

with J. -Portoles (IFIC&UV) J. Fuentes-Martin (UZ)

中高能核物理会议,长沙

outline

1 introduction

- QCD works above $\Lambda_{QCD^{\circ}}$
- Chiral EFT (ChEFT) is an unrenormalizable theory. The unknown coupling constants grow in number as we go to higher orders to improve the accuracy of calculations in high energy region.
- To get information about the couplings: experimental determination, matching with QCD in high energy region.

RChT

- In 0.5-2GeV, there are lots of unflavored mesons.
- RChT: by Ecker, Gasser, Pich, Rafael.
- It introduces heavier resonances as new degrees of freedom.
- It is the 'full theory' of ChPT

GF in high energy region

- Unkown couplings in RChT? Experiment and theory constraints.
- Matching their Green functions (GFs).
- RChT should give the same high energy behavior as that of QCD.
- Extend to the unphysical region of LQCD?

Scalars

 Scalars: the same quantum number as that of QCD

2.Matching:SVV,SAA

 Matching GF between QCD and ChEFT in the high energy region, using large Nc and OPE.

$$\begin{pmatrix} \Pi_{SAA}^{ijk} \end{pmatrix}_{\mu\nu} = i^2 \int d^4x \, d^4y \, e^{i(p_1 \cdot x + p_2 \cdot y)} \, \langle 0|T \left\{ S^i(0) A^j_\mu(x) A^k_\nu(y) \right\} |0\rangle$$

$$\begin{pmatrix} \Pi_{SVV}^{ijk} \end{pmatrix}_{\mu\nu} = i^2 \int d^4x \, d^4y \, e^{i(p_1 \cdot x + p_2 \cdot y)} \, \langle 0|T \left\{ S^i(0) V^j_\mu(x) V^k_\nu(y) \right\} |0\rangle$$

$$S^i(x) = \left(\bar{q} \lambda^i q \right) (x) \quad V^i_\mu(x) = \left(\bar{q} \gamma_\mu \frac{\lambda^i}{2} q \right) (x) \quad A^i_\mu(x) = \left(\bar{q} \gamma_\mu \gamma_5 \frac{\lambda^i}{2} q \right) (x)$$

$$= \text{Ward identity}$$

$$p_{1}^{\mu} \left(\Pi_{SAA}^{ijk}\right)_{\mu\nu} = -2 d^{ijk} B_{0} F^{2} \frac{(p_{2})_{\nu}}{p_{2}^{2}} p_{1}^{\mu} \left(\Pi_{SVV}^{ijk}\right)_{\mu\nu} = 0$$
$$p_{2}^{\nu} \left(\Pi_{SAA}^{ijk}\right)_{\mu\nu} = -2 d^{ijk} B_{0} F^{2} \frac{(p_{1})_{\mu}}{p_{1}^{2}} p_{2}^{\nu} \left(\Pi_{SVV}^{ijk}\right)_{\mu\nu} = 0$$

SAA, QCD

 P and Q are the Lorentz structure of momentum, they vanish by timing p_{1μ} and p_{2ν}.

$$\begin{pmatrix} \Pi_{SAA}^{ijk} \end{pmatrix}_{\mu\nu} = d^{ijk}B_0 \left[-2F^2 \frac{(p_1)_{\mu}(p_2)_{\nu}}{p_1^2 p_2^2} + \mathcal{F}_A \left(p_1^2, p_2^2, q^2 \right) P_{\mu\nu} + \mathcal{G}_A \left(p_1^2, p_2^2, q^2 \right) Q_{\mu\nu} \right]$$

$$P_{\mu\nu} = (p_2)_{\mu} (p_1)_{\nu} - p_1 \cdot p_2 g_{\mu\nu},$$

$$Q_{\mu\nu} = p_1^2 (p_2)_{\mu} (p_2)_{\nu} + p_2^2 (p_1)_{\mu} (p_1)_{\nu} - p_1 \cdot p_2 (p_1)_{\mu} (p_2)_{\nu} - p_1^2 p_2^2 g_{\mu\nu}$$

$$\begin{split} &\lim_{\lambda \to \infty} \left(\Pi_{SAA}^{ijk} \right)_{\mu\nu} (\lambda p_1, \lambda p_2) = -2 \, d^{ijk} \, B_0 F^2 \frac{1}{\lambda^2} \frac{1}{p_1^2 p_2^2 q^2} \left[q^2 \left(p_1 \right)_{\mu} \left(p_2 \right)_{\nu} + Q_{\mu\nu} - p_1 \cdot p_2 \, P_{\mu\nu} \right] + \mathcal{O} \left(\frac{1}{\lambda^3} \right) \\ &\lim_{\lambda \to \infty} \left(\Pi_{SAA}^{ijk} \right)_{\mu\nu} \left(\lambda p_1, p_2 \right) = -2 \, d^{ijk} \, B_0 F^2 \frac{1}{\lambda} \frac{\left(p_1 \right)_{\mu} \left(p_2 \right)_{\nu}}{p_1^2 p_2^2} + \mathcal{O} \left(\frac{1}{\lambda^2} \right) \\ &\lim_{\lambda \to \infty} \left(\Pi_{SAA}^{ijk} \right)_{\mu\nu} \left(p_1, \lambda p_2 \right) = -2 \, d^{ijk} \, B_0 F^2 \frac{1}{\lambda} \frac{\left(p_1 \right)_{\mu} \left(p_2 \right)_{\nu}}{p_1^2 p_2^2} + \mathcal{O} \left(\frac{1}{\lambda^2} \right) \\ &\lim_{\lambda \to \infty} \left(\Pi_{SAA}^{ijk} \right)_{\mu\nu} \left(\lambda p_1, q - \lambda p_1 \right) = \mathcal{O} \left(\frac{1}{\lambda^2} \right) \end{split}$$

SAA, ChEFT

Lagrangians of ChPT and RChT.

