

A Forward Rapidity Upgrade at

STAR 🖈

第十八届全国中高能核物理大会, 2019年6月21日-25日, 长沙

Outline

STAR Detector Upgrades

Successful, <u>on-time & under budget</u> completion of the iTPC upgrade

SDU iTPC local group

2019 Event Display : Au+Au 19.6 GeV Full tracking with all iTPC sectors

Event Plane Detector

Replaces Beam-Beam Counter (BBC)

- ✓ Improved triggering capabilities
- ✓ Improves background rejection

$\text{Coverage}: 2.1 < |\eta| < 5.1$

Greatly improves event plane resolution

- ✓ Especially 1^{st} order event plane
- ✓ Crucial for achieving BES II physics goals

Smooth installation (completed in 2018), commissioning, and operation

Already used for physics analysis of 2018 data

STAR Note 666 https://drupal.star.bnl.gov/STAR/starnotes/public/sno666

- ✓ Each (East, West) wheel:
- ✓ 16 tile "rows" at given radius
- ✓ 24 tiles per row (except 12 for innermost)
- ✓ 372 tiles x 2 = 744 tiles in total

Event Plane Performance

1st order Event Plane Resolution

→ Significant improvement across all centrality

Added coverage from EPD

ightarrow Allows measurement of v_1 over ~10 units of $\eta!$

Endcap Time-of-Flight Detector

Full eTOF installation : completed Nov 22, 2018

Inside face of east pole-tip, partially installed

Fully installed and cabled

Endcap Time-of-Flight Detector

STAR Physics Program after Beam Energy Scan II

 ✓ STAR Upgrades for BES II → provide <u>unique</u> opportunities at midrapidity in high energy A+A, p+A, and p+p

The STAR mid-rapidity pp, pA, AA physics program beyond BES-II :

https://drupal.star.bnl.gov/STAR/starnotes/public/sno669

Forward Rapidity Physics at STAR

- ✓ Unique program addressing several fundamental questions in QCD
- Essential to RHIC cold & hot QCD physics mission + fully realize scientific promise of future Electron Ion Collider

STAR Forward Detectors: FTS + FCS

Silicon + small-Strip Thin Gap Chambers (sTGC)

STAR Forward Upgrade Status

https://drupal.star.bnl.gov/STAR/system/files/ForwardUpgrade.Nov_.2018.Review_o.docx

Associate Laboratory Director's Review

Reviewed on 19th, November 2018 :

- Physics requirements
- Cost & Schedule for each subsystem
- Readout & Triggering
- Plan for integration and in-situ testing

Positive Feedback & Recommendations

<u>"Good progress has been made on an intriguing concept for a cold-QCD</u> program to run in the near future in the forward direction at STAR"

NSF proposal submitted Jan 2019

- Funding for Forward Calorimeter systems
- Received very positive feedback
- Awaiting final response fully expect funding

The STAR Forward Calorimeter System and Forward Tracking System

Proposal November 2018

Final Report ALD's review : https://drupal.star.bnl.gov/STAR/system/files/STAR%20forward%20upgrade%20review%20Final%20Report.pdf

Organizational Structure

杨驰,第十八届全国中高能核物理大会,长沙

Forward Tracking System

	Requirement	Motivation
Momentum Resolution	< 30%	A+A goals
Tracking Efficiency	> 80% @ 100 tracks / event	A+A goals
Charge Separation	_	p+p / p+A goals

Silicon mini-strip disks -- 3 layers

- Location from interaction point : z = 90, 140, 187 cm
- ✓ Build on and utilize STAR experience of successful Intermediate Silicon Tracker (IST) detector

small-strip Thin Gap Chamber -- 4 layers

- Location from interaction point : z = 270, 300, 330, 360 cm
- ✓ Significant reduction in cost
- Build on and utilize SDU experience of successful inner Time Projection Chamber (iTPC) detector

https://drupal.star.bnl.gov/STAR/starnotes/public/sno648

Forward Tracking System

杨驰,第十八届全国中高能核物理大会,长沙

Forward Silicon Tracker (FST) Current Status

Forward sTGC Tracker (FTT) Current Status

- ✓ 30 cm x 30 cm prototype delivered to BNL in January 2019
- Module tested in test-stand using cosmic rays + scintillator pads for trigger
- Connected to STAR Data Acquisition system first test data being analyzed now
- ✓ Installed in STAR on Jun. 5, 2019

