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Aims
I Here we give a method that combine the MIT bag model

with DSE approach so that we can explore the dress effects
of the distribution functions in hadrons partly.

I In principle, the distribution functions are defined in the
Minkowski space, while the dress effects are usually studied
in Euclidean space (e.g., LQCD, DSE, FEG). We can not
combine them in general case.

I There is one way that can solve this gap partly, that is the
quasi parton distribution functions. They can exact the
quasi parton distribution functions from the LQCD
calculations. But the procedure is quite complicated.

I Here we give out a much simpler way to study the dress
effect (under the rainbow ladder approximation and
beyond rainbow ladder approximation) of parton
distribution functions partly.
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Dyson-Schwinger Equation
Dyson-Schwinger Equations describe the relations of different
green functions in the QFT. They are infinitely coupled
equations.

e.g., in scalar field theory:

Z[J] =
∫
[dϕ] exp{i

∫
d4x[L(ϕ) + J(x)ϕ(x)]} (1)

field placement ϕ(x) → ϕ(x) + ϵ(x), from δZ[J] = 0 we can get
the equation of motion for the scalar field with external field

1
Z[J] < (∂2 + µ2)ϕ(x) > |J = J(x) (2)

Do the successive derivative with respect to the external field
J(x), we can get the general expression

<
δ

δϕ(x)

[∫
d4x′L

(
ϕ(x′)

)]
ϕ(x1) · · ·ϕ(xn) >

=
n∑

i=1
< T{ϕ(x1) · · ·

(
−iδ4(x − xi)

)
· · ·ϕ(xn)} >

(3)

6 / 33



Dyson-Schwinger Equation
Dyson-Schwinger Equations describe the relations of different
green functions in the QFT. They are infinitely coupled
equations.
e.g., in scalar field theory:

Z[J] =
∫
[dϕ] exp{i

∫
d4x[L(ϕ) + J(x)ϕ(x)]} (1)

field placement ϕ(x) → ϕ(x) + ϵ(x), from δZ[J] = 0 we can get
the equation of motion for the scalar field with external field

1
Z[J] < (∂2 + µ2)ϕ(x) > |J = J(x) (2)

Do the successive derivative with respect to the external field
J(x), we can get the general expression

<
δ

δϕ(x)

[∫
d4x′L

(
ϕ(x′)

)]
ϕ(x1) · · ·ϕ(xn) >

=
n∑

i=1
< T{ϕ(x1) · · ·

(
−iδ4(x − xi)

)
· · ·ϕ(xn)} >

(3)

6 / 33



Dyson-Schwinger Equation
Dyson-Schwinger Equations describe the relations of different
green functions in the QFT. They are infinitely coupled
equations.
e.g., in scalar field theory:

Z[J] =
∫
[dϕ] exp{i

∫
d4x[L(ϕ) + J(x)ϕ(x)]} (1)

field placement ϕ(x) → ϕ(x) + ϵ(x), from δZ[J] = 0 we can get
the equation of motion for the scalar field with external field

1
Z[J] < (∂2 + µ2)ϕ(x) > |J = J(x) (2)

Do the successive derivative with respect to the external field
J(x), we can get the general expression

<
δ

δϕ(x)

[∫
d4x′L

(
ϕ(x′)

)]
ϕ(x1) · · ·ϕ(xn) >

=
n∑

i=1
< T{ϕ(x1) · · ·

(
−iδ4(x − xi)

)
· · ·ϕ(xn)} >

(3)

6 / 33



Dyson-Schwinger Equation
Dyson-Schwinger Equations describe the relations of different
green functions in the QFT. They are infinitely coupled
equations.
e.g., in scalar field theory:

Z[J] =
∫
[dϕ] exp{i

∫
d4x[L(ϕ) + J(x)ϕ(x)]} (1)

field placement ϕ(x) → ϕ(x) + ϵ(x), from δZ[J] = 0 we can get
the equation of motion for the scalar field with external field

1
Z[J] < (∂2 + µ2)ϕ(x) > |J = J(x) (2)

Do the successive derivative with respect to the external field
J(x), we can get the general expression

<
δ

δϕ(x)

[∫
d4x′L

(
ϕ(x′)

)]
ϕ(x1) · · ·ϕ(xn) >

=

n∑
i=1

< T{ϕ(x1) · · ·
(
−iδ4(x − xi)

)
· · ·ϕ(xn)} >

(3)

6 / 33



Dyson-Schwinger Equation
The schematic representation of DSEs in QCD:

= +

−1 −1

−1 −1

= +
1

2
+
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+
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+

1

2

+ +

· · · · · ·
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Bethe-Salpeter Equation

In the special case of two body systems, they are describe by
the Bethe-Salpeter equations.

