

Gaussian Expansion Method and its application to DK, DDK, DDDK molecules

Tian-Wei Wu (吴天伟) Collaborator: Ming-Zhu Liu, Li-Sheng Geng, Emiko Hiyama, Manuel Pavon Valderrama 长沙 20190624

OUTLINE

Introduction to Gaussian Expansion Method

Application to DK, DDK, DDDK molecules

Results and Summary

Introduction to Gaussian Expansion Method

What's GEM
 Advantages of GEM

Precise Few-body Method-GEM

GEM is an ab initio basis expansion method to solve Schödinger Equation of Few-body systems by variational principle.

• Gaussian basis $\phi_{nlm}^G(r) = \phi_{nl}^G(r)Y_{lm}(\hat{r}),$ $\phi_{nl}^G(r) = N_{nl}r^l e^{-\nu_n r^2},$ $N_{nl} = \sqrt{\frac{2^{l+2}(2\nu_n)^{l+\frac{3}{2}}}{\sqrt{\pi}(2l+1)!!}} \quad (n = 1 - n_{max}).$ • GEM parameters $\nu_n = \frac{1}{r_n^2},$ $r_n = r_1 a^{n-1} \quad (n = 1 - n_{max}).$ Schödinger Equation and wave function

$$(H-E)\Psi_{JM} = 0$$
$$\Psi_{JM} = \sum_{n=1}^{n_{max}} C_n^{(J)} \Phi_{JM,n}.$$

Eigen equation and matrix elements

$$\sum_{n'=1}^{n_{max}} (H_{nn'}^{(J)} - EN_{nn'}^{(J)}) C_{n'}^{(J)} = 0,$$
$$H_{nn'}^{(J)} = \langle \Phi_{JM,n} | H | \Phi_{JM,n'} \rangle,$$
$$N_{nn'}^{(J)} = \langle \Phi_{JM,n} | 1 | \Phi_{JM,n'} \rangle.$$

High precision

The First ten Hydrogen energy levels

Table 1: The first ten Energies of H

$\mathrm{GEM/eV}$	Analytical/eV	Relative error
-13.60566399	$-13.\overline{60566439}$	-2.9E-8
-3.40141599	-3.40141609	-2.9E-8
-1.51174039	-1.51174048	-6.4E-8
-0.85035538	-0.85035402	-1.5E-7
-0.54422639	-0.54422657	-4.3E-7
-0.3779342	-0.3779351	-2.23E-6
-0.2776640	-0.2776666	-9.08E-6
-0.2125854	-0.2125885	-1.46E-5
-0.1679680	-0.1679712	-1.88E-5
-0.1360548	-0.1360566	-1.34E-5
	$\begin{array}{r} {\rm GEM/eV} \\ \hline -13.60566399 \\ -3.40141599 \\ -1.51174039 \\ -0.85035538 \\ -0.54422639 \\ -0.54422639 \\ -0.3779342 \\ -0.2776640 \\ -0.2125854 \\ -0.1679680 \\ -0.1360548 \end{array}$	GEM/eVAnalytical/eV-13.60566399-13.60566439-3.40141599-3.40141609-1.51174039-1.51174048-0.85035538-0.85035402-0.54422639-0.54422657-0.3779342-0.3779351-0.2776640-0.2776666-0.2125854-0.2125885-0.1679680-0.1679712-0.1360548-0.1360566

Obtain ten energy levels in one calculation with high precision.

Hydrogen wave functions

Figure 1: Radial wave functions of H

Rapid convergence

Deuteron binding energy with Gaussian basis numbers

Convergent at a very small basis number! Useful and important !

