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v How	are	the	quarks	and	gluons	distributed,	and	their	
interactions	inside	the	nucleon/nuclei?

v Sensitive	observables:	DIS,	SIDIS,	exclusive	DIS,	diffractive	
DIS…

q Key	questions	in	exploring	nucleon/nuclear	structure

q Theoretical	tools

q Summary

v QCD	factorization	
v Probe	nucleon	and	nuclear	structure	at	NLO
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Revolution	in our	view	of	nuclear	structure
q Long	history	in	exploring	the	structure	of	matter

v Atom:	Dalton	1803
v Nucleus:	Rutherford	1911
v Neutron:	Chadwick	1932
v Quark	model:	Gell-Mann	and	Zweig	1964
v Parton:		Feynman	1969
v …

Electron-Ion Collider (EIC) 

!  A giant “Microscope” 

!  A sharpest “CT” 

To “see” quarks and gluons 

To “cat-scan” nucleons and nuclei 

Electron-Ion Collider (EIC) 

!  A giant “Microscope” 

!  A sharpest “CT” 

To “see” quarks and gluons 

To “cat-scan” nucleons and nuclei 

Electron-Ion Collider (EIC) 

!  A giant “Microscope” 

!  A sharpest “CT” 

To “see” quarks and gluons 

To “cat-scan” nucleons and nuclei 

Rutherford	scattering
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Key	questions	in	modern	era

ence and in nuclear science.
The scientific goals and the machine pa-

rameters of the EIC were delineated in delib-
erations at a community-wide program held
at the Institute for Nuclear Theory (INT)
[2]. The physics goals were set by identifying
critical questions in QCD that remain unan-
swered despite the significant experimental

and theoretical progress made over the past
decade. This White Paper is prepared for
the broader nuclear science community, and
presents a summary of those scientific goals
with a brief description of the golden mea-
surements and accelerator and detector tech-
nology advances required to achieve them.

1.2 Science Highlights of the Electron Ion Collider

1.2.1 Nucleon Spin and its 3D Structure and Tomography

Several decades of experiments on deep inelastic scattering (DIS) of electron or muon beams
off nucleons have taught us about how quarks and gluons (collectively called partons) share
the momentum of a fast-moving nucleon. They have not, however, resolved the question of
how partons share the nucleon’s spin and build up other nucleon intrinsic properties, such
as its mass and magnetic moment. The earlier studies were limited to providing the lon-
gitudinal momentum distribution of quarks and gluons, a one-dimensional view of nucleon
structure. The EIC is designed to yield much greater insight into the nucleon structure
(Fig. 1.1, from left to right), by facilitating multi-dimensional maps of the distributions of
partons in space, momentum (including momentum components transverse to the nucleon
momentum), spin, and flavor.

Figure 1.1: Evolution of our understanding of nucleon spin structure. Left: In the 1980s,
a nucleon’s spin was naively explained by the alignment of the spins of its constituent quarks.
Right: In the current picture, valence quarks, sea quarks and gluons, and their possible orbital
motion are expected to contribute to overall nucleon spin.

The 12 GeV upgrade of CEBAF at JLab will start on such studies in the kinematic
region of the valence quarks, and a similar program will be carried out by COMPASS at
CERN. However, these programs will be dramatically extended at the EIC to explore the
role of the gluons and sea quarks in determining the hadron structure and properties. This
will resolve crucial questions, such as whether a substantial “missing” portion of nucleon
spin resides in the gluons. By providing high-energy probes of partons’ transverse momenta,
the EIC should also illuminate the role of their orbital motion contributing to nucleon spin.
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1.2 Science Highlights of the Electron Ion Collider

1.2.1 Nucleon Spin and its 3D Structure and Tomography

q How	quarks	and	gluons	distribute	their	momentum	
and	spin	inside	the	nucleon?

q Gluon	saturation

q Quarks	and	gluons	inside	nuclei
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Figure 1.7: Left: A schematic illustrating the interaction of a parton moving through cold
nuclear matter: the hadron is formed outside (top) or inside (bottom) the nucleus. Right: The
ratio of the semi-inclusive cross-section for producing a pion (red) composed of light quarks,
and a D0 meson (blue) composed of heavy quarks in e+lead collisions to e+deuteron collisions,
plotted as a function of z, the ratio of the momentum carried by the produced hadron to that
of the virtual photon (γ∗), as shown in the plots on the left.

much lower value of x, approaching the re-
gion of gluon saturation. In addition, the

EIC could for the first time reliably quantify
the nuclear gluon distribution over a wide
range of momentum fraction x.