Coupling	Operator	Coupling	Operator	Coupling	Operator
$F^{2}/4$	$\langle u_{\mu} u^{\mu} + \chi_{+} \rangle$	λ_{12}^S	$\langle S \{ \nabla_{\alpha} f^{\mu \alpha}_{-}, u_{\mu} \} \rangle$	λ_1^{SA}	$\langle \{ \nabla_{\mu} S, A^{\mu\nu} \} u_{\nu} \rangle$
$ ilde{L}_5$	$\langle u_{\mu} u^{\mu} \chi_{+} \rangle$	λ_{16}^S	$\langle S f_{-\mu\nu} f_{-}^{\mu\nu} \rangle$	λ_2^{SA}	$\langle \{ S, A_{\mu\nu} \} f^{\mu\nu}_{-} \rangle$
\tilde{C}_{12}	$\langle h_{\mu\nu} h^{\mu\nu} \chi_+ \rangle$	λ_{17}^S	$\langle S \nabla_{\alpha} \nabla^{\alpha} (u_{\mu} u^{\mu}) \rangle$	λ_6^{AA}	$\langle A_{\mu\nu} A^{\mu\nu} \chi_+ \rangle$
\tilde{C}_{80}	$\langle f_{-\mu\nu} f_{-}^{\mu\nu} \chi_{+} \rangle$	λ_{18}^S	$\langle S \nabla_{\mu} \nabla^{\mu} \chi_{+} \rangle$	λ^{SAA}	$\langle S A_{\mu\nu} A^{\mu\nu} \rangle$
\tilde{C}_{85}	$\langle f_{-\mu\nu} \{ \chi^{\mu}_{+}, u^{\nu} \} \rangle$	λ_6^A	$\langle A_{\mu u} [u^{\mu}, \nabla^{ u} \chi_{+}] \rangle$		
		λ^A_{16}	$\langle A_{\mu\nu} \{ f_{-}^{\mu\nu}, \chi_{+} \} \rangle$		
		λ^A_{17}	$\langle A_{\mu\nu} \nabla_{\alpha} \nabla^{\alpha} f^{\mu\nu}_{-} \rangle$		

ChPT's contribution to SAA GFs.

SAA

Contribution of RChT

SAA

GFs of RChT

$$\mathcal{F}_{A}(p_{1}^{2}, p_{2}^{2}, q^{2}) = 32 \left(\hat{C}_{12} - \hat{C}_{80} - \hat{C}_{85} \right) - 32 \lambda_{16}^{S} P_{S} - 16 \lambda_{6}^{AA} P_{A}(p_{1}^{2}) P_{A}(p_{2}^{2}) + 8 \sqrt{2} \left(2 \lambda_{16}^{A} - \lambda_{6}^{A} + (\lambda_{1}^{SA} + 2 \lambda_{2}^{SA}) P_{S} \right) \left(P_{A}(p_{1}^{2}) + P_{A}(p_{2}^{2}) \right) - 16 \lambda^{SAA} P_{S} P_{A}(p_{1}^{2}) P_{A}(p_{2}^{2}) ,$$

$$\begin{aligned} \mathcal{G}_A(p_1^2, p_2^2, q^2) &= \frac{8}{p_1^2 p_2^2} \bigg(2\,\hat{L}_5 \,+\, 4\,\hat{C}_{12}(p_1^2 \,+\, p_2^2 \,-\, q^2) \,-\, 2\,\hat{C}_{85}\,(\,p_1^2 \,+\, p_2^2) \,+\, 2\,c_d\,P_S \\ &-\, 2\,\lambda_{12}^S\,(p_1^2 \,+\, p_2^2)P_S \,-\, 2\,\lambda_{17}^S\,q^2\,P_S \\ &-\, \sqrt{2}\,\left(\lambda_6^A \,-\, \lambda_1^{SA}\,P_S\right)\left(p_1^2\,P_A(p_1^2) \,+\, p_2^2\,P_A(p_2^2)\right) \bigg) \,, \end{aligned}$$

$$P_{S} = \frac{c_{m} - \lambda_{18}^{S} q^{2}}{M_{S}^{2} - q^{2}} \qquad P_{A}(p^{2}) = \frac{F_{A} - 2\sqrt{2}\lambda_{17}^{A}p^{2}}{M_{A}^{2} - p^{2}}$$
Matching them with those of QCD, we obtain the constraints about couplings. Since p₁ and p₂ go to infinity arbitrarily, one can require each formalism of momentum is matched.