Deuteron: S-D mixing state

Calculated properties of Deuteron

Properties	AV8	Reid93
Binding Energy	$2.223855 \mathrm{MeV}$	$2.224575 \mathrm{MeV}$
Distribution	$93.91\%^3S_1, 6.09\%^3D_1$	$94.30\%^3 S_1, 5.70\%^3 D_1$
RMS Radius	$3.960 \mathrm{fm}$	$3.938 \mathrm{fm}$
Magnetic Moment	$0.845\mu_N$	$0.847\mu_N$
Quadrupole Moment	2.852×10^{-3} bar	$2.703 \times 10^{-3} \text{bar}$

Application to DK, DDK, DDDK molecules

DK, DDK, DDDK MOLECULES
 DDD₅₀* SYSTEM
 RESULTS AND CONCLUSION

Observation of Ds0*(2317)

In 2003, the BABAR collaboration observed a particle at the invariant mass 2320MeV.

- $\blacktriangleright D_S^+ \to K^+ K^- \pi^+$
- $E=(2316.8 \pm 0.4)$ MeV Width=(8.6 \pm 0.4) MeV

 $D_S^+ \to K^+ K^- \pi^+ \pi^0 \quad \mathsf{E}_{\mathsf{V}}$

 $E=(2317.6 \pm 1.3)$ MeV Width=(8.8 ± 1.1) MeV

$c\bar{s}$ or DK molecule?

The naïve quark model predicted mass as a $c\overline{s}$ state is about 160 MeV higher than the Exp.

Fitting of Ds0*(2317)

DK molecule picture:

Binding energy 45MeV, <3.8MeV width.

Strong Chiral LO attractive interaction and repulsive NLO interaction.

LO Weinberg-Tomozawa (WT) DK interaction

$$V_{DK}(\vec{q}) = -\frac{C_W(I)}{2f_\pi^2} ,$$

$$C_W(0) = 2 \text{ and } C_W(1) = 0 ,$$

$$V_{DK}(\vec{r}) = -\frac{C_W(I)}{2f_\pi^2} \delta^{(3)}(\vec{r}) ,$$

$$V_{DK}(r; R_c) = -\frac{C_W(I)}{2f_\pi^2} \frac{e^{-(r/R_c)^2}}{\pi^{3/2}R_c^3} ,$$

DK potential (S-wave, spin=0, isospin=0)

$$V_{DK}(\vec{r}; R_c) = C_S \, \frac{e^{-(r/R_S)^2}}{\pi^{3/2} R_S^3} + C(R_C) \, \frac{e^{-(r/R_c)^2}}{\pi^{3/2} R_c^3}$$

NLO repulsive core and LO attractive part

Fitting of Ds0*(2317)

DK molecule picture:

Binding energy 45MeV, <3.8MeV width.

Strong Chiral LO attractive interaction and repulsive NLO interaction.

LO Weinberg-Tomozawa (WT) DK interaction

$$V_{DK}(\vec{q}) = -\frac{C_W(I)}{2f_\pi^2} ,$$

$$C_W(0) = 2 \text{ and } C_W(1) = 0 ,$$

$$V_{DK}(\vec{r}) = -\frac{C_W(I)}{2f_\pi^2} \delta^{(3)}(\vec{r}) ,$$

$$V_{DK}(r; R_c) = -\frac{C_W(I)}{2f_\pi^2} \frac{e^{-(r/R_c)^2}}{\pi^{3/2}R_c^3} ,$$

DK potential (S-wave, spin=0, isospin=0)

$$V_{DK}(\vec{r}; R_c) = C_S \, \frac{e^{-(r/R_S)^2}}{\pi^{3/2} R_S^3} + C(R_C) \, \frac{e^{-(r/R_c)^2}}{\pi^{3/2} R_c^3}$$

NLO repulsive core and LO attractive part

Can we build up **multi-component** molecular states?

