Production of D_s^{\pm} mesons in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV by STAR

Chuan Fu

Central China Normal University

十八届全国中高能核物理大会,湖南.长沙,6/24

Outline

Motivation

Experiment setup

➢ Results

- D_s^{\pm} signal extraction
- $D_s^{\pm} p_T$ spectrum
- D_s^{\pm}/D^0 ratio

➢Summary

- \succ D_s meson: one charm quark and one strange quark.
- Excellent probes for the properties of Quark-Gluon Plasma (QGP).
- Coalescence hadronization: charm quark recombination with strange quark.

Charm quark coalescence hadronization + strangeness enhancement --> D[±]_s/D⁰ ratio exists an enhancement relative to PYTHIA.

Phys.Rev.Lett.113(2014) 142301

Experiment setup

TPC + HFT: reconstruct the track of charge particles (π[±], K[±]), the decay vertex is reconstructed accurately.
TPC + TOF: identify charge particles.

Heavy Flavor Tracker

- Heavy Flavor Tracker (HFT, 2014-2016): four-layer silicon detectors, two layer PXL, one layer IST and one layer SSD.
- Excellent resolution of Distance of Closest Approach (DCA).

How to measure D_s^{\pm} ?

TMVA-BDT training

TMVA overtraining check for classifier: BDT

- D_s signal sample (PYTHIA + datadriven simulation) + Background sample (Wrong-Sign) -> BDT training.
- ➢ Overtraining test (1.5 < p_T < 2.5 GeV/c, 0-10%) and no overtraining.

Initial topological variable cuts for BDT tuning

 $1.5 < p_T^{D_s} < 8 \text{ GeV/c}$, Centrality: 0-80%, 1.92 < Mass_{D_s} < 2.01 GeV/c², $|y_{D_s}| < 1$

DCADaughters < 0.01, Decay Length > 0.012, 0.98 < $\cos\theta$ < 1, $|Mass_{K^+K^-} - Mass_{\phi}|$ < 0.008 GeV/c²

Min $(p_T^{Kaon1}, p_T^{Kaon2}) > 0.5 \text{ GeV/c}, p_T^{Pion} > 0.6 \text{ GeV/c}, DCA between D_s and PV$

Min (DCAKaon1, DCAKaon2) > 0.006 cm , DCAPion > 0.006 cm

Invariant mass distribution

- 2014+2016 data
- Improved signal number and significance.

Merged spectrum from run14+run16

Statistical error as a weight is used to merge spectrum from 2014 and 2016.

Accurate measurements on $D_s p_T$ spectrum in different centrality.

D_s^{\pm}/D^0 ratio

- D[±]_s/D⁰ ratio: larger enhancement (~1.5-2 times) relative to PYTHIA, no clear centrality dependence.
- Consistent well with ALICE measurements.
- Strangeness enhancement + coalescence hadronization mechanism.

Journal of High Energy Physics, 2018, 2018(10): 174 The European Physical Journal C, 2017, 77(8): 550

D_s^{\pm}/D^0 ratio

- ➤ Coal. + frag. : consistent well for 1.5 <p_T < 4 GeV/c, Coal. : consistent well for 4 < p_T < 8 GeV/c.
- Seq. coal. : a little higher than our measurement for 1.5 <p_T < 4 GeV/c, lower than that for 4 < p_T< 8 GeV/c.
- Strangeness enhancement + coalescence hadronization play an important role for charm quark hadronization. arXiv preprint arXiv:1805.10858, 2018

Summary

> D_s[±] measurements in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV enabled by the HFT.

 $> D_s^{\pm}/D^0$ enhancement with respect to PYTHIA:

-Strangeness enhancement + coalescence hadronization play an important role for charm quark hadronization.