Three body open flavor decays of higher vector charmonium and bottomonium

翁新震（北京大学）

合作者：肖立叶，邓卫真，陈晓林，朱世琳
Based on Phys．Rev．D 99， 094001 （2019）

第十八届全国中高能核物理大会

2019/06/24

Outline

(1) Introduction

(2) ${ }^{3} P_{0}$ Model
(3) Numerical Result

4 Summary

Introduction

- 2008, Belle, $e^{+} e^{-} \rightarrow D^{0} D^{-} \pi^{+}$PRL 100, 062001 (2008)

$$
\begin{equation*}
\frac{\mathcal{B}\left[\psi(4415) \rightarrow D^{0} D^{-} \pi_{\text {nonresonant }}^{+}\right]}{\mathcal{B}\left[\psi(4415) \rightarrow D \bar{D}_{2}^{*}(2460) \rightarrow D^{0} D^{-} \pi^{+}\right]}<0.22 \tag{1}
\end{equation*}
$$

- 2009, Belle, $e^{+} e^{-} \rightarrow D^{0} D^{*-} \pi^{+}+$c.c.: found no evidence of $\psi(4260)$, $\psi(4360), \psi(4415), \psi(4630)$ or $\psi(4660)$ with limited statistics PRD 80 , 091101 (2009)
- 2018, BESIII, $e^{+} e^{-} \rightarrow D^{0} D^{*-} \pi^{+}: Y(4220), \psi(4415)$ PRL 122, 102002 (2019)

Introduction

- 2010, Belle, $\Upsilon(5 S) \rightarrow B^{0,+}+$ others: PRD 81, 112003 (2010)

$$
\begin{array}{r}
f(B \bar{B} \pi)=(0.0 \pm 1.1 \pm 0.3) \%, \\
f\left(B \bar{B}^{*} \pi+B^{*} \bar{B} \pi\right)=\left(7.3_{-2.1}^{+2.3} \pm 0.8\right) \%, \\
f\left(B^{*} \bar{B}^{*} \pi\right)=\left(1.0_{-1.3}^{+1.4} \pm 0.4\right) \% \tag{4}
\end{array}
$$

- ${ }^{3} P_{0}$ model, $X(4660)[c \bar{c}] \rightarrow \Lambda_{c} \bar{\Lambda}_{c}$: Xiao et al. EPJC 78, 605 (2018)
- $\Gamma_{\psi(4 S, 5 S, 6 S)} \sim \mathrm{MeV}$
- $\Gamma_{\psi(3 D, 4 D, 5 D)} \sim 0.1 \mathrm{MeV}$

${ }^{3} P_{0}$ Model

- In the ${ }^{3} P_{0}$ model, a light $q \bar{q}$ pair is created with the vacuum quantum number $J^{P C}=0^{++}$, and then rearranged with the quarks within the initial meson to produce two final mesons.

$$
\begin{equation*}
J^{P C}=0^{++} \Rightarrow L=1, S=1 \Rightarrow{ }^{2 S+1} L_{J}={ }^{3} P_{0} \tag{5}
\end{equation*}
$$

L. Micu, Nucl. Phys. B 10, 521 (1969).

Transition operator

- Interaction Hamiltonian PRD 54, 6811 (1996)

$$
\begin{equation*}
H_{\mathrm{int}}=g_{s} \int \mathrm{~d}^{3} \mathbf{x} \bar{\psi} \psi \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
\gamma=g_{s} / 2 m_{q} \tag{7}
\end{equation*}
$$

- Decay amplitude

$$
\begin{equation*}
\delta^{(3)}\left(\mathbf{P}_{f}-\mathbf{P}_{i}\right) \mathcal{M}^{M_{J_{A}} M_{J_{B}} M_{J_{C}}}=\langle f| H_{\mathrm{int}}|i\rangle \tag{8}
\end{equation*}
$$