- Experiments, theory, and lattice QCD all show that DK interaction is strong enough to form the Ds0*(2317)
- A natural question is: if we add one more D, can they form molecules of three hadrons or more?
- We study DDK and DDDK systems to explore this straightforward and naive question

Jacobian coordinates and wave functions of DDK and DDDK systems

FIG. 2. Three Jacobian coordinates for DDK system

$$\begin{split} \Psi_{JM}^{total} &= \sum_{c,\alpha} C_{c,\alpha} \Psi_{JM,\alpha}^{c}(\mathbf{r}_{c},\mathbf{R}_{c}) \\ \Psi_{JM,\alpha}^{c}(\mathbf{r}_{c},\mathbf{R}_{c}) &= H_{T,t}^{c} \otimes [\Phi_{lL,\Lambda}^{c}]_{JM} \\ \Phi_{lL,\Lambda}^{c}(\mathbf{r}_{c},\mathbf{R}_{c}) &= [\phi_{n_{c}l_{c}}^{G}(\mathbf{r}_{c})\psi_{N_{c}L_{c}}^{G}(\mathbf{R}_{c})]_{\Lambda}, \\ \phi_{nlm}^{G}(\mathbf{r}_{c}) &= N_{nl}r_{c}^{l}e^{-\nu_{n}r_{c}^{2}}Y_{lm}(\hat{r}_{c}), \\ \psi_{NLM}^{G}(\mathbf{R}_{c}) &= N_{NL}R_{c}^{L}e^{-\lambda_{n}R_{c}^{2}}Y_{LM}(\hat{R}_{c}). \end{split}$$

$$\Psi_{I(J^P)}^{total} = \sum_{c,\alpha} A_{c,\alpha} \Psi_{\alpha}^c(\boldsymbol{r}_c, \boldsymbol{R}_c, \boldsymbol{\rho}_c), \qquad c = 1 - 18$$
$$\Psi_{\alpha}^c(\boldsymbol{r}_c, \boldsymbol{R}_c, \boldsymbol{\rho}_c) = H_{t,T,I}^c \otimes \Phi_{lL\lambda,\sigma\Lambda}^{c,JP}.$$

$$\Phi_{lL\lambda,\sigma\Lambda}^{c} = [\phi_{n_{c}l_{c}}^{G}(\boldsymbol{r}_{c})\psi_{N_{c}L_{c}}^{G}(\boldsymbol{R}_{c})]_{\sigma_{c}}\varphi_{\nu_{c}\lambda_{c}}^{G}(\boldsymbol{\rho}_{c})]_{\Lambda}$$

 \sim

$$\phi_{nlm}^G(\boldsymbol{r}_c) = N_{nl} r_c^l e^{-\nu_n r_c^2} Y_{lm}(\hat{r}_c),$$

$$\psi_{NLM}^{G}(\boldsymbol{R}_{c}) = N_{NL}R_{c}^{L}e^{-\lambda_{N}R_{c}^{2}}Y_{LM}(R_{c}),$$
$$\varphi_{\nu\lambda\mu}^{G}(\boldsymbol{R}_{c}) = N_{\nu\lambda}\rho_{c}^{\lambda}e^{-\omega_{\nu}\rho_{c}^{2}}Y_{\lambda\mu}(\hat{\rho}_{c}).$$

DD interaction

DD OBE potential

$$\begin{split} V_{DD}(r;\Lambda) &= V_{\rho}(r;\Lambda) + V_{\omega}(r;\Lambda) + V_{\sigma}(r;\Lambda) \\ V_{DD}(r;\Lambda) &= -g_{\sigma}^{2} m_{\sigma} W_{C}(m_{\sigma}r,\frac{\Lambda}{m_{\sigma}}) , \\ V_{\sigma}(r;\Lambda) &= -g_{\sigma}^{2} m_{\sigma} W_{C}(m_{\sigma}r,\frac{\Lambda}{m_{\sigma}}) , \\ V_{\rho}(r;\Lambda) &= +\vec{\tau_{1}} \cdot \vec{\tau_{2}} g_{\rho}^{2} m_{\rho} W_{C}(m_{\rho}r,\frac{\Lambda}{m_{\rho}}) , \\ V_{\omega}(r;\Lambda) &= +g_{\omega}^{2} m_{\omega} W_{C}(m_{\omega}r,\frac{\Lambda}{m_{\omega}}) , \end{split} \qquad \begin{aligned} W_{C}(x,\lambda) &= \frac{e^{-x}}{4\pi x} - \lambda \frac{e^{-\lambda x}}{4\pi \lambda x} - \frac{(\lambda^{2}-1)}{2\lambda} \frac{e^{-\lambda x}}{4\pi} . \\ m_{\rho} &= 0.770 \text{GeV}, \ m_{\omega} &= 0.780 \text{ GeV}, \ m_{\sigma} &= 0.6 \text{ GeV}, \\ g_{\rho} &= g_{\omega} &= 2.6, \ g_{\sigma} &= 3.4. \end{aligned}$$