1.2.3 Physics Possibilities at the Intensity Frontier

The subfield of Fundamental Symmetries in nuclear physics has an established history of
key discoveries, enabled by either the introduction of new technologies or the increase in
energy and luminosity of accelerator facilities. While the EIC is primarily being proposed for
exploring new frontiers in QCD, it offers a unique new combination of experimental probes
potentially interesting to the investigations in Fundamental Symmetries. For example,
the availability of polarized beams at high energy and high luminosity, combined with a
state-of-the-art hermetic detector, could extend Standard Model tests of the running of
the weak-coupling constant far beyond the reach of the JLab12 parity violation program,
namely toward the Z-pole scale previously probed at LEP and SLC.
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1.2.3 Physics Possibilities at the Intensity Frontier
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q Experimental	facilities

US EIC – Two Options of Realization 

AGS BNL-eRHIC 

JLab-JLEIC 

The White Paper 
A.  Accardi et al 

Eur. Phys. J.  
A52 (2016) 268  

Edited by A. Deshpande 
        Z.-E. Meziani  
        J.-W. Qiu 

US EIC – Two Options of Realization 

AGS BNL-eRHIC 

JLab-JLEIC 

The White Paper 
A.  Accardi et al 

Eur. Phys. J.  
A52 (2016) 268  

Edited by A. Deshpande 
        Z.-E. Meziani  
        J.-W. Qiu 

JLab:	electron-proton	scattering	(~GeV)

Future	Electron-Ion	Collider

See	talk	by	Liang	Yutie on	Tuesday
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Observables	in	Electron	Ion	Collisions

q Deep	inelastic	scattering

q Semi-inclusive	deep	inelastic	scattering

§ Only	the	scattered	electron	is	detected.
§ One	hard	scale,	sensitive	to	the	sum	of	

PDFs,	hard	to	probe	flavor	dependence.

§ A	specified	hadron	is	identified.	
§ Two	natural	scales,	sensitive	to	

PDFs,	using	particular	final	state	
hadron	to	tag	initial	state	parton
flavor,	and	TMD.
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Observables	in	Electron	Ion	Collisions

