—k) — q) [5_1 (k+ a(l— k)]

1
do [STH (k+ a(l— k)] v (15)

HF °
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BSE with Munczek’s Vertex

The BSE with Munczek’s vertex takes as
[L'(k; 0)] g = Zu[Lo(k; 0)] EF
~ % /d Dy (0 = B [ s (5 0)] o £ [0 (0, 1) e

A
 Zog? /d Dy (0= W12 [Py g [S(0)] [ (5. 0)]
(16)

—
INZ4 7 T INZd
= + + oo
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Results of Munczek vertex
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Quark field in the bag

The wave function of a fermion in the bag is the solution of free
massless Dirac equation:

(fB t) _ N jo (Wnén"’) Um —’iw%ﬁt (17)
Om L, 1) = io - i]l (wr;;r) U, € )

w = (,LJ17_1 =2.04.
Second quantization, a quark field in the bag center at a:

Wz t)= ) ag(@)om(@—a,t)+ - (18)
m=",{

The annihilation and creation operator satisfy

{0@.dv)} b5 [ Exe-bote-a). (19
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Proton field in the bag

In the constituent quark model, a spin-up proton

1
P = 5 Guurd, — v dy — wudy

20
T2updyuy — updruy, — updrug (20)
+2dyupupy — dyupuy — dyuyug)
So the proton field in the bag
[P, 7= a)
= —— (24, (a)l, (a)al, (a)
VI8 \T e (21)

|0, 7= a) is the empty bag center at 7= a
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Peierls-Yoccoz (PY) projection method

The static hadron bag state Hp(x) can be decomposed in terms

of the plane wave in the momentum space

e = [ 4 sere [ 2] ).

Whr(p)

) = [ [ o).

the normalization relation:

(H(p)|H(p')) = (27)*6®) (p — p') Wa(p) .

we can get

|6(p)I* :/dgre_"'p(HB(O)IHB(T» = |gs(p)[*

where

ou)? = [ Pac e [ [ #oet - ap(a)

n
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Quark distribution in the bag

The definition of quark distribution function in a bag:

) = QM/ dg—e"‘ﬁg X
4m

4 (27)
(N:p = 0[i()y YO N; p = 0) |5 ¢ g
Define B
M = (N; p = 0[0i(£)y 4i(0)|N; p = 0) . (28)
The result is
Bk oc0m
_ N-0|Ps. |N: i(we” /R—k1-§)
M= T 0%01Pinl:0) [ e o

|62 (k)|

Pk )y (k) = G(0)Z
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Quark distribution in the bag

M e [ Pk
() — . : = pilat+k] )€ E
e (mezv,mpﬁmyzv, 0>> o [ etrsis [ 2R

Pa(|kr)[?
|¢3(0)[2

* kdk
; N; 0| Py .| N; 0) )/k )2

|f2(R)[?
|63(0)[*

@(k1)v (ki)

@(k)y " o(k)

where ki = |w/R — M.
The time component has been integrated out.
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Quark distribution in the bag

Calculate the inner product directly,

(k) (k) =
i 3w4 ~
e 8o+ )+ 2o ] .
we finally get
47 MR3w*
W) = ) (Z Norme|N0>
m (32)

) 2
/kmm (57651)€2 [%O(k) + (k) + 2kztoo(k)t11(k)} |¢§(k)| .
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Quark distribution in the bag

2.5 "
B | (0.113GeV)!
20
s R 1.46 fm
10 M 1.10 GeV
! w 2.04
0.0 b : 44——’// ]
-1.0 -05 0.0 0.5 1.0
1
/ 0z g(z) = 0.99994 (33)
—1
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Take the transversity distribution function as a example.
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Transversity distribution function in the bag

Take the transversity distribution function as a example.
Definition

h(z) = 2M / ‘%eifﬁf X

(N: p = 0; Sl €) i A50:(0) [ N: p = 0: 9|2, -

(34)
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Transversity distribution function in the bag

Take the transversity distribution function as a example.
Definition

h(z) = QM/ & e
41

(34)
(N;p=0; S|@Z_Ji(f)i01+75¢i(0)|N3 p = 0; S>|,5+’5L:0 .
d(k)io s (k)
T R3w N 35
N \/5(42jism w) [tgo )+ K2t (R) + 2hetoo (k)t“(k)} ’ .
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Transversity distribution function in the bag

Take the transversity distribution function as a example.
Definition

h(z) = QM/ & e
41

_ (34)
(N;p=0; S|¢i(£)i01+75¢i(0)|N3 p=0; S>|5+’5L:0 :
d(k)io' T y5 (k)
47 R3w? 5 (35)
- \/i(uﬂ sin? w) [tgo + kgt%l (k) + to (k)tn(k)} ’
The result is
hz) = M ((N; 0; S| Prn| N; 0; 5))
(w? — sin® w) (36)
 fdk . ; |¢2(k)[?
L oy [Boh) + B (8) + 2htnthyn (0] 22 00
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Dress effects on the transversity distribution

What if we consider the dress effects on the transversity
distribution function.
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Dress effects on the transversity distribution

What if we consider the dress effects on the transversity
distribution function.

> We can not get the dressed quark propagator analytically.
> We can get the dressed quark tensor vertex.

So here we explore the dress effects on the transversity
distribution partially by the dressed quark tensor vertex.

But usually we calculate the dressed vertex in Euclidean space
(LQCD, DSE, FRQG, ...) and the distribution function are define
in the Minkowski.

Fortunately, we can see in the bag model, we have integrated
out the time during the calculation of distribution functions. It
is OK for us to use the dressed quark vertex in Euclidean space
to look insight into the dress effects of the distribution
functions.
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Dress effects on the transversity distribution

Dressed transversity distribution function

h(z) = 2M/ %éﬁf x

) (37)
(N; p = 05 S| )T5T9i(0) | Nsp = 0:8) |1 ¢ _g-
In Euclidean space
LY (k;0) = o5 * E(K) + {if, 0" y5} * F(K) (38)

+ [if, oM 5] * G(K) + ifo™ ysif « H(K)

We can get the result of dressed transversity distribution is
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Dress effects on the transversity distribution

47 MR3w*

2

M) = (w? — sin® w)

> kdk k)|?
(0PN [ peoe

{ [#oth) + 2E,8) + 2hctoo(Btrs (B)] * EGR)

+ |20ty () = 2 (S + ks ) £1(K) — 241 = B)too (1 ()|  F(R)

+[om g + (0 + S -8y + 210 - B

81(0) — 2 ((1 = B) (Mz) + (Mn)?ks ) too(B)taa ()| » HP) }
(39)
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Dress effects on the transversity distribution

— bare
S 200 | rainbow 1
5 munczek B (0113G6V)
a
5 1.5
© {
° j R | 1.46 fm
% 1.0 l
5 i
505
00_________-..,75/ \\,___ w 204
-1.0 -0.5 . 1.0

Approximation | bare RL | Munczek

tensor charge d¢q | 0.783 | 0.710 0.649 So— /1
up quark du 1.184 | 1.008 0.888
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~1
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Dress effects on the longitudinal distribution

2.0
IS B | (0.113GeV)*
315
g R | 146 fm
< 1.0
g M | 1.10 GeV
0.5
S

0.0 w 2.04
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Summary and outlook

We have done

> We go beyond the rainbow ladder approximation by
utilizing the Munczek’s quark gluon vertex and derive the
four particle scattering kernel analytically.

» Here we combine the MIT bag model with DSE approach

to give a quite simple way to explore the dress effects of
distribution functions.

We will do

» Fix the gluon parameters by solving the BSEs for mesons.

» Compare the results with the experimental results.
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