- In the nonrelativistic limit, the transition operator reads

$$
\begin{align*}
T= & -3 \gamma \sum_{m}\langle 1 m ; 1-m \mid 00\rangle \int \mathrm{d}^{3} \mathbf{k}_{4} \mathrm{~d}^{3} \mathbf{k}_{5} \delta^{3}\left(\mathbf{k}_{4}+\mathbf{k}_{5}\right) \mathcal{Y}_{1}^{m}\left(\frac{\mathbf{k}_{4}-\mathbf{k}_{5}}{2}\right) \\
& \chi_{1,-m}^{45} \varphi_{0}^{45} \omega_{0}^{45} b_{4 i}^{\dagger}\left(\mathbf{k}_{4}\right) d_{5 j}^{\dagger}\left(\mathbf{k}_{5}\right) \tag{9}
\end{align*}
$$

Transition operator

- Two pairs of $q \bar{q}$ are created in the three body open flavor decay processes

- At the 2nd order EPJC 78, 605 (2018)

$$
\begin{align*}
\delta^{(3)}\left(\mathbf{P}_{f}-\mathbf{P}_{i}\right) \mathcal{M}^{M_{J_{A}} M_{J_{B}} M_{J_{C}}} & =\sum_{k} \frac{\langle f| H_{\mathrm{int}}|k\rangle\langle k| H_{\mathrm{int}}|i\rangle}{E_{k}-E_{i}} \\
& \approx \frac{\langle f| H_{\mathrm{int}} H_{\mathrm{int}}|i\rangle}{2 m_{q}} \tag{10}
\end{align*}
$$

where we take $E_{k}-E_{i}$ as a constant: $E_{k}-E_{i} \approx 2 m_{q}$ (closure approximation). PRD 44, 799 (1991); PRL 67, 1066 (1991)

Closure approximation: $E_{k}-E_{i} \approx 2 m_{q}$

- (focus on 1^{--}charmonium)
- quark level
- intermediate state - initial state $\sim q \bar{q}$
- hadron level
- Intermediate states: $E_{k} \sim(4.0-4.1) \mathrm{GeV}$:

$$
\begin{aligned}
& D \bar{D}_{1}, D^{*} \bar{D}_{1}, D^{*} \bar{D}_{0}, D^{*} \bar{D}_{2}, J / \psi f_{0}(500), \\
& h_{c}(1 P) \pi, h_{c}(1 P) \eta, \chi_{c 0}(1 P) \omega, \chi_{c 2}(1 P) \omega, \ldots
\end{aligned}
$$

- Higher mass states $[\psi(4660), \psi(4415), \psi(4360)]$:
- Lower mass states [$\psi(4040), \psi(4160)$]: \times

Transition operator

- Transition operator $T_{2} \sim T_{1}^{2} / 2 m_{q}$

$$
\begin{aligned}
T= & \frac{9 \gamma^{2}}{2 m_{q}} \sum_{m m^{\prime}}\langle 1 m ; 1-m \mid 00\rangle\left\langle 1 m^{\prime} ; 1-m^{\prime} \mid 00\right\rangle \int \mathrm{d}^{3} \mathbf{k}_{3} \mathrm{~d}^{3} \mathbf{k}_{4} \mathrm{~d}^{3} \mathbf{k}_{5} \mathrm{~d}^{3} \mathbf{k}_{6} \\
& \times \delta^{3}\left(\mathbf{k}_{3}+\mathbf{k}_{4}\right) \delta^{3}\left(\mathbf{k}_{5}+\mathbf{k}_{6}\right) \mathcal{Y}_{1}^{m}\left(\frac{\mathbf{k}_{3}-\mathbf{k}_{4}}{2}\right) \mathcal{Y}_{1}^{m^{\prime}}\left(\frac{\mathbf{k}_{5}-\mathbf{k}_{6}}{2}\right) \\
& \times \chi_{1,-m}^{34} \varphi_{0}^{34} \omega_{0}^{34} a_{3 i}^{\dagger}\left(\mathbf{k}_{3}\right) b_{4 j}^{\dagger}\left(\mathbf{k}_{4}\right) \chi_{1,-m^{\prime}}^{56} \varphi_{0}^{56} \omega_{0}^{56} c_{5 i^{\prime}}^{\dagger}\left(\mathbf{k}_{5}\right) d_{6 j^{\prime}}^{\dagger}\left(\mathbf{k}_{6}\right)
\end{aligned}
$$