SAA matching

constrains

$$\begin{split} \hat{L}_5 &= \hat{C}_{12} = \hat{C}_{80} = \hat{C}_{85} = 0, \\ \lambda_6^A &= \lambda_{16}^A = \lambda_{12}^S = \lambda_{16}^S = 0, \\ \lambda_6^{AA} &= -\frac{F^2}{16F_A^2}, \\ \lambda_1^{SA} &= \frac{\lambda}{3\sqrt[6]{2}F_A} \left(c_d - \frac{F^2}{8c_m} \right), \\ \lambda_2^{SA} &= -\frac{c_d}{2\sqrt{2}F_A}. \end{split}$$

15 couplings, 4 of them remain λ_{17}^A λ_{17}^S λ_{18}^S λ_{18}^{SAA} also from $\Pi_{SS-PP}^{ij}(t)$ $F_S^{ij}(t)$, one can knows three more couplings, only 1 remain $\lambda_{17}^S = \lambda_{18}^S = 0$, $\lambda_{17}^S = \lambda_{18}^S = 0$, $\lambda_{17}^A = 0$, $\lambda_{17}^A = 0$,

SVV, QCD

The GF contain only forms of P and Q, and it satisfies Ward identity.

$$\left(\Pi_{SVV}^{ijk}\right)_{\mu\nu} = d^{ijk}B_0 \left[\mathcal{F}_V \left(p_1^2, p_2^2, q^2 \right) P_{\mu\nu} + \mathcal{G}_V \left(p_1^2, p_2^2, q^2 \right) Q_{\mu\nu} \right]$$

QCD part.

$$\begin{split} &\lim_{\lambda \to \infty} \left(\Pi_{SVV}^{ijk} \right)_{\mu\nu} (\lambda p_1, \lambda p_2) \ = \ -d^{ijk} B_0 F^2 \frac{1}{\lambda^2} \frac{1}{p_1^2 p_2^2 q^2} \left[2 Q_{\mu\nu} + \left(p_1^2 + p_2^2 + q^2 \right) P_{\mu\nu} \right] + \mathcal{O} \left(\frac{1}{\lambda^3} \right) \\ &\lim_{\lambda \to \infty} \left(\Pi_{SVV}^{ijk} \right)_{\mu\nu} (\lambda p_1, p_2) \ = \ -2 \ d^{ijk} \frac{1}{\lambda} \frac{\Pi_{VT}(p_2^2)}{p_1^2} P_{\mu\nu} + \mathcal{O} \left(\frac{1}{\lambda^2} \right) \\ &\lim_{\lambda \to \infty} \left(\Pi_{SVV}^{ijk} \right)_{\mu\nu} (p_1, \lambda p_2) \ = \ -2 \ d^{ijk} \frac{1}{\lambda} \frac{\Pi_{VT}(p_1^2)}{p_2^2} P_{\mu\nu} + \mathcal{O} \left(\frac{1}{\lambda^2} \right) \\ &\lim_{\lambda \to \infty} \left(\Pi_{SVV}^{ijk} \right)_{\mu\nu} (\lambda p_1, q - \lambda p_1) \ = \ \mathcal{O} \left(\frac{1}{\lambda^2} \right) \end{split}$$

• O(p⁶) and higher order lagrangians.

Coupling	Operator	Contributes to	Coupling	Operator	Contributes to
λ^{SVV}	$\langle SV_{\mu u}V^{\mu u} angle$	\mathcal{F}_{SVV}	λ_{15}^S	$\langle Sf_{+\mu\nu}f_{+}^{\mu\nu}\rangle$	\mathcal{F}_{SVV}
λ_3^{SV}	$\langle \{S, V_{\mu\nu}\} f^{\mu\nu}_+ \rangle$	\mathcal{F}_{SVV}	λ_6^V	$\langle V_{\mu\nu}\{f^{\mu\nu}_+,\chi_+\}\rangle$	FSVV
λ_6^{VV}	$\langle V_{\mu\nu}V^{\mu\nu}\chi_+\rangle$	F _{SVV}	$ ilde{C}_{61}$	$\langle f_{+\mu u} f_{+}^{\mu u} \chi_{+} \rangle$	FSVV

RChT does not contribute to the GFs with Q.

$$\left(\Pi_{SVV}^{ijk}\right)_{\mu\nu} = d^{ijk}B_0 \left[\mathcal{F}_V \left(p_1^2, p_2^2, q^2 \right) P_{\mu\nu} + \mathcal{G}_V \left(p_1^2, p_2^2, q^2 \right) Q_{\mu\nu} \right]$$

$$\lim_{\lambda \to \infty} \left(\Pi_{SVV}^{ijk} \right)_{\mu\nu} (\lambda p_1, \lambda p_2) = -d^{ijk} B_0 F^2 \frac{1}{\lambda^2} \frac{1}{p_1^2 p_2^2 q^2} \left[2 Q_{\mu\nu} + \left(p_1^2 + p_2^2 + q^2 \right) P_{\mu\nu} \right] + \mathcal{O}\left(\frac{1}{\lambda^3} \right) ,$$

We need to include higher order ones to finish the match.

Coupling	Operator	Contributes to	Coupling	Operator	Contributes to
κ_1^{SVV}	$\langle \nabla^{\mu} V_{\mu\nu} \nabla_{\alpha} V^{\alpha\nu} S' \rangle$	G _{SVV}	λ^{SVV}	$\langle SV_{\mu\nu}V^{\mu\nu}\rangle$	\mathcal{F}_{SVV}
κ_2^{SVV}	$\langle \{\nabla^{\mu}V_{\mu\nu}, V^{\alpha\nu}\}\nabla_{\alpha}S\rangle$	Fsvv,Gsvv	λ_{15}^S	$\langle Sf_{+\mu\nu}f_{+}^{\mu\nu}\rangle$	\mathcal{F}_{SVV}
κ_3^{SVV}	$\langle \nabla^{\alpha} V_{\mu\nu} \nabla_{\alpha} V^{\mu\nu} S \rangle$	$\mathcal{F}_{\mathcal{SVV}}$	λ_3^{SV}	$\langle \{S, V_{\mu\nu}\} f^{\mu\nu}_+ \rangle$	FSVV
κ_4^{SVV}	$\langle \{\nabla^{\alpha}V_{\mu\nu}, V^{\mu\nu}\}\nabla_{\alpha}S\rangle$	\mathcal{F}_{SVV}	c_m	$\langle S\chi_+\rangle$	Ú.
κ_5^{SVV}	$\langle \{\nabla_{\alpha}V_{\mu\nu}, V^{\alpha\mu}\}\nabla^{\nu}S\rangle$	\mathcal{F}_{SVV}	κ_6^{SVV}	$\langle \nabla_{\alpha} V_{\mu\nu} \nabla^{\mu} V^{\alpha\nu} S \rangle$	\mathcal{F}_{SVV}