K= +

= K

By solving these equations, we can get the wave function of two
body bound states, such as mesons, diquarks etc. and give out
the predictions for their properties.
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DSE Approach
Since DSEs are infinitely coupled, to make them functional in
real calculations, we need to make a truncation.

= K ?

= +

−1 −1 ?

?

S−1(p) = Z2S−1
0 (p) + Z2g2

∫ Λ

dq
Dαβ(k)taγαS(q)taΓβ(q, p) (4)

[Γ(k; 0)]EF = Zv[Γ0(k; 0)]EF +

∫ Λ

dq
[K(k, q; 0)]GH

EF [χ(q; 0)]GH (5)
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Rainbow ladder approximation

The most successful truncation is the rainbow ladder
approximation.

Γµ(p + k, p) = γµ (6)

For the consistency between DSE and BSE [PhysRevD.52.4736 Munczek

1995]

K(p, q; 0) = −δΣ(p)
δS(q) (7)

10 / 33
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The gluon propagator

Usually, one would model the gluon propagator as
g2Dαβ(k) = G(k2)(δαβ − kαkβ

k2 )

G(k2) = Gir(k2) + Guv(k2) (8)

Gir(k2) =
8π2

ω5 m3
ge−k2/ω2 (9)

Guv(k2) =
8π2γm

ln[τ + (1 + k2/Λ2
QCD)

2]

1 − e−k2/4m2
t

k2 . (10)

A quenched gluon propagator!
The rainbow-ladder approximation had showed successes in
light quark ground state mesons.
Then what about beyond rainbow ladder approximation?
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Truncation Beyond Rainbow Ladder

We use the longitudinal part of Munczek vertex: [PhysRevD.52.4736

Munczek 1995]

iΓν(p + k, p) = ∂

∂pν
∫ 1

0
dαS−1(p + αk) (11)

It satisfies the Ward-Takahashi identity:

ikνΓν(p + k, p) = S−1(p + k)− S−1(p) (12)

I drawback: we can’t represent it with Feynman diagram.

I advantage: It’s an analytical expression. then we may
derive the scattering kernel analytically.

13 / 33
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Scattering Kernel

The scattering kernel for the Munczek quark gluon vertex can
be calculated out as

[K(k, q; 0)]GH
EF = −δ[Σ(k)]EF

δ[S(q)]GH
= ¬ + ­ , (13)

¬ = −Z2g2Dµν(q − k)ta [γµ]EG ta [Γν(q, k)]HF (14)

­ = Z2g2
∫ Λ

dl
Dµν(l − k)ta [γµ]EM [S(l)]MN ta

× ∂

i∂kν
∫ 1

0
dα
[
S−1(k + α(l − k))

]
NG

× δ(4) (k + α(l − k)− q)
[
S−1 (k + α(l − k))

]
HF .

(15)
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BSE with Munczek’s Vertex

The BSE with Munczek’s vertex takes as

[Γ(k; 0)]EF = Zv[Γ0(k; 0)]EF

− Z2g2
∫

d
qΛDµν(q − k)ta [γµ]EG [χ(q; 0)]GH ta [Γν(q, k)]HF

+ Z2g2
∫ Λ

dq
Dµν(q − k)ta [γµ]EM [S(q)]MN ta [Λν(q, k; 0)]NF

(16)

Γµν σ
µν Γµν Γµν

= + +

15 / 33



Results of Munczek vertex

10-4 10-2 100 102 104

p2/[GeV]2

0

0.5

1

1.5

2
A in Munczek
B in Munczek
A in rainbow ladder
B in rainbow ladder

S−1(p) = iγ · pA(p2) + B(p2)

mg/[GeV] ω/[GeV]

RL 0.82 0.5
Mun 0.436 0.355

10-4 10-2 100 102 104

p2/[GeV]2
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1

1.2

E in Munczek
F in Munczek
G in Munczek
H in Munczek
E in rainbow ladder
F in rainbow ladder
G in rainbow ladder
H in rainbow ladder

Γµν(p; 0) = σµνE(p2)

+
(
(iγ · p)σµν + σµν(iγ · p)

)
F(p2)

+
(
(iγ · p)σµν − σµν(iγ · p)

)
G(p2)

+(iγ · p)σµν(iγ · p)H(p2)
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Quark field in the bag

The wave function of a fermion in the bag is the solution of free
massless Dirac equation:

φm(x, t) = N
[

j0
(ωn,κr

R
)

Um
iσ · x̂j1

(ωn,κr
R
)

Um

]
e−iωnκt

R , (17)

ω = ω1,−1 = 2.04 .
Second quantization, a quark field in the bag center at a:

ψ(x, t) =
∑

m=↑,↓
aqm(a)φm(x − a, t) + · · · (18)

The annihilation and creation operator satisfy{
ai(a), a†j (b)

}
= δij

∫
d3xφ†

j (x − b)φi(x − a) . (19)
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Proton field in the bag
In the constituent quark model, a spin-up proton

|P ↑⟩ = 1√
18

(2u↑u↑d↓ − u↑u↓d↑ − u↓u↑d↑

+2u↑d↓u↑ − u↑d↑u↓ − u↓d↑u↑

+2d↓u↑u↑ − d↑u↑u↓ − d↑u↓u↑) .

(20)

So the proton field in the bag

|P ↑, r = a⟩

=
1√
18

(
2a†u↑

(a)a†u↑
(a)a†d↓

(a)

−a†u↑
(a)a†u↓

(a)a†d↑
(a)

−a†u↓
(a)a†u↑

(a)a†d↑
(a) + · · ·

)
|0, r = a⟩ ,

(21)

|0, r = a⟩ is the empty bag center at r = a
19 / 33



Peierls-Yoccoz (PY) projection method
The static hadron bag state HB(x) can be decomposed in terms
of the plane wave in the momentum space

|HB(x)⟩ =
∫ d3p

(2π)3 eip·x
[
ϕ(p)

WH(p)

]
|H(p)⟩ . (22)

|H(p)⟩ =
[

WH(p)
ϕ(p)

] ∫
d3xe−ix·p|HB(x)⟩ , (23)

the normalization relation:

⟨H(p)|H(p′)⟩ = (2π)3δ(3)(p − p′)WH(p) . (24)

we can get

|ϕ(p)|2 =

∫
d3re−ir·p⟨HB(0)|HB(r)⟩ = |ϕ3(p)|2 . (25)

where

|ϕn(p)|2 =

∫
d3ae−ip·a

[∫
d3xφ†(x − a)φ(x)

]n
. (26)

20 / 33



Quark distribution in the bag

The definition of quark distribution function in a bag:

qi(x) = 2M
∫ dξ−

4π eiq+ξ−×

⟨N;p = 0|ψ̄i(ξ)γ
+ψi(0)|N;p = 0⟩

∣∣
ξ+,ξ⊥=0 ,

(27)

Define
M = ⟨N;p = 0|ψ̄i(ξ)γ

+ψi(0)|N;p = 0⟩ . (28)

The result is

M =
∑
m

⟨N;0|Pf,m|N;0⟩
∫ d3k1

(2π)3 ei(ωξ0/R−k1·ξ)×

φ̄(k1)γ
+φ(k1)

|ϕ2(k1)|2

|ϕ3(0)|2
.

(29)
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Quark distribution in the bag

qi(x) =
(∑

m
⟨N;0|Pf,m|N;0⟩

)
M
2π

∫
dξ−ei(q++k̃+1 )ξ−

∫ d3k1
(2π)3

φ̄(k1)γ
+φ(k1)

ϕ2(|k1)|2

|ϕ3(0)|2
,

=
√

2M
(∑

m
⟨N;0|Pf,m|N;0⟩

)∫ ∞

kmin

kdk
(2π)2

φ̄(k)γ+φ(k) |ϕ2(k)|2
|ϕ3(0)|2

,

(30)

where kmin = |ω/R − Mx|.
The time component has been integrated out.
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Quark distribution in the bag

Calculate the inner product directly,

φ̄(k)γ+φ(k) =
4πR3ω4

√
2(ω2 − sin2 ω)

[
t2
00(k) + t2

11(k) + 2k̂zt00(k)t11(k)
]
,

(31)

we finally get

qi(x) =
4πMR3ω4

(ω2 − sin2 ω)

(∑
m

⟨N;0|Pf,m|N;0⟩
)
×∫ ∞

kmin

kdk
(2π)2

[
t2
00(k) + t2

11(k) + 2k̂zt00(k)t11(k)
] |ϕ2(k)|2
|ϕ3(0)|2

.

(32)
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Quark distribution in the bag

- 1.0 - 0.5 0.0 0.5 1.0
0.0

0.5

1.0

1.5

2.0

2.5

B (0.113GeV)4

R 1.46 fm

M 1.10 GeV

ω 2.04

∫ 1

−1
dx q(x) = 0.99994 . (33)
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Transversity distribution function in the bag
Take the transversity distribution function as a example.