Mock state

- Meson

$$
\begin{aligned}
& \left|B\left(n_{B}^{2 S_{B}+1} L_{B} J_{B} M_{J_{B}}\right)\left(\mathbf{P}_{B}\right)\right\rangle \\
= & \sqrt{2 E_{B}} \sum_{M_{L_{B}} M_{S_{B}}}\left\langle L_{B} M_{L_{B}} S_{B} M_{S_{B}} \mid J_{B} M_{J_{B}}\right\rangle \\
& \times \int \mathrm{d}^{3} \mathbf{k}_{a} \mathrm{~d}^{3} \mathbf{k}_{b} \delta^{3}\left(\mathbf{k}_{a}+\mathbf{k}_{b}-\mathbf{P}_{B}\right) \\
& \times \psi_{n_{B} L_{B} M_{L_{B}}}\left(\mathbf{k}_{a}, \mathbf{k}_{b}\right) \chi_{S_{B} M_{S_{B}}}^{a b} \varphi_{B}^{a b} \omega_{B}^{a b}\left|q_{a}\left(\mathbf{k}_{a}\right) \bar{q}_{b}\left(\mathbf{k}_{b}\right)\right\rangle
\end{aligned}
$$

- Normalization

$$
\begin{equation*}
\left\langle B\left(\mathbf{P}_{B}\right) \mid B\left(\mathbf{P}_{B}^{\prime}\right)\right\rangle=2 E_{B} \delta^{3}\left(\mathbf{P}_{B}-\mathbf{P}_{B}^{\prime}\right) \tag{11}
\end{equation*}
$$

- Spatial wave function \rightarrow simple harmonic oscillator (SHO).
C. Hayne and N. Isgur, Phys. Rev. D 25, 1944 (1982).

Decay width

- Helicity amplitude

$$
\begin{aligned}
& \mathcal{M}^{M_{J_{A}} M_{J_{B}} M_{J_{C}} M_{J_{D}}}(A \rightarrow B C D)=\frac{\gamma^{2}}{2 m_{q}} \sqrt{16 E_{A} E_{B} E_{C} E_{D}} \times \sum_{m m^{\prime}} \sum_{M_{L_{A, B, C D}, M^{\prime}, S_{A, B, C D}}}\langle 1 m ; 1-m \mid 00\rangle\left\langle 1 m^{\prime} ; 1-m^{\prime} \mid 00\right\rangle \\
& \times\left\langle L_{A} M_{L_{A}} S_{A} M_{S_{A}} \mid J_{A} M_{J_{A}}\right\rangle\left\langle L_{B} M_{L_{B}} S_{B} M_{S_{B}} \mid J_{B} M_{J_{B}}\right\rangle\left\langle L_{C} M_{L_{C}} S_{C} M_{S_{C}} \mid J_{C} M_{J_{C}}\right\rangle \\
& \times\left\langle L_{D} M_{L_{D}} S_{D} M_{S_{D}} \mid J_{D} M_{J_{D}}\right\rangle \chi_{S_{B} M_{S_{B}}}^{13} \chi_{S_{C} M_{S_{C}}}^{26} \chi_{S_{D} M M_{S_{D}}}^{45}\left|\chi_{S_{A}}^{12} M_{S_{A}} x_{1,-m}^{34} Y_{1,-m^{\prime}}^{56}\right\rangle \\
& \times\left\langle\varphi_{B}^{13} \varphi_{C}^{26} \varphi_{D}^{45} \mid \varphi_{A}^{12} \varphi_{0}^{34} \varphi_{0}^{56}\right\rangle \times I_{M_{L_{B}} M_{L_{C}} M_{L_{D}}^{m M^{\prime}}}^{M_{1}}(\mathbf{p}),
\end{aligned}
$$

- Decay width

$$
\begin{equation*}
\Gamma=\int_{0}^{\infty} d E_{B} d E_{C} \frac{\pi^{3}}{M_{A}} \frac{1}{2 J_{A}+1} \sum_{M_{J_{A, B, C, D}}}\left|\mathcal{M}^{M_{J_{A}} M_{J_{B}} M_{J_{C}} M_{J_{D}}}\right|^{2} \tag{12}
\end{equation*}
$$