 From power-counting, we also need to consider such terms

$$\langle R_a \chi(p^4) \rangle, \langle R_a R_b \chi(p^2) \rangle$$

The higher order lagrangians, corresponding to O(p⁸) and higher terms.

Coupling	Operator	Coupling	Operator	Coupling	Operator
κ_1^{SVV}	$\langle \nabla^{\mu} V_{\mu\nu} \nabla_{\alpha} V^{\alpha\nu} S \rangle$	κ_1^{SV}	$\langle \{V_{\alpha\nu}, \nabla_{\mu}f^{\mu\nu}_{+}\} \nabla^{\alpha}S \rangle$	κ_1^V	$\langle \left\{ \nabla^{\alpha} V_{\alpha\nu}, f^{\mu\nu}_{+} \right\} \nabla_{\mu} \chi_{+} \rangle$
κ_2^{SVV}	$\langle \{\nabla^{\mu}V_{\mu\nu}, V^{\alpha\nu}\} \nabla_{\alpha}S \rangle$	κ_2^{SV}	$\langle \left\{ \nabla^{\alpha} V_{\alpha\nu}, \nabla_{\mu} f^{\mu\nu}_{+} \right\} S \rangle$	κ_2^V	$\left\langle \left\{ \nabla^{\alpha}V_{\alpha\nu}, \nabla_{\mu}f_{+}^{\mu\nu} \right\} \chi_{+} \right\rangle$
κ_3^{SVV}	$\langle \nabla_{\alpha} V_{\mu\nu} \nabla^{\alpha} V^{\mu\nu} S \rangle$	κ_3^{SV}	$\langle \left\{ \nabla^{\alpha} V_{\mu\nu}, f^{\mu\nu}_{+} \right\} \nabla_{\alpha} S \rangle$	κ_3^V	$\langle \left\{ \nabla^{\alpha} V_{\mu\nu}, f^{\mu\nu}_{+} \right\} \nabla_{\alpha} \chi_{+} \rangle$
κ_4^{SVV}	$\left< \{ \nabla^{\alpha} V_{\mu\nu}, V^{\mu\nu} \} \nabla_{\alpha} S \right>$	κ_4^{SV}	$\left<\left\{\nabla_{\mu}V_{\alpha\nu},\nabla^{\alpha}f_{+}^{\mu\nu}\right\}S\right>$	κ_4^V	$\left\langle \left\{ abla _{\mu }V_{lpha u }, abla ^{lpha }f_{+}^{\mu u } ight\} \chi _{+} ight angle$
κ_5^{SVV}	$\langle \{ \nabla_{\alpha} V_{\mu\nu}, V^{\alpha\mu} \} \nabla^{\nu} S \rangle$	κ_5^{SV}	$\langle \{V^{\alpha\nu}, \nabla_{\alpha}f_{+\mu\nu}\}\nabla^{\mu}S\rangle$	κ_5^V	$\langle \{ \nabla^{\mu} V^{\alpha \nu}, f_{+ \ \mu \nu} \} \nabla_{\alpha} \chi_{+} \rangle$
κ_6^{SVV}	$\langle \nabla_{\alpha} V_{\mu\nu} \nabla^{\mu} V^{\alpha\nu} S \rangle$	κ_1^S	$\langle \nabla^{\alpha} f^{\mu\nu}_{+} \nabla_{\mu} f_{+ \alpha\nu} S \rangle$	κ_1^{VV}	$\langle \nabla^{\alpha} V^{\mu u} \nabla_{\mu} V_{\alpha u} \chi_{+} \rangle$
		κ_2^S	$\langle \left\{ f_{+}^{\mu \nu}, \nabla^{\alpha} f_{+ \alpha \nu} \right\} \nabla_{\mu} S \rangle$	κ_2^{VV}	$\langle \{V^{\mu\nu}, \nabla^{\alpha}V_{\alpha\nu}\} \nabla_{\mu}\chi_{+}\rangle$
		κ_3^S	$\langle \nabla^{\alpha} f^{\mu\nu}_{+} \nabla_{\alpha} f_{+\mu\nu} S \rangle$	κ_3^{VV}	$\langle \nabla^{\alpha} V^{\mu u} \nabla_{\alpha} V_{\mu u} \chi_{+} \rangle$

 In EFT: when a resonance is integrated out, it contributes O(p²) interaction of light pseudoscalar mesons.