M.Z Liu, T.W Wu et.cl Phys.Rev. D98 (2018) no.1, 014014

The cutoff Λ is set by reproducing the X(3872) pole, yielding 1.01GeV, here for simplicity we set it to 1.0GeV.

DDK and DDDK Binding energy

 $V_{DK}(\vec{r};R_c) = C_S \, \frac{e^{-(r/R_S)^2}}{\pi^{3/2} R_S^3} + C(R_C) \, \frac{e^{-(r/R_c)^2}}{\pi^{3/2} R_c^3} \,,$

DK, DDK, DDDK binding energy with the repulsive core parameter Cs ranging from 0-3000MeV.

TABLE IV. Binding energies (in units of MeV) of DDK and DDDK systems with and withou

the DD interaction.

$\frac{C_S}{\pi R_S^3} \frac{C(R_c)}{\pi R_c^3}$	E_2	$E_3(\text{only } V_{DK})$	$E_3(V_{DK}+V_{DD})$	$E_4(\text{only}V_{DK})$	$E_4(V_{DK}+V_{DD})$
	$R_S = 0.5 \text{fm}$	1	$R_c = 1 \mathrm{fm}$		
0 -320.1	-45.0	-65.8	-71.2	-89.4	-106.8
500 - 455.4	-45.0	-65.8	-70.4	-89.2	-103.5
1000 - 562.6	-45.0	-65.7	-69.7	-88.8	-101.4
3000 -838.7	-45.0	-65.0	-68.4	-87.0	-97.3
	$R_S = 0.5 \text{fm}$	1	$R_c = 2 \mathrm{fm}$		
0 -149.1	-45.0	-66.0	-68.8, -45.1	-88.7, -66.3	-97.6, -70.7
500 - 178.4	-45.0	-65.9	-68.2, -45.5	-88.5, -66.7	-95.5, -70.9
1000 - 195.0	-45.0	-65.8, -45.2	-67.9, -45.8	-88.2, -66.9	-94.5, -71.2
3000 - 225.9	-45.0	-65.3, -45.6	-67.2, -46.6	-87.0, -67.0	-92.6, -71.7
	$R_S = 0.5 \text{fm}$	1	$R_c = 3 \mathrm{fm}$		
0 -107.0	-45.0	-66.2, -47.3	-68.0, -48.3	-88.8, -70.2	-94.4, -74.3
500 -119.4	-45.0	-66.2, -48.2	-67.7, -49.3	-88.7, -71.0	-93.2, -74.8
1000 - 125.6	-45.0	-66.1, -48.7	-67.5, -49.8	-88.4, -71.3	-92.5, -75.2
3000 - 136.2	-45.0	-65.8, -49.4	-67.1, -50.7	-87.6, -71.7	-91.4, -75.7

TABLE IV. Binding energies (in units of MeV) of DDK and DDDK systems with and withou

the DD interaction.

