Toward precision jet event shape for future Electron-Ion Collider

Tanmay Maji Institute of Modern Physics Fudan University June 24, 2019

Collaborator: Daekyoung Kang, . IMP, Fudan University 第十八届全国中高能核物理大会

- □ Introduction & Motivation
- $\hfill\square$ Jet Event Shapes and Angularity
- \square DIS factorization and angularity Beam Function at NNLL
- $\hfill\square$ Numerical Results and prediction to future EIC

Introduction & Motivation

Introduction & Motivation

- The jet observables are called Event Shape
- Precision jet physics: a new tool to probe strong dynamics a new level of precision for jets at the future Electron-Ion-Collider (EIC)
- One of early milestones!

Talk by ^{邢宏喜}(Xing Hongxi), 22nd June at 17:15

Electron Ion Collider:

The Next QCD Frontier

Event Shapes: Jet observables

Several event shapes: Thrust (τ), Angularity (τ_a), Jet Broadening...

Event Shapes: Jet observables

Several event shapes: Thrust (τ), Angularity (τ_a), Jet Broadening...

One of the most precisely measured observables!

$$\tau = \frac{2}{Q} \sum_{i \in \mathcal{X}} |\mathbf{p}_{\perp}^i| \ e^{-|\eta_i|}$$

Thrust event shape characterised the geometry of the collision!

• Expt.: LEP, CMS and ATLAS, HERA by the ZEUS and H1

Event Shapes: Angularity

Several event shapes: Thrust (τ), Angularity (τ_a), Jet Broadening...

Angularity (τ)

A more general event shapes!

$$\tau_a = \frac{2}{Q} \sum_{i \in \mathcal{X}} |\mathbf{p}_{\perp}^i| \ e^{-|\eta_i|(1-\mathbf{a})}$$

Angularity depends on the continuous parameter *a*.

 $a \to 0$: Thrust $a \to 1$: Jet Broadening

• Expt.: Electron-Ion-Collider (EIC) can provide a new level of precision for DIS jets.

Event Shapes: Angularity

Several event shapes: Thrust (τ) , Angularity (τ_a) , Jet Broadening...

Angularity (τ)

A more general event shapes!

$$\tau_a = \frac{2}{Q} \sum_{i \in \mathcal{X}} |\mathbf{p}_{\perp}^i| \ e^{-|\eta_i|(1-\mathbf{a})}$$

Angularity depends on the continuous parameter a.

 $a \rightarrow 0$: Thrust $a \rightarrow 1$: Jet Broadening

Expt.: Electron-Ion-Collider (EIC) can provide a new level of precision for DIS jets.

Theoretical Prediction: Accuracy in the theoretical prediction to the event shapes! **Tool:** Soft-collinear effective theory (SCET)

a systematic way to achieve high precision in high-energy scattering

SCET Predictions so far...

• Thrust at $N^3 LL$: e^+e^- [Becher, Schwartz'08; Stewart, Tackmann, Waalewijn'10] pp-collision/Stewart.Tackmann.PRL'10.'11:PRD'13].

DIS [D. Kang, C. Lee, I. Stewart'13]...

•Angularity at N^3LL : e^+e^- [Hornig,Lee,Ovanesyan'09; Bell,Lee'19]

DIS [!!] Could be important for future EIC!

Event Shapes: Angularity

Several event shapes: Thrust (τ), Angularity (τ_a), Jet Broadening...

Angularity (τ)

A more general event shapes!

$$\tau_a = \frac{2}{Q} \sum_{i \in \mathcal{X}} |\mathbf{p}_{\perp}^i| \ e^{-|\eta_i|(1-\mathbf{a})}$$

Angularity depends on the continuous parameter *a*.

 $a \to 0$: Thrust $a \to 1$: Jet Broadening

• Expt.: Electron-Ion-Collider (EIC) can provide a new level of precision for DIS jets.

Investigation of angularity event shape in DIS in the frame-work of soft-collinear effective theory (SCET) tools and to push the frontier of the precision jet physics in the future Electron-Ion Collider (EIC)

DIS factorization and Beam function at NNLL

DIS process: $e \ P \rightarrow 2 \text{Jets}$

SCET facto. $\sigma_{eP} = Hard \times Jet \otimes Beam \otimes Soft$

• Beam is produced due to the initial state radiation (ISR) and can be used to study internal structure of proton!

Beam func.
$$B(\tau_a, x, \mu) = f \otimes \mathcal{I}$$

= $pdf \otimes [\delta_{qj}\delta(1-z) + \mathcal{I}_{qj}^{(1)} + \mathcal{O}(\alpha_s^2) + ...]$
 $NP = LO = NLO = NNLO$

Angularity Jet and soft function is presented at NNLL accuracy [Bell, Horning, Lee'2018]

Angularity beam function is presented for the first time!

Resummation from evolution

Evolution Equation for beam function

$$\mu \frac{d}{d\mu} B(\nu, \mu) = \gamma_G(\mu) B(\nu, \mu) ; \qquad \text{similar to} J, S, H$$

Solution : $B(\nu, \mu) = B(\nu, \mu_B) e^{K_B(\mu_B, \mu) + j_B \eta_B(\mu_B, \mu) L_B}$

• Jet and beam functions are defined by same collinear operator: $\gamma_J(\mu) = \gamma_B(\mu)$

• Resum large logs: No large logs in the function at its natural scale μ_B , evolve from μ_B to a common scale μ .

8

Beam function result

• Beam function with angularity τ_a at a = 0.25

Beam function result

• Beam function with angularity τ_a at a = 0.25

• Beam function with x at a = 0.25

Beam Func. and Fragmentation Func.

Splitting Function:

[M.Ritzmann,W.J.Waalewijn,PRD90(2014)]

$$P_{i \to k^* j}(2pi.pj, x) \equiv (-1)^{\Delta_f} P_{k* \to ij}(-2pi.pj, 1/x)$$

• Change comes only from the two-particle phase-space and effectively change in sign of the $\log(x)$ term in the matching co-efficient $\mathcal{I}^{(1)}$.

Resummation effect: Differential Cross-Section

• Log singularity at NLO for low angularity region, Resummation gives convergence at NLL and NNLL.

• Choice of other scale profile functions than Canonical scale profile may improve tail region.

• Modelling of non-perturbative soft function need to have accuracy to 11 experimental measurement.

► We define DIS angularity event shape, τ_a^{DIS} , for the axis aligned to the jet axis and compute 1-jettiness cross-section to NNLL accuracy for the production of 2-jets (Beam and Jet).

► We present a preliminary result of differential cross-section for DIS angularity which could be a early prediction to future Electron-Ion-Collider.

[In collaboration with: Daekyoung Kang, IMP, Fudan University]

Future Direction...

▶ Multi-jets in DIS...

► Angularity in future CEPC...

Thanks!