• **GFs of SVV, from RChT**

$$F_{V}(p_{1}^{2}, p_{2}^{2}, q^{2}) = -32 \hat{C}_{61} - 32 \lambda_{15}^{S} P_{S} + 16 \sqrt{2} (\lambda_{6}^{V} + \lambda_{5}^{SV} P_{5}) (P_{V}(p_{1}^{2}) + P_{V}(p_{2}^{2})) \\
-16 (\lambda_{6}^{VV} + \lambda^{SVV} P_{5}) P_{V}(p_{1}^{2}) P_{V}(p_{2}^{2}) \\
-4 \left((2\kappa_{2}^{SVV} + 2\kappa_{3}^{SVV} + \kappa_{6}^{SVV}) (p_{1}^{2} + p_{2}^{2}) \\
-(2\kappa_{3}^{SVV} - 4\kappa_{4}^{SVV} + 2\kappa_{5}^{SVV} + \kappa_{6}^{SVV}) q^{2} \right) P_{S} P_{V}(p_{1}^{2}) P_{V}(p_{2}^{2}) \\
+4\sqrt{2} (2\kappa_{1}^{SV} - 2\kappa_{3}^{SV} + \kappa_{4}^{SV} + 2\kappa_{5}^{SV}) P_{S} (p_{1}^{2} P_{V}(p_{2}^{2}) + p_{2}^{2} P_{V}(p_{1}^{2})) \\
+4\sqrt{2} (2\kappa_{3}^{SV} - \kappa_{4}^{SV} + \kappa_{5}^{SV}) P_{S} (p_{1}^{2} P_{V}(p_{1}^{2}) + P_{V}(p_{2}^{2})) \\
+4\sqrt{2} (2\kappa_{3}^{SV} - \kappa_{4}^{SV} + \kappa_{5}^{SV}) P_{S} (p_{1}^{2} P_{V}(p_{1}^{2}) + P_{V}(p_{2}^{2})) \\
+4\sqrt{2} (2\kappa_{3}^{SV} + \kappa_{4}^{SV} - \kappa_{5}^{SV}) P_{S} (p_{1}^{2} P_{V}(p_{1}^{2}) + p_{2}^{2} P_{V}(p_{2}^{2})) \\
+8 (\kappa_{1}^{S} + 2\kappa_{3}^{S}) q^{2} P_{S} - 8 (\kappa_{1}^{S} + 2\kappa_{2}^{S} + 2\kappa_{3}^{S}) (p_{1}^{2} + p_{2}^{2}) P_{S} \\
-4 \left((\kappa_{1}^{VV} + 2\kappa_{2}^{VV} + 2\kappa_{3}^{VV}) (p_{1}^{2} + p_{2}^{2}) - (\kappa_{1}^{VV} + 2\kappa_{3}^{VV}) q^{2} \right) P_{V}(p_{1}^{2}) P_{V}(p_{2}^{2}) \\
+4\sqrt{2} (2\kappa_{1}^{V} + 2\kappa_{2}^{V} + \kappa_{5}^{V}) (p_{1}^{2} P_{V}(p_{1}^{2}) + p_{2}^{2} P_{V}(p_{2}^{2})) \\
+4\sqrt{2} (2\kappa_{3}^{V} - \kappa_{4}^{V} + \kappa_{5}^{V}) (p_{1}^{2} P_{V}(p_{1}^{2}) + p_{2}^{2} P_{V}(p_{2}^{2})) \\
+4\sqrt{2} (2\kappa_{3}^{V} - \kappa_{4}^{V} + \kappa_{5}^{V}) (p_{1}^{2} P_{V}(p_{2}^{2}) + p_{2}^{2} P_{V}(p_{2}^{2})) \\
+4\sqrt{2} (2\kappa_{3}^{V} - \kappa_{4}^{V} + \kappa_{5}^{V}) (p_{1}^{2} P_{V}(p_{2}^{2}) + p_{2}^{2} P_{V}(p_{1}^{2})) \\
-4\sqrt{2} (\kappa_{1}^{SV} - 2\kappa_{2}^{SVV}) P_{S} P_{V}(p_{1}^{2}) P_{V}(p_{2}^{2}) - 32 \kappa_{2}^{S} P_{S} \\
+8 \sqrt{2} (\kappa_{1}^{SV} - \kappa_{2}^{SV}) P_{S} (P_{V}(p_{1}^{2}) + P_{V}(p_{2}^{2})) \\
+8 \sqrt{2} (\kappa_{1}^{V} - \kappa_{2}^{V}) (P_{V}(p_{1}^{2}) + P_{V}(p_{2}^{2})) - 16 \kappa_{2}^{VV} P_{V}(p_{1}^{2}) P_{V}(p_{2}^{2}) \\
P_{V}(p^{2}) = \frac{F_{V} - 2\sqrt{2}\lambda_{2}^{V}p_{V}^{P}}{M_{V}^{V} - p^{2}}$$