$\frac{C_S}{\pi R_S^3}$	$\frac{C(R_c)}{\pi R_c^3}$	E_2	$E_3(\text{only } V_{DK})$	$E_3(V_{DK}+V_{DD})$	$E_4(\text{only}V_{DK})$	$E_4(V_{DK}+V_{DD})$
		$R_S = 0.5 \mathrm{fm}$		$R_c = 1 \mathrm{fm}$		
0	-320.1	-45.0	-65.8	-71.2	-89.4	-106.8
500	-455.4	-45.0	-65.8	-70.4	-89.2	-103.5
1000	-562.6	-45.0	-65.7	-69.7	-88.8	-101.4
3000	-838.7	-45.0	-65.0	-68.4	-87.0	-97.3
		$R_S = 0.5 \text{fm}$		$R_c = 2 \mathrm{fm}$		
0	-149.1	-45.0	-66.0	-68.8, -45.1	-88.7, -66.3	-97.6, -70.7
500	-178.4	-45.0	-65.9	-68.2, -45.5	-88.5, -66.7	-95.5, -70.9
1000	-195.0	-45.0	-65.8, -45.2	-67.9, -45.8	-88.2, -66.9	-94.5, -71.2
3000	-225.9	-45.0	-65.3, -45.6	-67.2, -46.6	-87.0, -67.0	-92.6, -71.7
		$R_S = 0.5 \text{fm}$		$R_c = 3 \mathrm{fm}$		
0	-107.0	-45.0	-66.2, -47.3	-68.0, -48.3	-88.8, -70.2	-94.4, -74.3
500	-119.4	-45.0	-66.2, -48.2	-67.7, -49.3	-88.7, -71.0	-93.2, -74.8
1000	-125.6	-45.0	-66.1, -48.7	-67.5, -49.8	-88.4, -71.3	-92.5, -75.2
3000	-136.2	-45.0	-65.8, -49.4	-67.1, -50.7	-87.6, -71.7	-91.4, -75.7

DD interaction makes the DDK and DDDK systems more bound, but only by a few MeV.

TABLE IV. Binding energies (in units of MeV) of DDK and DDDK systems with and withou

the DD	interaction.
----------	--------------

	$\frac{C_S}{\pi R_S^3} \frac{C(R_c}{\pi R_c^3}$	<u>,)</u>	E_2	$E_3(\text{only } V_{DK})$	$E_3(V_{DK}+V_{DD})$	$E_4(\text{only}V_{DK})$	$E_4(V_{DK}+V_{DD})$
			$R_S = 0.5 \text{fm}$		$R_c = 1 \mathrm{fm}$		
	0 -320).1	-45.0	-65.8	-71.2	-89.4	-106.8
	500 -455	5.4	-45.0	-65.8	-70.4	-89.2	-103.5
	1000 - 562	2.6	-45.0	-65.7	-69.7	-88.8	-101.4
	3000 -838	3.7	-45.0	-65.0	-68.4	-87.0	-97.3
-			$R_S = 0.5 \mathrm{fm}$		$R_c = 2 \mathrm{fm}$		
-	0 -149).1	-45.0	-66.0	-68.8, -45.1	-88.7, -66.3	-97.6, -70.7
	500 -178	3.4	-45.0	-65.9	-68.2, -45.5	-88.5, -66.7	-95.5, -70.9
	1000 - 195	5.0	-45.0	-65.8, -45.2	-67.9, -45.8	-88.2, -66.9	-94.5, -71.2
	3000 - 225	5.9	-45.0	-65.3, -45.6	-67.2, -46.6	-87.0, -67.0	-92.6, -71.7
			$R_S = 0.5 \mathrm{fm}$		$R_c = 3 \mathrm{fm}$		
	0 -107	7.0	-45.0	-66.2, -47.3	-68.0, -48.3	-88.8, -70.2	-94.4, -74.3
	500 -119).4	-45.0	-66.2, -48.2	-67.7, -49.3	-88.7, -71.0	-93.2, -74.8
	1000 - 125	5.6	-45.0	-66.1, -48.7	-67.5, -49.8	-88.4, -71.3	-92.5, -75.2
_	3000 −136	5.2	-45.0	-65.8, -49.4	-67.1, -50.7	-87.6, -71.7	-91.4, -75.7

DD interaction makes the DDK and DDDK systems more bound, but only by a few MeV.