Prototype in STAR Clean Room

On the Mounting Structure

sTGC at SDU Current Status

Garfield Simulation on different gas options

- ✓ R&D started from Mar. 2018
 - ✓ 30cmx30cm prototype finished in Oct. 2018
 - ✓ Full-size 6ocmx6ocm prototype in R&D
 - Final designation is in preparing

Forward Calorimeter System

EMCal

HCal

FCS Requirements

Detector	pp and pA	AA
ECal	~10%/√E	~20%/√E
HCal	~50%/√E+10%	

Electromagnetic Calorimeter
 Use PHENIX PbSc
 New readout SiPM/APD

Hadronic Calorimeter
 Sampling iron-scintillator
 Uses same readout as EMC

R&D in support of EIC

- \rightarrow HCal development
- \rightarrow All readout electronics
- → Balance Cost & performance

Large scale test run at Fermilab:

16 Ch HCal, 16 Ch EMCal, DAQ etc. delivered to Fermilab in Apr.2019

All test completed as planned

ECAL energy resolution measured ~ 10% / \sqrt{E} - meets requirement

HCAL energy resolution measured ~ 75% / \sqrt{E} + 7%

Work on modified light collection to improve resolution

✓ Promising results

✓ (ongoing development, but does not effect design)

RHIC Run Plan 2019-2025

Beam Energy Scan II (2019-2021):

- ✓ Low energy (7.7, 9.1, 11.5, 14.5, 19.6GeV) Au+Au runs
- ✓ Fixed Target runs at (3.0, 3.9, 4.5, 5.2, 6.2, 7.7 GeV)
- ✓ Search for signs of critical phenomena and chiral phase transition

Forward spin run (2022): fall 2021

- ✓ 500GeV p+p, enhanced by forward upgrades at STAR
- \checkmark Spin physics measurement complementary to EIC

Run with sPHENIX (2023-2025):

- ✓ Top energy 200GeV Au+Au, p+Au and p+p
- \checkmark Precision measurement of fully resolved jets and Upsilon states
- Precision measurement of in-medium rho modification and QGP thermal dilepton

RHIC Run Plan 2019-2025

Beam Energy (7	2019	28 cryo-weeks with STAR
 ✓ Fixed Target ru ✓ Search for sigr 	2020	Au+Au at 3.5, 3.9, 4.5, 5.2, 6.2, 7.7 GeV (FXT)
Forward spin ı	2021	20 cryo-weeks with STAR Au+Au at 7.7 / 9.1 GeV
 ✓ 500GeV p+p, e ✓ Spin physics m 	2022	16 cryo-weeks with STAR (forward) p+p at 500 GeV
Run with sPH ✓ Top energy 20 ✓ Precision meas ✓ Precision meas dilepton	2023	24 cryo-weeks with sPHENIX and STAR Au+Au at 200 GeV
	2024	24 cryo-weeks with sPHENIX and STAR p+p and p+Au at 200 GeV
uncpton	2025	24 cryo-weeks with sPHENIX and STAR Au+Au at 200 GeV

Looking Forward

Measurements planned for 2021+ with the STAR forward upgrade

√s (GeV)	Delivered	Scientific Goals	Observable	Required
	Luminosity			Upgrade
p [↑] p @ 200	300 pb ⁻¹	Subprocess driving the large A_N at high x_F and η	A_N for charged hadrons and	Forward instrum.
	8 weeks		flavor enhanced jets	ECal+HCal+Tracking
p^Au @	1.8 pb ⁻¹	What is the nature of the initial state and hadronization	R_{pAu} direct photons and DY	
200	8 weeks	in nuclear collisions		Forward instrum.
				ECal+HCal+Tracking
		Clear signatures for Saturation	Dihadrons, γ -jet, h-jet,	
			diffraction	
p^Al @	12.6 pb ⁻¹	A-dependence of nPDF,	R_{pAl} : direct photons and DY	Forward instrum.
200	8 weeks			ECal+HCal+Tracking
		A-dependence for Saturation	Dihadrons, γ -jet, h-jet,	
			diffraction	
p [↑] p @ 510	1.1 fb ⁻¹	TMDs at low and high <i>x</i>	A_{UT} for Collins observables, i.e.	Forward instrum.
	10 weeks		hadron in jet modulations at $\eta >$	ECal+HCal+Tracking
			1	
$\vec{p} \cdot \vec{p} @ 510$	1.1 fb ⁻¹	$\Delta g(x)$ at small x	A_{LL} for jets, di-jets, h/ γ -jets	Forward instrum.
	10 weeks		at $\eta > 1$	ECal+HCal