Matching results

$$\begin{split} \kappa_{2}^{S} = \kappa_{2}^{VV} &= 0, \\ \kappa_{1}^{S} + 2\kappa_{3}^{S} &= 0, \\ \kappa_{1}^{VV} + 2\kappa_{3}^{VV} &= 0, \\ \kappa_{1}^{VV} + 2\kappa_{3}^{VV} &= 0, \\ \kappa_{1}^{VV} + 2\kappa_{3}^{VV} &= 0, \\ \kappa_{1}^{VV} - \kappa_{2}^{SV} &= 0, \\ 2\kappa_{3}^{SV} - \kappa_{4}^{SV} - \kappa_{5}^{SV} &= -\frac{2\sqrt{2}\lambda_{15}^{S}}{F_{V}}, \\ 2\kappa_{3}^{SV} - 2\kappa_{3}^{SV} + \kappa_{5}^{SV} &= 0, \\ 2\kappa_{3}^{SV} - \kappa_{4}^{SV} + \kappa_{5}^{SV} &= 0, \\ 2\kappa_{3}^{SV} - \kappa_{4}^{SV} + \kappa_{5}^{SV} &= \frac{4\lambda_{6}^{V}}{c_{m}} + \frac{M_{V}^{2}}{c_{m}}(2\kappa_{1}^{V} + 2\kappa_{3}^{V} + \kappa_{4}^{V} + \kappa_{5}^{V}), \\ \kappa_{1}^{V} - \kappa_{2}^{V} &= 0, \\ 2\kappa_{3}^{V} - \kappa_{4}^{V} + \kappa_{5}^{V} &= 0, \\ 2\kappa_{3}^{V} - \kappa_{4}^{V} + \kappa_{5}^{V} &= 0, \\ \kappa_{1}^{V} - 2\kappa_{2}^{SVV} &= \frac{F^{2}}{4c_{m}F_{V}^{2}}, \\ \kappa_{1}^{SVV} - 2\kappa_{2}^{SVV} &= \frac{F^{2}}{4c_{m}F_{V}^{2}} \\ 2\kappa_{3}^{SVV} - 4\kappa_{4}^{SVV} + 2\kappa_{5}^{SVV} + \kappa_{6}^{SVV} &= -\frac{4\lambda_{6}^{V}}{c_{m}} + \frac{F^{2}}{4c_{m}F_{V}^{2}}, \\ 2\kappa_{2}^{SVV} + 2\kappa_{3}^{SVV} + \kappa_{6}^{SVV} &= -\frac{F^{2}}{4c_{m}F_{V}^{2}} - \frac{4\sqrt{2}\lambda_{3}^{SV}}{F_{V}} - \frac{\sqrt{2}M_{5}^{2}(2\kappa_{3}^{SV} - \kappa_{4}^{SV} + \kappa_{5}^{SV})}{F_{V}} \\ &= -\frac{\sqrt{2}M_{V}^{2}(2\kappa_{3}^{SV} + \kappa_{5}^{SV})}{F_{V}} \end{split}$$

3. Phenomenology of SAA

 Firstly we need to know which resonances should be filled in the current.

Mixing mechanism

 The light and heavy mesons of I=1(1/2) could have mixing

$$\begin{pmatrix} a_{0,L} \\ a_{0,H} \end{pmatrix} = \begin{pmatrix} \cos\varphi_a & \sin\varphi_a \\ -\sin\varphi_a & \cos\varphi_a \end{pmatrix} \begin{pmatrix} a_0(980) \\ a_0(1450) \end{pmatrix}$$
$$\begin{pmatrix} K_{0,L}^* \\ K_{0,H}^* \end{pmatrix} = \begin{pmatrix} \cos\varphi_k & \sin\varphi_k \\ -\sin\varphi_k & \cos\varphi_k \end{pmatrix} \begin{pmatrix} K_0^*(700) \\ K_0^*(1430) \end{pmatrix}$$

The lagrangian of these mesons

 $\mathcal{L}_{I=1,1/2} = c_d^L \langle S_L u_\mu u^\mu \rangle + \alpha_L \langle S_L u_\mu \rangle \langle u^\mu \rangle + c_m^L \langle S_L \chi_+ \rangle$ $+ c_d^H \langle S_H u_\mu u^\mu \rangle + \alpha_H \langle S_H u_\mu \rangle \langle u^\mu \rangle + c_m^H \langle S_H \chi_+ \rangle$

f₀ mixing

 I=0 mesons are more complicated. We only consider the mixing between the heavier ones

$$\begin{pmatrix} f_0(1370) \\ f_0(1510) \\ f_0(1710) \end{pmatrix} = A \begin{pmatrix} S_8 \\ S_0 \\ S_1 \end{pmatrix}$$

<i>A</i> =	$ \left(\begin{array}{c}\cos\gamma\cos\beta\cos\alpha - \sin\gamma\sin\alpha\\-\sin\gamma\cos\beta\cos\alpha - \cos\gamma\sin\alpha\end{array}\right) $	$\cos\gamma\cos\beta\sin\alpha + \sin\gamma\cos\alpha \\ -\sin\gamma\cos\beta\sin\alpha + \cos\gamma\cos\alpha$	$-\cos\gamma\sin\beta$ $\sin\gamma\sin\beta$	
	$\sin\beta\cos\alpha$	$\sin\beta\sin\alpha$	$\cos\beta$	

• $f_0(1710)-f_0(1370)-f_0(1500)$ mixing

Large Nc contribution at NLO

- Large Nc is not a perfect counting for scalars, so we include the NLO ones.
- Constraints from two-point GFs may be violated in the phenomenology of scalars.

 $F_{V}G_{V} = F^{2}, \qquad F_{V}^{2} - F_{A}^{2} = F^{2}, \qquad F_{V}^{2}M_{V}^{2} = F_{A}^{2}M_{A}^{2}, \\ 4c_{d}c_{m} = F^{2}, \qquad c_{d} = c_{m}, \end{cases}$ $c_{d} = c_{m} = \frac{F}{2} = 46.2 \,\text{MeV} \qquad 13 \,\text{MeV} \lesssim c_{d} \lesssim 40 \,\text{MeV} \\ 30 \,\text{MeV} \lesssim c_{m} \lesssim 100 \,\text{MeV} \end{cases}$

LO+NLO contributions.