Parameter

- $\gamma_{c \bar{c}}=6.95, \gamma_{b \bar{b}}=10.42$ PRD 72, 054026 (2005); PRD 92, 054034 (2015)
- $m_{u}=m_{d}=330 \mathrm{MeV}, m_{s}=419 \mathrm{MeV}$, $m_{c}=1628 \mathrm{MeV}, m_{b}=4977 \mathrm{MeV}$ PRD 32, 189 (1985)
- SHO strength β PRD 69, 054008 (2004); 72, 054026 (2005); 92, 054034 (2015); 93, 034035 (2016)

$$
\int \mathrm{d}^{3} \mathbf{p}\left|\psi_{n l m}^{\mathrm{SHO}}(\mathbf{p})\right|^{2} p^{2}=\int \mathrm{d}^{3} \mathbf{p}|\Phi(\mathbf{p})|^{2} p^{2}
$$

TABLE II. Masses and harmonic oscillator strength β 's of final state mesons used in the decays (in units of MeV).

- $\beta_{c \bar{c}}=500 \pm 50 \mathrm{MeV}$
- $\beta_{b \bar{b}}=600 \pm 50 \mathrm{MeV}$
- $\alpha_{q \bar{q}}=400 \mathrm{MeV}$

Meson	State	Mass $[55]$	$\beta[28,51]$
π	${ }^{1} S_{0}$	138.0	400
ρ	${ }^{3} S_{1}$	775.3	400
ω	${ }^{3} S_{1}$	782.6	400
η	S_{0}	547.9	400
D	${ }^{1} S_{0}$	1867.2	600
D^{*}	S_{1}	2008.6	520
D_{s}	${ }^{3} S_{0}$	1968.3	650
D_{s}^{*}	${ }^{3} S_{1}$	2112.2	560
B	${ }^{3} S_{0}$	5279.5	580
B^{*}	${ }^{3} S_{1}$	5324.6	540
B_{s}	${ }^{3} S_{0}$	5366.9	640
B_{s}^{*}	${ }^{3} S_{1}$	5415.4	600

Decay width: $\psi(4360)$

TABLE III. The partial decay widths (in MeV) of the vector charmonium with a mass of 4368 MeV .

State	$\psi\left(4^{3} S_{1}\right)$	$\psi\left(3^{3} D_{1}\right)$
$\Gamma_{D D \pi}$	0.27	0.14
$\Gamma_{D D^{*} \pi}$	1.40	1.21
$\Gamma_{D^{*} D^{*} \pi}$	0.60	0.25
$\Gamma_{D D \eta}$	0.6 keV	0.3 keV

- Possible assignment: $\psi(3 D), \psi(4 S)$ PRD 79, 094004 (2009); Int. J. Mod. Phys. E 22, 1330026 (2013).
- S - and D-waves are of same order.
- $D \bar{D}^{*} \pi$ mode is dominant.

$$
\mathcal{B}\left[\psi\left(4^{3} S_{1}\right) \rightarrow D D^{*} \pi\right] \sim 1.5 \%, \quad \mathcal{B}\left[\psi\left(3^{3} D_{1}\right) \rightarrow D D^{*} \pi\right] \sim 1.3 \%
$$

Decay width: $\psi(4415)$

TABLE IV. The partial decay widths (in MeV) of the vector charmonium with a mass of 4421 MeV .

State	$\psi\left(4^{3} S_{1}\right)$	$\psi\left(5^{3} S_{1}\right)$	$\psi\left(3^{3} D_{1}\right)$
$\Gamma_{D D \pi}$	0.38	0.11	0.21
$\Gamma_{D D^{*} \pi}$	2.01	0.96	1.84
$\Gamma_{D^{*} D^{*} \pi}$	1.07	0.59	0.52
$\Gamma_{D D \eta}$	5.4 keV	1.7 keV	2.9 keV

- Assignment: $\psi(4 S)$ PLB 72, 57 (1977); PRD 72, 054026 (2005);
- $\mathcal{B}\left[\psi(4 S) \rightarrow D D^{*} \pi\right] \sim 3.2 \%$ - PDG upper limit (11\%) PRD 98, 030001 (2018)
- $\mathcal{B}[\psi(4 S) \rightarrow D D \pi] \sim 0.6 \%$ - Belle upper limit (2.2\%) PRL 100, 062001 (2008)
- Other assignments: $\psi(5 S), \psi(3 D)$ PRD 79, 094004 (2009); Int. J. Mod. Phys. E 22, 1330026 (2013)

Decay width: $\psi(4660)$

TABLE I: The possible assignments of the $Y(4660)$ with the predicted masses (MeV) from various models.

