

Mesonic dynamic and QCD phase transition

尹诗 大连理工大学,物理学院 第十八届中高能核物理大会 湖南,长沙 2019年6月24日

This work is done in cooperation with Rui Wen(温睿) and Wei-jie Fu(付伟杰)

Outline

- Introduction
- Thermodynamic quantities
- Baryon number fluctuation
- Effective potential and Yukawa coupling
- Summary

Introduction

QCD Phase diagram

The Hot QCD White Paper (2015)

Functional renormalization group

effective action of the PQM: $N_f = 2$ 2 flavor $\Gamma_k = \int_x \{Z_{q,k} \overline{q} (\gamma_\mu \partial_\mu - \gamma_0 (\mu + igA_0))q + \frac{1}{2} Z_{\phi,k} (\partial_\mu \phi)^2 + h_k \overline{q} (T^0 \sigma + i\gamma_5 \vec{T} \cdot \vec{\pi})q + V_k (\rho) - c\sigma\} + \cdots$

flow equation:

Gluon

Glue potential:

$$V_{glue}(L,\bar{L}) = -\frac{a(T)}{2}\bar{L}L + b(T)\ln M_{H}(L,\bar{L}) + \frac{c(T)}{2}(L^{3} + \bar{L}^{3}) + d(T)(\bar{L}L)^{2}$$
$$M_{H}(L,\bar{L}) = 1 - 6\bar{L}L + 4(L^{3} + \bar{L}^{3}) - 3(\bar{L}L)^{2}$$

Distributior function

$$\overline{L}(\vec{x}) = \frac{1}{N_c} \left\langle Tr \mathcal{P}^{\dagger}(\vec{x}) \right\rangle$$

 $\mathcal{P}(\vec{x}) = \mathcal{P}\exp\left(ig\int_{0}^{\beta}d\tau A_{0}(\vec{x},\tau)\right)$

bution
$$n_F(x,T) = \frac{1}{\exp(\frac{x}{T}) + 1}$$

Replace

$$n_F(x,T,L,\overline{L}) = \frac{1 + 2\overline{L}e^{x/T} + Le^{2x/T}}{1 + 3\overline{L}e^{x/T} + 3Le^{2x/T} + e^{3x/T}}$$

Break of the O(4) symmetry

In finite temperature field theory O(4)-symmetry replaced by $\mathcal{Z}_{\gamma} \otimes O(3)$

momentum:
$$p = (\omega_n, \vec{p}) = (2\pi nT, \vec{p})$$

Here we investigate the influence of the meson wave function renormalization

$$\Gamma_{k} = \int_{x} \{Z_{q,k} \overline{q} (\gamma_{\mu} \partial_{\mu} - \gamma_{0} (\mu + igA_{0}))q + \frac{1}{2} Z_{\phi,k} (\partial_{\mu} \phi)^{2} + h_{k} \overline{q} (T^{0} \sigma + i\gamma_{5} \vec{T} \cdot \vec{\pi})q + V_{k} (\rho) - c\sigma\} + \cdots$$

 $\begin{aligned} \text{Propagator:} \\ G_{k}^{\pi} &= \frac{1}{Z_{\phi,k}(q_{0}^{2} + \vec{q}^{2}(1 + r_{B}) + \vec{m}_{\pi}^{2})} \\ G_{k}^{\pi} &= \frac{1}{Z_{\phi,k}^{\parallel}}q_{0}^{2} + Z_{\phi,k}^{\perp}\vec{q}^{2}(1 + r_{B}) + m_{\pi}^{2}} \end{aligned} \qquad \Gamma_{k} &= \int_{x} \{Z_{q,k}\overline{q}(\gamma_{\mu}\partial_{\mu} - \gamma_{0}(\mu + igA_{0}))q + \frac{1}{2}Z_{\phi,k}^{\parallel}(\partial_{0}\phi)^{2} \\ &+ \frac{1}{2}Z_{\phi,k}^{\perp}(\partial_{i}\phi)^{2} + h_{k}\overline{q}(T^{0}\sigma + i\gamma_{5}\vec{T}\cdot\vec{\pi})q + V_{k}(\rho) - c\sigma\} + \cdots \end{aligned}$

Flow equation

2

The flow of the wave function renormalization:

(anomalous dimension)

$$\eta_{\phi,k}^{\perp} = -\frac{\partial_t Z_{\phi,k}^{\perp}}{Z_{\phi,k}^{\perp}}$$
$$\eta_{\phi,k}^{\parallel} = -\frac{\partial_t Z_{\phi,k}^{\parallel}}{Z_{\phi,k}^{\parallel}}$$

Wetterich equation:

$$\partial_t \Gamma_k = \frac{1}{2} STr\left\{\tilde{\partial}_t \ln\left(\Gamma_k^{(2)} + R_k\right)\right\}$$

$$\partial_t Z_{\phi,k} \sim -\frac{1}{2} \tilde{\partial}_t (G_k^{\sigma} F_k^{\sigma\pi} G_k^{\pi} F_k^{\sigma\pi}) + \frac{1}{2} \tilde{\partial}_t (G_k^{q\overline{q}} F_k^{\overline{q}q} G_k^{q\overline{q}} F_k^{\overline{q}q})$$

 $+\frac{1}{2}$

$$\partial_t = k \frac{\partial}{\partial k}$$

Renormalized dimensionless meson mass and quark mass:

 $\overline{m}_{\pi,k}^{2} = \frac{V_{k}(\rho)}{k^{2}Z_{\phi,k}^{\perp}}$ $\overline{m}_{\sigma,k}^{2} = \frac{V_{k}'(\rho) + 2\rho V_{k}''(\rho)}{k^{2}Z_{\phi,k}^{\perp}}$ $\overline{m}_{q,k}^{2} = \frac{h_{k}^{2}\rho}{2k^{2}Z_{q,k}^{2}}$

Fluctuation:

$$\chi_n^B = \frac{\partial^n}{\partial (\mu_B/T)^n} \frac{p}{T^4}$$

 \sim^B

Kurtosis:

$$\kappa\sigma^2 = \frac{\chi_4}{\chi_2^B}$$

Trace anomaly:

$$\varepsilon - 3p$$

$$T^4$$

Pion decay constant:

$$f_{\pi} = <\sigma >$$

The meson wave function renormalization as a function of k at T=0

The pion mass and quark mass as a function of temperature

Trace-anomaly and Pion decay constant as a function of temperature

Baryon number fluctuation

Baryon number fluctuation

Baryon number fluctuation

Effective potential and Yukawa coupling

Effective potential:

Yukawa coupling:

$$\overline{h}_{k}(\overline{\rho}) = \sum_{n=0}^{N} \frac{h_{n,k}}{n!} (\overline{\rho} - \overline{\kappa}_{k})^{n}$$
$$n_{h} = 5$$

Fix point: $\overline{\kappa}_k = Z_{\phi,k}^{\perp} \kappa$

Physical point: $\overline{\mathcal{K}}_{k} = Z_{\phi k}^{\perp} \mathcal{K}_{k}$

Effective potential and Yukawa coupling

The fix point and physical point for effective potential:

Effective potential and Yukawa coupling

The n=0 for Yukawa coupling and n=5 for Yukawa coupling:

Summary

- ★ The meson wave function renormalization has a little affect on the low order thermodynamic quantities and will little suppress the higher order fluctuations at high chemical potential.
- ★ The physical point expansion of the effective potential will accelerate the de-couple of the meson mass as the function of temperature. The expansion of the Yukawa coupling will slow down the decouple of the meson mass as the function of temperature

Thanks for your attention