q Exclusive	process

q Diffractive	scattering

e+ p ! e0 + p0 + V (J )
<latexit sha1_base64="iswimzSVzLdGdeBLur3rNYQ2IVA=">AAACAHicbVDLSgMxFM3UV62vURcu3ASLtFIoMyLosuhGXFWwD+gMJZPeaUMzMyHJCKV046+4caGIWz/DnX9j2s5CWw8EDufcy805geBMacf5tnIrq2vrG/nNwtb2zu6evX/QVEkqKTRowhPZDogCzmJoaKY5tIUEEgUcWsHwZuq3HkEqlsQPeiTAj0g/ZiGjRBupax9BRWBPJxhKFVGq4Gb5zhOKnXXtolN1ZsDLxM1IEWWod+0vr5fQNIJYU06U6riO0P6YSM0oh0nBSxUIQoekDx1DYxKB8sezABN8apQeDhNpXqzxTP29MSaRUqMoMJMR0QO16E3F/7xOqsMrf8xikWqI6fxQmHJsAk/bwD0mgWo+MoRQycxfMR0QSag2nRVMCe5i5GXSPK+6TtW9vyjWrrM68ugYnaAyctElqqFbVEcNRNEEPaNX9GY9WS/Wu/UxH81Z2c4h+gPr8wdE/JRC</latexit><latexit sha1_base64="iswimzSVzLdGdeBLur3rNYQ2IVA=">AAACAHicbVDLSgMxFM3UV62vURcu3ASLtFIoMyLosuhGXFWwD+gMJZPeaUMzMyHJCKV046+4caGIWz/DnX9j2s5CWw8EDufcy805geBMacf5tnIrq2vrG/nNwtb2zu6evX/QVEkqKTRowhPZDogCzmJoaKY5tIUEEgUcWsHwZuq3HkEqlsQPeiTAj0g/ZiGjRBupax9BRWBPJxhKFVGq4Gb5zhOKnXXtolN1ZsDLxM1IEWWod+0vr5fQNIJYU06U6riO0P6YSM0oh0nBSxUIQoekDx1DYxKB8sezABN8apQeDhNpXqzxTP29MSaRUqMoMJMR0QO16E3F/7xOqsMrf8xikWqI6fxQmHJsAk/bwD0mgWo+MoRQycxfMR0QSag2nRVMCe5i5GXSPK+6TtW9vyjWrrM68ugYnaAyctElqqFbVEcNRNEEPaNX9GY9WS/Wu/UxH81Z2c4h+gPr8wdE/JRC</latexit><latexit sha1_base64="iswimzSVzLdGdeBLur3rNYQ2IVA=">AAACAHicbVDLSgMxFM3UV62vURcu3ASLtFIoMyLosuhGXFWwD+gMJZPeaUMzMyHJCKV046+4caGIWz/DnX9j2s5CWw8EDufcy805geBMacf5tnIrq2vrG/nNwtb2zu6evX/QVEkqKTRowhPZDogCzmJoaKY5tIUEEgUcWsHwZuq3HkEqlsQPeiTAj0g/ZiGjRBupax9BRWBPJxhKFVGq4Gb5zhOKnXXtolN1ZsDLxM1IEWWod+0vr5fQNIJYU06U6riO0P6YSM0oh0nBSxUIQoekDx1DYxKB8sezABN8apQeDhNpXqzxTP29MSaRUqMoMJMR0QO16E3F/7xOqsMrf8xikWqI6fxQmHJsAk/bwD0mgWo+MoRQycxfMR0QSag2nRVMCe5i5GXSPK+6TtW9vyjWrrM68ugYnaAyctElqqFbVEcNRNEEPaNX9GY9WS/Wu/UxH81Z2c4h+gPr8wdE/JRC</latexit><latexit sha1_base64="iswimzSVzLdGdeBLur3rNYQ2IVA=">AAACAHicbVDLSgMxFM3UV62vURcu3ASLtFIoMyLosuhGXFWwD+gMJZPeaUMzMyHJCKV046+4caGIWz/DnX9j2s5CWw8EDufcy805geBMacf5tnIrq2vrG/nNwtb2zu6evX/QVEkqKTRowhPZDogCzmJoaKY5tIUEEgUcWsHwZuq3HkEqlsQPeiTAj0g/ZiGjRBupax9BRWBPJxhKFVGq4Gb5zhOKnXXtolN1ZsDLxM1IEWWod+0vr5fQNIJYU06U6riO0P6YSM0oh0nBSxUIQoekDx1DYxKB8sezABN8apQeDhNpXqzxTP29MSaRUqMoMJMR0QO16E3F/7xOqsMrf8xikWqI6fxQmHJsAk/bwD0mgWo+MoRQycxfMR0QSag2nRVMCe5i5GXSPK+6TtW9vyjWrrM68ugYnaAyctElqqFbVEcNRNEEPaNX9GY9WS/Wu/UxH81Z2c4h+gPr8wdE/JRC</latexit>

§ All	final	state	particles	are	detected,	the	
scattered	proton	remains	intact.

§ Sensitive	to	generalized	parton
distributions	– 3D	imagine	of	nucleon	
structure.