State	QM [46]	QM [47]	QM [48]	SSE/EA[49]	NR/GI [50]	SP [10]	LP/SP [51]
$\psi\left(4^{3} S_{1}\right)$	4625	4450	4389	$4398 / 4426$	$4406 / 4450$	4273	$4412 / 4281$
$\psi\left(5^{3} S_{1}\right)$	\ldots	\ldots	4641	$4642 / 4672$	\ldots	4463	$4711 / 4472$
$\psi\left(6^{3} S_{1}\right)$	\ldots	\ldots	\ldots	$4804 / 4828$	\ldots	4608	\ldots
$\psi\left(3^{3} D_{1}\right)$	\ldots	4520	4426	$4464 / 4477$	\ldots	4317	$4478 / 4336$
$\psi\left(4^{3} D_{1}\right)$	\ldots	\ldots	4641	$4690 / 4707$	\ldots	\ldots	\ldots
$\psi\left(5^{3} D_{1}\right)$	\ldots	\ldots	\ldots	$4840 / 4855$	\ldots	\ldots	\ldots

TABLE V. The partial decay width (MeV) of the vector charmonium with a mass of 4643 MeV .

State	$\psi\left(4^{3} S_{1}\right)$	$\psi\left(5^{3} S_{1}\right)$	$\psi\left(6^{3} S_{1}\right)$	$\psi\left(3^{3} D_{1}\right)$	$\psi\left(4^{3} D_{1}\right)$	$\psi\left(5^{3} D_{1}\right)$
$\Gamma_{D D \pi}$	1.14	0.31	0.09	0.63	0.17	0.05
$\Gamma_{D D^{*} \pi}$	6.65	2.83	1.10	6.99	2.99	1.16
$\Gamma_{D^{*} D^{*} \pi}$	5.97	2.68	1.13	4.12	2.11	0.96
$\Gamma_{D D \rho}$	0.85	0.41	0.16	1.86	0.64	0.22
$\Gamma_{D D \omega}$	0.24	0.12	0.05	0.59	0.20	0.07
$\Gamma_{D D \eta}$	53.2 keV	15.3 keV	4.2 keV	29.1 keV	8.2 keV	2.2 keV
$\Gamma_{D D^{*} \eta}$	0.25	0.12	0.05	0.20	0.11	0.05
$\Gamma_{D^{*} D^{*} \eta}$	58.2 keV	38.7 keV	19.1 keV	8.5 keV	9.9 keV	7.5 keV
$\Gamma_{D_{s} D_{s} \eta}$	3.0 keV	0.8 keV	0.2 keV	1.6 keV	0.4 keV	0.1 keV
$\Gamma_{D_{s} D_{s}^{+} \eta}$	1.9 keV	1.3 keV	0.6 keV	12 eV	11 eV	7 eV

- Possible assignment: $\psi(4 S, 5 S, 6 S), \psi(3 D, 4 D, 5 D)$.
- $D^{(*)} \bar{D}^{(*)} \pi$ modes dominant.
- $D \bar{D} \rho, D \bar{D} \omega$ and $D \bar{D}^{*} \eta$ modes are also important.

Decay width

- The variation of the $\Gamma_{D^{+} D^{-} \pi^{0}}$ with the mass of the charmonium

FIG. 2. The variation of the $D^{+} D^{-} \pi^{0}$ partial decay width with the mass of the D-wave vector charmonium. \mid Note that $\Gamma_{D^{+} D^{-} \pi^{0}}=$ $\frac{1}{6} \Gamma_{D D \pi}$ since we have ignored the isospin breaking. The blue, red, and black lines correspond to the predictions with different values of the harmonic oscillator strength $\beta=450,500$, and 550 MeV , respectively.

Decay width

- The variation of the $\Gamma_{D^{+} D^{*-} \pi^{0}}$ with the mass of the charmonium

FIG. 3. The variation of the $D^{+} D^{*-} \pi^{0}$ partial decay width with the mass of the D-wave vector charmonium. Note that $\Gamma_{D^{+} D^{*-} \pi^{0}}=$ $\frac{1}{12} \Gamma_{D D^{*} \pi}$ since we have ignored the isospin breaking. The blue, red, and black lines correspond to the predictions with different values of the harmonic oscillator strength $\beta=450,500$, and 550 MeV , respectively.