 $\mathcal{L}_{I=0,S_{1}} = c_{d}^{H} \langle S_{H} u_{\mu} u^{\mu} \rangle + c_{m}^{H} \langle S_{H} \chi_{+} \rangle + \alpha_{H} \langle S_{H} u_{\mu} \rangle \langle u^{\mu} \rangle + \beta_{H} \langle S_{H} \rangle \langle u_{\mu} u^{\mu} \rangle$ $+ \gamma_{H} \langle S_{H} \rangle \langle u_{\mu} \rangle \langle u^{\mu} \rangle + c_{d}' S_{1} \langle u_{\mu} u^{\mu} \rangle + c_{m}' S_{1} \langle \chi_{+} \rangle + \gamma' S_{1} \langle u_{\mu} \rangle \langle u^{\mu} \rangle$

Refinement of experimental data

 For scalars, the datas are not complete and some of them are even contradicted with each other. We choose the more 'reliable' ones by analysis.

Final State	$Br[f_0(1370)]$	$Br[f_0(1500)]$	$Br[f_0(1710)]$
4π	0.83 ± 0.18	0.495 ± 0.033 [20]	-
$a_1\pi$	0.050 ± 0.017	0.059 ± 0.025 [21]	()
$\pi\pi$	0.076 ± 0.039	0.349 ± 0.023 20	0.148 ± 0.071 26, 25
$\eta\eta$	0.023 ± 0.010	0.051 ± 0.009 [20]	0.173 ± 0.079 20, 25
$\eta \eta'$	-	0.019 ± 0.008 [20]	8-53
$K\overline{K}$	0.069 ± 0.039	0.086 ± 0.010 20	0.36 ± 0.12 25
$K\overline{K}/\pi\pi$	0.91 ± 0.20 [24]	0.246 ± 0.026	-
$\eta\eta/\pi\pi$	0.31	0.145 ± 0.027 [20]	-
$\eta \eta' / \pi \pi$	2	0.055 ± 0.024 20	-
$a_1\pi/\pi\pi$	0.66	0.170 ± 0.086 20, 21	
$\pi\pi/K\overline{K}$	2	828	$0.41^{+0.11}_{-0.17}$ [26]
$\eta\eta/K\overline{K}$	-	24-2	0.48 ± 0.15 20
$\eta \eta' / K\overline{K}$	=		-
$a_1\pi/K\overline{K}$	-	121	-

FSI

 Final state interactions between the light pseudoscalars can not be ignored.

Fit to the widths

Width	Our fit (MeV)	Exp. (MeV)	Γ	90 K L 19 9	
$\Gamma_{fo}(1270) \rightarrow \pi\pi$	11.7 ± 5.7	20.8 ± 10.7 55 56	$I_{K_0^*}^{*+}(1430) \to \pi^0 K^+$	00.0 ± 12.0	
$\Gamma_{c}(1050) \rightarrow K\bar{K}$	10.7 ± 3.2	19.0 ± 10.6 55 56	$I_{K_0^{*}^{+}(1430)\to\pi^+K^0}$	159.7 ± 25.5	-
$f_{0}(1370) \rightarrow KK$	10.1 ± 0.2 10.4 ± 4.3	6.41 ± 2.885758	$\Gamma_{K_0^{*0}(1430)\to\pi^0 K^0}$	80.0 ± 12.8	
$f_0(1370) \rightarrow \eta\eta$	10.4 ± 4.5	0.41 ± 2.00 01,00	$\Gamma_{K_{0}^{*0}(1430)\rightarrow\pi^{-}K^{+}}$	160.6 ± 25.6	-
$I_{f_0(1500)\to\pi\pi}$	38.1 ± 5.6	38.0 ± 2.5 59,60	$\Gamma_{K^{*+}(1490) \to nK^{+}}$	20.7 ± 14.3	_
$\Gamma_{f_0(1500)\to K\bar{K}}$	9.39 ± 2.2	9.37 ± 1.09 59,60	$\Gamma_{\alpha} = 0$	20.5 ± 14.2	
$\Gamma_{f_0(1500)\to\eta\eta}$	5.50 ± 4.1	5.56 ± 0.98 59,60	$\Gamma K_0^{*0}(1430) \rightarrow \eta K^0$	20.0 ± 14.2	0511 070
$\Gamma_{f_0(1500) \to \eta\eta'}$	0.0	2.07 ± 0.87	$I K_0^{*+}(1430) \rightarrow \pi K$	240.1 ± 30.3	231.1 ± 21.0
Te (1710) 1-7	20.5 ± 6.6	20.5 ± 9.9	$\Gamma_{a_0^+(980)\to\pi^+\eta}$	81.2 ± 16.9	—
$\Gamma_{0}(1710) \rightarrow \pi\pi$	50.0 ± 15.3	50.0 ± 16.7	$\Gamma_{a_0(980)\to\pi^0\eta}$	81.7 ± 17.0	-
$f_0(1710) \rightarrow KK$	23.8 ± 0.8	24.0 ± 11.0	$\Gamma_{a^{+}(080)}$, $K^{+}\overline{K}^{0}$	14.4 ± 5.5	14.2 ± 1.8
$\Gamma_{f_0(1710) \to \eta\eta}$	20.0 ± 9.0	24.0 ± 11.0	$\frac{u_0(900) \rightarrow K + K}{\Gamma_0(900)}$	7.66 ± 2.8	
$I f_0(1710) \rightarrow \eta \eta'$	30.9 ± 20.2	_	$a_0^0(980) \rightarrow K^+K^-$	0.00 ± 2.0	
$\Gamma_{a_0^+(1450)\to\pi^+\eta}$	24.4 ± 12.0	24.7 ± 5.3	$I_{a_0^0(980)\to K^0\overline{K}^0}$	0.08 ± 2.7	-
$\Gamma_{a_0(1450)\to\pi^0\eta}$	24.5 ± 12.0	24.7 ± 5.3	$\Gamma_{K_0^{*+}(700)\to\pi^0K^+}$	1.56 ± 1.9	s — s
$\Gamma_{a_0^+(1450)\to\pi^+\eta'}$	9.14 ± 7.6	8.7 ± 4.5	$\Gamma_{K_0^{*+}(700)\to\pi^+K^0}$	3.04 ± 3.6	-
$\Gamma_{a_0(1450)\to\pi^0\eta'}$	9.18 ± 7.7	8.7 ± 4.5	$\Gamma_{K_0^{*0}(700) \to \pi^0 K^0}$	1.53 ± 1.8	
$\Gamma_{a_0^+(1450)\to K^+\overline{K}^0}$	21.0 ± 7.3	21.7 ± 7.4	$\Gamma_{K_0^{*0}(700) \to \pi^- K^+}$	3.09 ± 3.7	-
$\Gamma_{a_0^0(1450)\to K^+K^-}$	10.6 ± 3.7	670	$\Gamma_{K_0^*(700)\to\pi K}$	4.59 ± 5.5	478 ± 127
$\Gamma_{a_0^0(1450)\to K^0\overline{K}^0}$	10.4 ± 3.6				