- ✓ Addresses important topics in hot and cold QCD:
- ✓ Transverse polarization effects in the proton : Twist-3 and TMDs
- ✓ Transversity, Collins, and Interference fragmentation functions
- ✓ Access ΔG through dijets with p+p at \sqrt{s} = 500 GeV
- ✓ Probe initial state with p+A collisions

Looking Forward

Future A+A Measurements with the STAR forward upgrade

Physics Measurements		Longitudinal de-correlation		Mixed flow		Event Shape
Detectors	Acceptance	$C_n(\Delta \eta)$ $r_n(\eta_a,\eta_b)$	η/s(T), ζ/s(T)	Harmonics <i>C_{m,n,m+n}</i>	Ridge	and Jet- studies
Forward Calorimeter (FCS)	$2.5 < \eta < 4$ (photons, hadrons)	One of these		One of these detectors necessary	Good to have	One of these detectors needed
Forward Tracking System (FTS)	$2.5 < \eta < 4$ (charged particles)	necessary	Important		Important	

- ✓ Addresses important topics in hot QCD:
- ✓ Ridge in p+p, p+A, and A+A
- ✓ Correlation measurements in hot and dense nuclear matter
- ✓ Precision measurements of long range correlations
- ✓ Temperature dependence of the viscosity through flow measurements at η ~4

Current plan in 2019

Forward Calorimeter System

10-20 hours of Au+Au 200 GeV collisions

- ✓ Test readout of calorimeters at ~ 10kHz rate
- ✓ Finish commissioning of DEP (digitizer/trigger) boards with this data
- ✓ Look at MIPS use for calibration etc.

Forward Tracking System

Silicon Detectors

- ✓ Complete the design of detector module in June 2019
- ✓ Build the first complete prototype module in Summer/Fall 2019
- ✓ Fully test the prototype module in Fall/Winter 2019

sTGC Detectors

- ✓ Test in STAR DAQ with C10 (90% argon + 10% CO2)
- Test performance with various gas mixtures at Shandong University in full size (60cm x 60 cm) prototypes

Summary

Crucial Upgrades for Beam Energy Scan II:

- ✓ Inner TPC : Successful, on-time & under budget completion, excellent performance
- Event Plane Detector : Excellent uniformity + delivered expected improvement in the eventplane resolution
- ✓ Endcap Time of Flight : Fully installed, commissioning and data taking are ongoing 2019

Upgrades provide <u>unique</u> opportunities at mid-rapidity in high energy A+A, p+A, and p+p

STAR Forward Rapidity Upgrade:

Essential to RHIC cold & hot QCD physics mission & to realize scientific promise of future EIC

- ✓ Forward Tracking System : Silicon + small-strip Thin Gap Chambers
 - -- sTGC prototype delivered by SDU and being tested at BNL
 - -- Silicon design and R&D at UIC + SDU + NCKU
- ✓ Forward Calorimetry System : EMCal + HCal
 - -- Large scale prototype testing at Fermilab

Summary

Crucial Upgrades for Beam Energy Scan II:

- ✓ Inner TPC : Successful, on-time & under budget completion, excellent performance
- Event Plane Detector : Excellent uniformity + delivered expected improvement in the eventplane resolution
- ✓ Endcap Time of Flight : Fully installed, commissioning and data taking are ongoing 2019

Upgrades provide <u>unique</u> opportunities at mid-rapidity in high energy A+A, p+A, and p+p

STAR Forward Rapidity Upgrade:

Essential to RHIC cold & hot QCD physics mission & to realize scientific promise of future EIC

- ✓ Forward Tracking System : Silicon + small-strip Thin Gap Chambers
 - -- sTGC prototype delivered by SDU and being tested at BNL
 - -- Silicon design and R&D at UIC + SDU + NCKU
- ✓ Forward Calorimetry System : EMCal + HCal
 - -- Large scale prototype testing at Fermilab