§ The	scattered	proton	remains	intact.
§ Color	neutral	exchange	between	beam	

electron	and	proton
§ Large	rapidity	gap	between	X	and	the	

scattered	proton.
§ Sensitive	to	gluon	saturation.

e+ p ! e0 + p0 +X
<latexit sha1_base64="B06Aj9d1xBy/8iUzbyNXExXPhtg=">AAAB+XicbVBNSwMxEM3Wr1q/Vj16CRapUCi7Iuix6MVjBfsB7VKy6Wwbms2GJFsoS/+JFw+KePWfePPfmLZ70NYHA4/3ZpiZF0rOtPG8b6ewsbm1vVPcLe3tHxweuccnLZ2kikKTJjxRnZBo4ExA0zDDoSMVkDjk0A7H93O/PQGlWSKezFRCEJOhYBGjxFip77pQlbhnEgyVqqxUcafvlr2atwBeJ35OyihHo+9+9QYJTWMQhnKiddf3pAkyogyjHGalXqpBEjomQ+haKkgMOsgWl8/whVUGOEqULWHwQv09kZFY62kc2s6YmJFe9ebif143NdFtkDEhUwOCLhdFKcf203kMeMAUUMOnlhCqmL0V0xFRhBobVsmG4K++vE5aVzXfq/mP1+X6XR5HEZ2hc3SJfHSD6ugBNVATUTRBz+gVvTmZ8+K8Ox/L1oKTz5yiP3A+fwCwqZG7</latexit><latexit sha1_base64="B06Aj9d1xBy/8iUzbyNXExXPhtg=">AAAB+XicbVBNSwMxEM3Wr1q/Vj16CRapUCi7Iuix6MVjBfsB7VKy6Wwbms2GJFsoS/+JFw+KePWfePPfmLZ70NYHA4/3ZpiZF0rOtPG8b6ewsbm1vVPcLe3tHxweuccnLZ2kikKTJjxRnZBo4ExA0zDDoSMVkDjk0A7H93O/PQGlWSKezFRCEJOhYBGjxFip77pQlbhnEgyVqqxUcafvlr2atwBeJ35OyihHo+9+9QYJTWMQhnKiddf3pAkyogyjHGalXqpBEjomQ+haKkgMOsgWl8/whVUGOEqULWHwQv09kZFY62kc2s6YmJFe9ebif143NdFtkDEhUwOCLhdFKcf203kMeMAUUMOnlhCqmL0V0xFRhBobVsmG4K++vE5aVzXfq/mP1+X6XR5HEZ2hc3SJfHSD6ugBNVATUTRBz+gVvTmZ8+K8Ox/L1oKTz5yiP3A+fwCwqZG7</latexit><latexit sha1_base64="B06Aj9d1xBy/8iUzbyNXExXPhtg=">AAAB+XicbVBNSwMxEM3Wr1q/Vj16CRapUCi7Iuix6MVjBfsB7VKy6Wwbms2GJFsoS/+JFw+KePWfePPfmLZ70NYHA4/3ZpiZF0rOtPG8b6ewsbm1vVPcLe3tHxweuccnLZ2kikKTJjxRnZBo4ExA0zDDoSMVkDjk0A7H93O/PQGlWSKezFRCEJOhYBGjxFip77pQlbhnEgyVqqxUcafvlr2atwBeJ35OyihHo+9+9QYJTWMQhnKiddf3pAkyogyjHGalXqpBEjomQ+haKkgMOsgWl8/whVUGOEqULWHwQv09kZFY62kc2s6YmJFe9ebif143NdFtkDEhUwOCLhdFKcf203kMeMAUUMOnlhCqmL0V0xFRhBobVsmG4K++vE5aVzXfq/mP1+X6XR5HEZ2hc3SJfHSD6ugBNVATUTRBz+gVvTmZ8+K8Ox/L1oKTz5yiP3A+fwCwqZG7</latexit><latexit sha1_base64="B06Aj9d1xBy/8iUzbyNXExXPhtg=">AAAB+XicbVBNSwMxEM3Wr1q/Vj16CRapUCi7Iuix6MVjBfsB7VKy6Wwbms2GJFsoS/+JFw+KePWfePPfmLZ70NYHA4/3ZpiZF0rOtPG8b6ewsbm1vVPcLe3tHxweuccnLZ2kikKTJjxRnZBo4ExA0zDDoSMVkDjk0A7H93O/PQGlWSKezFRCEJOhYBGjxFip77pQlbhnEgyVqqxUcafvlr2atwBeJ35OyihHo+9+9QYJTWMQhnKiddf3pAkyogyjHGalXqpBEjomQ+haKkgMOsgWl8/whVUGOEqULWHwQv09kZFY62kc2s6YmJFe9ebif143NdFtkDEhUwOCLhdFKcf203kMeMAUUMOnlhCqmL0V0xFRhBobVsmG4K++vE5aVzXfq/mP1+X6XR5HEZ2hc3SJfHSD6ugBNVATUTRBz+gVvTmZ8+K8Ox/L1oKTz5yiP3A+fwCwqZG7</latexit>
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QCD	factorization	theorem
q Factorization	in	deep	inelastic	scattering	