The existence of the DDK and DDDK bound states is rather robust with respect to the likely existence of a short-range repulsive core.

TABLE IV. Binding energies (in units of MeV) of DDK and DDDK systems with and withou

the	DD	interaction.

$\frac{C_S}{\pi R_S^3} \frac{C(R_c)}{\pi R_c^3}$	E_2	$E_3(\text{only } V_{DK})$	$E_3(V_{DK}+V_{DD})$	$E_4(\text{only}V_{DK})$	$E_4(V_{DK}+V_{DD})$
	$R_S = 0.5 \mathrm{fm}$	l	$R_c = 1 \mathrm{fm}$		
0 -320.3	1 - 45.0	-65.8	-71.2	-89.4	-106.8
500 -455.4	4 -45.0	-65.8	-70.4	-89.2	-103.5
1000 - 562.0	6 - 45.0	-65.7	-69.7	-88.8	-101.4
3000 -838.	7 - 45.0	-65.0	-68.4	-87.0	-97.3
	$R_S = 0.5 \text{fm}$	l	$R_c = 2 \mathrm{fm}$		
0 -149.3	1 - 45.0	-66.0	-68.8, -45.1	-88.7, -66.3	-97.6, -70.7
500 - 178.4	4 - 45.0	-65.9	-68.2, -45.5	-88.5, -66.7	-95.5, -70.9
1000 - 195.0	0 - 45.0	-65.8, -45.2	-67.9, -45.8	-88.2, -66.9	-94.5, -71.2
3000 - 225.9	9 - 45.0	-65.3, -45.6	-67.2, -46.6	-87.0, -67.0	-92.6, -71.7
	$R_S = 0.5 \text{fm}$	l	$R_c = 3 \mathrm{fm}$		
0 -107.0	0 -45.0	-66.2, -47.3	-68.0, -48.3	-88.8, -70.2	-94.4, -74.3
500 -119.4	4 - 45.0	-66.2, -48.2	-67.7, -49.3	-88.7, -71.0	-93.2, -74.8
1000 - 125.0	6 - 45.0	-66.1, -48.7	-67.5, -49.8	-88.4, -71.3	-92.5, -75.2
3000 -136.2	2 - 45.0	-65.8, -49.4	-67.1, -50.7	-87.6, -71.7	-91.4, -75.7

DD interaction makes the DDK and DDDK systems more bound, but only by a few MeV.

The existence of the DDK and DDDK bound states is rather robust with respect to the likely existence of a short-range repulsive core.

As the range of the attraction becomes larger, two bound state solutions appear instead of one.

$\frac{C_S}{\pi R_S^3}$	$\frac{C(R_c)}{\pi R_c^3}$	$r_2(DK)$	$r_3(DK)$	$r_3(DD)$	< T >	$\langle V_{DK} \rangle$	$\langle V_{DD} \rangle$		
$R_S = 0.5 \text{fm} \ R_c = 1 \text{fm}$									
0	-320.1	1.28	1.32	1.36	124.37	-189.61	-5.98		
500	-455.4	1.39	1.44	1.47	99.51	-164.83	-5.03		
1000	-562.6	1.46	1.53	1.54	91.43	-156.67	-4.51		
3000	-838.7	1.61	1.69	1.68	93.24	-157.80	-3.82		
			$R_S = 0.5 \mathrm{fm}$	$R_c = 2 \mathrm{fm}$					
0	-149.1	1.74	1.80	1.80	60.20	-125.74	-3.23		
500	-178.4	1.91	1.98	1.96	51.00	-116.59	-2.64		
1000	-195.0	1.99	2.07	2.04	50.63	-116.12	-2.43		
3000	-225.9	2.13	2.22	2.15	53.61	-118.59	-2.24		
			$R_S = 0.5 \text{fm}$	$R_c = 3 \text{fm}$					
0	-107.0	2.13	2.19	2.17	39.49	-105.35	-2.13		
500	-119.4	2.31	2.38	2.34	34.80	-100.73	-1.77		
1000	-125.6	2.37	2.47	2.42	34.90	-100.77	-1.65		
3000	-136.2	2.53	2.61	2.53	36.66	-102.24	-1.54		