Our couplins

- c_d=c_m: it is satisfied in light scalars, they are larger for light ones than that of heavy ones
- a₀(980) has a small mixing angle with a₀(1450),
 while that of κ and K₀*(1430) is almost 90 degree.

		Parameter	Our fit	Mixing angle	Our fit
	3	$M_{a_0(980)}$	1023.8 ± 22.6		
	á dia serie de la companya de la com	c_d^L	15.6 ± 1.9	α	-98.8 ± 41.9
		c_{A}^{H}	3.07 ± 1.00	β	-39.8 ± 13.7
		c'_d	0.0	γ	-27.8 ± 44.4
glueball component		c_m^L	13.3 ± 6.8	ω	53.6 ± 4.7
is mainly from		c_m^H	9.21 ± 3.21	φ_a	4.78 ± 3.75
$f_{0}(1710)$ its NLO	-	c'_m	0.0	φ_k	90.3 ± 22.5
contribution from	\sim	α_L	17.9 ± 3.2		
large Nc could be		α_H	0.88 ± 1.50		
ignored		β_H	-3.42 ± 0.53		
ignored.		γ_{μ}	-6.45 ± 1.19		
		γ'	1.43 ± 3.26		
		$\chi^2_{d.o.f}$	0.40		

SAA

Decaying particle	Ratio	Our fit	Exp.
$f_0(1370)$	$Br[K\overline{K}/\pi\pi]$	0.912 ± 0.374	0.91 ± 0.20 55
	$Br[\eta\eta/\pi\pi]$	0.889 ± 0.771	0.31 ± 0.80 [56, 57]
$f_0(1500)$	$Br[KK/\pi\pi]$	0.246 ± 0.006	0.246 ± 0.026
	$Br[\eta\eta/\pi\pi]$	0.144 ± 0.002	0.145 ± 0.027
	$Br[\eta/\eta/\pi\pi]$	0.0	0.055 ± 0.024
$f_0(1710)$	$Br[\pi\pi/KK]$	0.410 ± 0.037	0.41 ± 0.14 [58, 59]
12.100 1 10.150	$\operatorname{Br}[\eta\eta/K\overline{K}]$	0.476 ± 0.282	0.48 ± 0.15
$a_0(1450)$	$Br[\pi\eta'/\pi\eta]$	0.375 ± 0.163	0.35 ± 0.16
	$\operatorname{Br}[K\overline{K}/\pi\eta]$	0.859 ± 0.269	0.88 ± 0.23 56
$K_0^*(1430)$	$\operatorname{Br}[\eta K/\pi K]$	0.086 ± 0.074	0.092 ± 0.031 60
$a_0(980)$	$Br[K\overline{K}/\pi\eta]$	0.175 ± 0.057	0.183 ± 0.024

 f₀(1710) has a large glueball component, f1370 is composed of u,d mainly, and f1500 is composed of s mainly.

$(f_0(1370))$	1	-0.82 ± 0.22	0.12 ± 0.49	0.57 ± 0.16	$\langle N \rangle$	$ S\rangle$	≡	$ \overline{s}s\rangle$
$f_0(1500)$	=	0.07 ± 0.48	-0.95 ± 0.24	0.30 ± 0.25	S	$ N\rangle$	=	$\frac{1}{\overline{u}u + \overline{d}d}$
$f_0(1710)$	1	0.57 ± 0.14	0.29 ± 0.23	0.77 ± 0.09	$\left(G \right)$	1/	_	$\sqrt{2}$

Prospects

• VPP? Tensors?

$$\lim_{p^2 \to 0} p^2 \prod_{\mu, PPV}^{abc} (p, q, r) = \frac{-4iB^2 F^2 f^{abc} q_\mu}{q^2}$$

g-2 constraint?

4. Summary

Matching

We match the three point GFs of SAA and SVV between QCD and ChEFT, and obtain the constaints for couplings.

Phenomenology

We study the decay widths of sclars into two pseudoscalars. We found that: $f_0(1370), f_0(1500), f_0(1710)$ are mainly composed of uu(dd), ss, glueball, respectively.

Prospects

More phenomenology, measurements, are needed to check the theory.

Thanks for your attention !