Definition

h(x) = 2M
∫ dξ−

4π eiq+ξ−×

⟨N;p = 0;S|ψ̄i(ξ)iσ1+γ5ψi(0)|N;p = 0;S⟩
∣∣
ξ+,ξ⊥=0 .

(34)

ϕ̄(k)iσ1+γ5ϕ(k)

=
4πR3ω4

√
2(ω2 − sin2 ω)

[
t2
00(k) + k̂2

z t2
11(k) + 2k̂zt00(k)t11(k)

]
,

(35)

The result is

h(x) = 4πMR3ω4

(ω2 − sin2 ω)

(
⟨N;0;S|Pf,m|N;0;S⟩

)
×∫ ∞

kmin

kdk
(2π)2

[
t2
00(k) + k̂2

z t2
11(k) + 2k̂zt00(k)t11(k)

] |ϕ2(k)|2
|ϕ3(0)|2

.

(36)
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Dress effects on the transversity distribution

What if we consider the dress effects on the transversity
distribution function.

I We can not get the dressed quark propagator analytically.
I We can get the dressed quark tensor vertex.

So here we explore the dress effects on the transversity
distribution partially by the dressed quark tensor vertex.
But usually we calculate the dressed vertex in Euclidean space
(LQCD, DSE, FRG, ...) and the distribution function are define
in the Minkowski.
Fortunately, we can see in the bag model, we have integrated
out the time during the calculation of distribution functions. It
is OK for us to use the dressed quark vertex in Euclidean space
to look insight into the dress effects of the distribution
functions.
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Dress effects on the transversity distribution

Dressed transversity distribution function

h(x) = 2M
∫ dξ−

4π eiq+ξ−×

⟨N;p = 0;S|ψ̄i(ξ)iΓ1+
5 ψi(0)|N;p = 0;S⟩

∣∣
ξ+,ξ⊥=0 .

(37)

In Euclidean space

Γµν
5 (k; 0) = σµνγ5 ∗ E(k2) + {i/k, σµνγ5} ∗ F(k2)

+ [i/k, σµνγ5] ∗ G(k2) + i/kσµνγ5i/k ∗ H(k2) ,
(38)

We can get the result of dressed transversity distribution is

28 / 33



Dress effects on the transversity distribution

h(x) = 4πMR3ω4

(ω2 − sin2 ω)

(
⟨N;0|Pf,m|N;0⟩

) ∫ ∞

kmin

kdk
(2π)2

|ϕ2(k)|2
|ϕ3(0)|2

×{[
t2
00(k) + k̂2

z t2
11(k) + 2k̂zt00(k)t11(k)

]
∗ E(k2)

+
[
2Mxt2

00(k)− 2
(ω

Rk̂2
3 + k3

)
t2
11(k)− 2k(1 − k̂2

3)t00(k)t11(k)
]
∗ F(k2)

+

[
(Mx)2t2

00(k) +
(
(Mx)2k̂2

3 +
k2

2 (1 − k̂2
3)

2 + 2k(1 − k̂2
3)(Mx)k̂3

)
t2
11(k)− 2

(
k(1 − k̂2

3)(Mx) + (Mx)2k̂3
)

t00(k)t11(k)
]
∗ H(k2)

}
,

(39)
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Dress effects on the transversity distribution
bare

rainbow
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Approximation bare RL Munczek
tensor charge δq 0.783 0.710 0.649

up quark δu 1.184 1.008 0.888
down quark δd -0.296 -0.251 -0.222

B (0.113GeV)4

R 1.46 fm

M 1.10 GeV

ω 2.04

δq =

∫ 1

−1
dxh(x) ,
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Dress effects on the longitudinal distribution
bare

rainbow
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Approximation bare RL Munczek
axial charge △q 0.776 0.584 0.784

axial coupling gA 1.29 0.972 1.306

B (0.113GeV)4

R 1.46 fm

M 1.10 GeV

ω 2.04

△q =

∫ 1

−1
dxg(x) ,
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Summary and outlook
We have done

I We go beyond the rainbow ladder approximation by
utilizing the Munczek’s quark gluon vertex and derive the
four particle scattering kernel analytically.

I Here we combine the MIT bag model with DSE approach
to give a quite simple way to explore the dress effects of
distribution functions.

We will do

I Fix the gluon parameters by solving the BSEs for mesons.

I Compare the results with the experimental results.
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