$\frac{C_S}{\pi R_S^3}$	$\frac{C(R_c)}{\pi R_c^3}$	$r_2(DK)$	$r_3(DK)$	$r_3(DD)$	< T >	$< V_{DK} >$	$\langle V_{DD} \rangle$		
			$R_S = 0.5 \mathrm{fm}$	$R_c = 1 \mathrm{fm}$					
0	-320.1	1.28	1.32	1.36	124.37	-189.61	-5.98		
500	-455.4	1.39	1.44	1.47	99.51	-164.83	-5.03		
1000	-562.6	1.46	1.53	1.54	91.43	-156.67	-4.51		
3000	-838.7	1.61	1.69	1.68	93.24	-157.80	-3.82		
	$R_S = 0.5 \text{fm} \ R_c = 2 \text{fm}$								
0	-149.1	1.74	1.80	1.80	60.20	-125.74	-3.23		
500	-178.4	1.91	1.98	1.96	51.00	-116.59	-2.64		
1000	-195.0	1.99	2.07	2.04	50.63	-116.12	-2.43		
3000	-225.9	2.13	2.22	2.15	53.61	-118.59	-2.24		
			$R_S = 0.5 \mathrm{fm}$	$R_c = 3 \mathrm{fm}$					
0	-107.0	2.13	2.19	2.17	39.49	-105.35	-2.13		
500	-119.4	2.31	2.38	2.34	34.80	-100.73	-1.77		
1000	-125.6	2.37	2.47	2.42	34.90	-100.77	-1.65		
3000	-136.2	2.53	2.61	2.53	36.66	-102.24	-1.54		

 The RMS radius of the Ds0(2317), which ranges from 1.2 to 2.6 fm, increases with the cutoff Rc

$\frac{C_S}{\pi R_S^3}$	$\frac{C(R_c)}{\pi R_c^3}$	$r_2(DK)$	$r_3(DK)$	$r_3(DD)$	< T >	$< V_{DK} >$	$\langle V_{DD} \rangle$
			$R_S = 0.5 \mathrm{fm}$	$R_c = 1 \mathrm{fm}$			
0	-320.1	1.28	1.32	1.36	124.37	-189.61	-5.98
500	-455.4	1.39	1.44	1.47	99.51	-164.83	-5.03
1000	-562.6	1.46	1.53	1.54	91.43	-156.67	-4.51
3000	-838.7	1.61	1.69	1.68	93.24	-157.80	-3.82
			$R_S = 0.5 \text{fm}$	$R_c = 2 \mathrm{fm}$			
0	-149.1	1.74	1.80	1.80	60.20	-125.74	-3.23
500	-178.4	1.91	1.98	1.96	51.00	-116.59	-2.64
1000	-195.0	1.99	2.07	2.04	50.63	-116.12	-2.43
3000	-225.9	2.13	2.22	2.15	53.61	-118.59	-2.24
			$R_S = 0.5 \text{fm}$	$R_c = 3 \text{fm}$			
0	-107.0	2.13	2.19	2.17	39.49	-105.35	-2.13
500	-119.4	2.31	2.38	2.34	34.80	-100.73	-1.77
1000	-125.6	2.37	2.47	2.42	34.90	-100.77	-1.65
3000	-136.2	2.53	2.61	2.53	36.66	-102.24	-1.54

- The RMS radius of the Ds0(2317), which ranges from 1.2 to 2.6 fm, increases with the cutoff Rc
- The geometry of the DDK system is more or less of a equilateral triangle.