Decay width

- The variation of the $\Gamma_{D^{*+} D^{*-} \pi^{0}}$ with the mass of the charmonium

FIG. 4. The variation of the $D^{*+} D^{*-} \pi^{0}$ partial decay width with the mass of the D-wave vector charmonium. Note that $\Gamma_{D^{++} D^{*-} \pi^{0}}=$ $\frac{1}{6} \Gamma_{D^{*} D^{*} \pi}$ since we have ignored the isospin breaking. The blue, red, and black lines correspond to the predictions with different values of the harmonic oscillator strength $\beta=450,500$, and 550 MeV , respectively.

Decay width

- The partial widths are sensitive to mass.
- The partial widths increased as the mass increase.
- partial widths are not sensitive to β.

$\Upsilon(10860), \Upsilon(11020)$

TABLE VII. The $B^{(*)} \bar{B}^{(*)} \pi$ partial decay widths of the vector bottomonium (in units of MeV). $\mathcal{B}_{\text {exp }}$ represents the branching ratio for each corresponding channel.

Meson	State	Mode	$\beta=550 \mathrm{MeV}$		$\beta=600 \mathrm{MeV}$		$\beta=650 \mathrm{MeV}$		[36]	$\mathcal{B}_{\text {exp }}[55]$
			$\Gamma_{\text {th }}$	\mathcal{B}_{i}	$\Gamma_{\text {th }}$	\mathcal{B}_{i}	$\Gamma_{\text {th }}$	\mathcal{B}_{i}		
$\Upsilon(10860)$	$5^{3} S_{1}$	$B B \pi$	0.12	0.2\%	0.20	0.4\%	0.28	0.5\%		$(0.0 \pm 1.2) \%$
		$B B^{*} \pi$	1.36	2.7\%	1.22	2.4\%	0.94	1.8\%	(23-30) keV	$(7.3 \pm 2.3) \%$
		$B^{*} B^{*} \pi$	0.68	1.3\%	0.61	1.2\%	0.47	0.9\%	$(5-6.6) \mathrm{keV}$	$(1.0 \pm 1.4) \%$
$\Upsilon(11020)$	$6^{3} S_{1}$	$B B \pi$	0.17	0.3\%	0.34	0.7\%	0.55	1.1\%		
		$B B^{*} \pi$	2.50	5.1\%	3.17	6.5\%	3.41	7.0\%		
		$B^{*} B^{*} \pi$	2.12	4.3\%	2.69	5.5\%	2.97	6.1\%		

- $\Upsilon(10860): \mathcal{B}_{B B \pi}$ and $\mathcal{B}_{B^{*} B^{*} \pi}$ are consistent with the exp. data, while $\mathcal{B}_{B B^{*} \pi}$ is smaller but very close to the Belle's measurement.
- $\Upsilon(11020): \mathcal{B}_{B B^{*} \pi}$ and $\mathcal{B}_{B^{*} B^{*} \pi}$ are quite large.

PLB 671, 55 (2009)

Summary

- Extended the ${ }^{3} P_{0}$ model to study the three body open flavor decays of heavy quarkonium
- Charmonium
- $\Gamma\left[\psi(4360) \rightarrow D D^{*} \pi\right]$ can reach up to 1 MeV .
- $\mathcal{B}\left[\psi(4415) \rightarrow D D^{(*)} \pi\right]$ are within the exp. upper limits.
- $\psi(4660)$ decays dominantly into $D^{(*)} D^{(*)} \pi$.
- Bottomonium
- $\mathcal{B}\left[\Upsilon(5 S) \rightarrow B B \pi / B^{*} B^{*} \pi\right]$ are consistent with the exp.
- $\mathcal{B}\left[\Upsilon(5 S) \rightarrow B B^{*} \pi\right]$ is smaller but close to the Belle measurement.
- $\mathcal{B}\left[\Upsilon(6 S) \rightarrow B B^{*} \pi / B^{*} B^{*} \pi\right]$ can reach up to several MeV .

Thank You!