§ Question:	cross	section	involving	identified	hadron(s)	is	not infrared	safe	
Hadronic	scale	~	1/fm is	non-perturbative,	the	cross	section	is	not
perturbative	calculable.			

§ Solution	from	theory	advances:		QCD	factorization	theorem	

Observables with ONE identified hadron 

Cross section is infrared divergent, and nonperturbative! 

�DIS
`p!`0X(everything)

Measured              Hard-probe             Universal-hadron structure 

Cross Section         Infrared-Safe         Nonperturbative-distribution = ⌦

QCD factorization 
(approximation!) 

Identified initial-state  
hadron-proton! 

QCD	factorization	theorem	is	the	corner	stone	of	high	energy	physics!		

The paradigm of  perturbative QCD 

!  The common wisdom: to trace back what’s inside the proton from 
the outcome of  the collisions, we rely on QCD factorization 

!  Hadron structure: encoded in PDFs 

!  QCD dynamics at short-distance: partonic cross section, 
perturbatively calculable 
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xP

e
e

X

q

P

parton

�̂parton

fparton(x)
Parton Distribution Functions (PDFs): 
Probability density for finding a parton in 
a proton with momentum fraction x 

�proton(Q) = fparton(x)⌦ �̂parton(Q)
Universal (measured) calculable 

See	talk	by	X.	Ji	tomorrow
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The global PDF analysis

23

Hadronic scale:
Global PDF fit results

LHC scale

Perturbative 
Evolution

 Combine state-of-the-art theory calculations, the constraints from PDF-sensitive measurements from 
different processes and colliders, and a statistically robust fitting methodology

 Extract Parton Distributions at hadronic scales of a few GeV, where non-perturbative QCD sets in

Use perturbative evolution to compute PDFs at high scales as input to LHC predictions

High scales:
input to 

LHC

Juan Rojo                                                                                                                 MPP, Munich, 26/07/2017

The global PDF analysis

23

Hadronic scale:
Global PDF fit results

LHC scale

Perturbative 
Evolution

 Combine state-of-the-art theory calculations, the constraints from PDF-sensitive measurements from 
different processes and colliders, and a statistically robust fitting methodology

 Extract Parton Distributions at hadronic scales of a few GeV, where non-perturbative QCD sets in

Use perturbative evolution to compute PDFs at high scales as input to LHC predictions

High scales:
input to 

LHC

Juan Rojo                                                                                                                 MPP, Munich, 26/07/2017

prediction

The	predictive	power	of	pQCD
qPredict	the	proton	inner	structure	with	higher	resolution	scale

The paradigm of  perturbative QCD 

!  The common wisdom: to trace back what’s inside the proton from 
the outcome of  the collisions, we rely on QCD factorization 

!  Hadron structure: encoded in PDFs 

!  QCD dynamics at short-distance: partonic cross section, 
perturbatively calculable 
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xP

e
e

X

q

P

parton

�̂parton

fparton(x)
Parton Distribution Functions (PDFs): 
Probability density for finding a parton in 
a proton with momentum fraction x 

�proton(Q) = fparton(x)⌦ �̂parton(Q)
Universal (measured) calculable 

Proton	structure	is	encoded	in	the	Parton	Distribution	Functions	(PDFs)	
PDFs:	probability	density	for	finding	a	parton in	a	proton	with	momentum	fraction	x.