$\frac{C_S}{\pi R_S^3}$	$\frac{C(R_c)}{\pi R_c^3}$	$r_2(DK)$	$r_3(DK)$	$r_3(DD)$	< T >	$\langle V_{DK} \rangle$	$\langle V_{DD} \rangle$
			$R_S = 0.5 \mathrm{fm}$	$R_c = 1 \mathrm{fm}$			
0	-320.1	1.28	1.32	1.36	124.37	-189.61	-5.98
500	-455.4	1.39	1.44	1.47	99.51	-164.83	-5.03
1000	-562.6	1.46	1.53	1.54	91.43	-156.67	-4.51
3000	-838.7	1.61	1.69	1.68	93.24	-157.80	-3.82
			$R_S = 0.5 \mathrm{fm}$	$R_c = 2 \mathrm{fm}$			
0	-149.1	1.74	1.80	1.80	60.20	-125.74	-3.23
500	-178.4	1.91	1.98	1.96	51.00	-116.59	-2.64
1000	-195.0	1.99	2.07	2.04	50.63	-116.12	-2.43
3000	-225.9	2.13	2.22	2.15	53.61	-118.59	-2.24
			$R_S = 0.5 \text{fm}$	$R_c = 3 \mathrm{fm}$			
0	-107.0	2.13	2.19	2.17	39.49	-105.35	-2.13
500	-119.4	2.31	2.38	2.34	34.80	-100.73	-1.77
1000	-125.6	2.37	2.47	2.42	34.90	-100.77	-1.65
3000	-136.2	2.53	2.61	2.53	36.66	-102.24	-1.54

- The RMS radius of the Ds0(2317), which ranges from 1.2 to 2.6 fm, increases with the cutoff Rc
- The geometry of the DDK system is more or less of a equilateral triangle.
- The DD interaction is weakly attractive, accounting for only a few MeV of the total potential energy

DDs0* and DDDs0* results

The DDDs0* system, which is equivalent to DDDK 4-body system by regarding the DK as a Ds0*(2317).

DDs0* OKE Potential

$$V_{OKE}(\vec{q}) = -h^2 \frac{\omega_K^2}{f_\pi^2} \frac{1}{\mu_K^2 + \vec{q}^2},$$
$$\mu_K = \sqrt{m_K^2 - \omega_K^2}.$$

DDs0* Potential in coordinate space

$$V_{DD_{so}^{*}}(r) = -h^{2} \frac{\omega_{K}^{2}}{f_{\pi}^{2}} \left(\frac{e^{-\mu_{K}r}}{4\pi r} - \frac{e^{-\Lambda' r}}{4\pi r} - \frac{(\Lambda'^{2} - \mu_{K}^{2})e^{-\Lambda' r}}{8\pi\Lambda'} \right)$$

$$h = 0.7 \text{ and } f_{\pi} = 130 \text{ MeV.}$$

Λ'	$B_{DD_{s0}^*}$	$B_{DDD_{s0}^*}(\text{only } V_{DD_{s0}^*})$	$B_{DDD_{s0}^*}(V_{DD} + V_{DD_{s0}^*})$
0.8	-5.1	-11.5	-13.9
1.0	-8.5	-18.9	-22.5
1.2	-11.7	-25.8	-30.3
1.4	-14.5	-31.9	-37.2
1.6	-17.0	-37.2	-43.3

DDs0* binding energy is 50-62MeV, DDDs0* binding energy is 59-88MeV, with respect to DDK and DDDK thresholds. which is consistent with DDK and DDDK results.

Summary

- We have addressed the question of whether one can build up multi-component molecular states. The answer is yes, where we find a bound DDK trimer and DDDK tetramer.
- We predict the DDK trimer will bind by about 70MeV and the DDDK tetramer by about 100MeV, with variations of a few MeV at most stemming from the uncertainties in the DK and DD potentials.
- ► In addition, even if one treats the Ds0(2317) as a genuine cs̄ state, we still predict DDs0 and DDDs0 bound states with the same quantum numbers as the DDK trimer and DDDK tetramer.
- ► To those of D*K, BK and B*K, we naively expect the existence of the heavy quark symmetry partners of the DDK and DDDK states .

Thanks for your attention!

"