10

q Proton	spin	configuration

1

2
=

1

2
�

X
+�G+ Lq + Lg

The Proton Spin? 

! How does QCD generate the nucleon’s spin? 

Orbital Angular Momentum 
of  quarks and gluons 

Little known 

Gluon helicity 
Start to know 

⇠ 20%(with RHIC data)

Quark helicity  
Best known  

⇠ 30%

Spin “puzzle” 

Proton Spin 

1

2
=

1

2
�⌃+�G+ (Lq + Lg)

If  we do not understand proton spin, we do not understand QCD 

The Proton Spin? 

! How does QCD generate the nucleon’s spin? 

Orbital Angular Momentum 
of  quarks and gluons 

Little known 

Gluon helicity 
Start to know 

⇠ 20%(with RHIC data)

Quark helicity  
Best known  

⇠ 30%

Spin “puzzle” 

Proton Spin 

1

2
=

1

2
�⌃+�G+ (Lq + Lg)

If  we do not understand proton spin, we do not understand QCD 

Jaffe,	Manohar;	Ji

Nucleon	structure	- Spin
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q Current	knowledge	about	parton helicity	distribution	

DIS with longitudinal polarized beam and target 

!  Longitudinal polarized DIS scattering 

14 

�
!( � �

!) / g1(x,Q
2) =

X

q

e2q
⇥
�q(x,Q2) +�q̄(x,Q2)

⇤

�
P

=
R 1
0 dx�fq(x)

�G =
R 1
0 dx�fg(x)

quark	spin

gluon	spin

~30%

~20%

Orbital	angular	momentum,	no	conclusion	yet.
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qInclusive	jet	production

`+ p ! jet+X

§ Integrate	over	outgoing	lepton
Hard	scale:	jet	

qQCD	collinear	factorization	

qLeading	order	is	trivial

�`+p!jet+X =
X

a,b

fa/` ⌦ fb/p ⌦ �̂a+b!jet+X

d�LO =
X

q

Z
dx1

x1

dx2

x2

h
f`/`(x1)fq/p(x2)d�̂

(0)
q`

+ f`/`(x1)fq̄/p(x2)d�̂
(0)
q̄`

i

e

e0

p

J

pT

Kang,	Metz,	Qiu,	Zhou,	11

Inclusive	jet	production	in	DIS

qFully	differential	Next	to	leading	order

N-jettiness subtraction	+	dipole	subtraction

At the next-to-leading order level several new structures
appear. The leading-order quark-lepton scattering channel
receives both virtual and real-emission corrections that are
separately infrared divergent. We have performed two
calculations using dipole subtraction [26] and N-jettiness
subtraction [19,20] to regularize and cancel these diver-
gences. The agreement we find between these two
approaches serves as a check of our result. Initial-state
collinear divergences are absorbed into PDFs via mass
factorization. At this order in perturbation theory a gluon-
lepton scattering channel also contributes. The collinear
divergences that appear in this channel are removed by
mass factorization. Representative Feynman diagrams for
these processes are shown in Fig. 2.
We can express the NLO hadronic cross section in the

following form:

dσNLO ¼
Z

dξ1
ξ1

dξ2
ξ2

!
f1g=Hf

2
l=ldσ̂

ð2;1Þ
gl þ f1g=Hf

2
γ=ldσ̂

ð1;1Þ
gγ

þ
X

i¼q;q̄

½f1i=Hf2l=ldσ̂
ð2;1Þ
il þ f1i=Hf

2
γ=ldσ̂

ð1;1Þ
iγ &

"
; ð4Þ

where we have abbreviated fki=j ¼ fi=jðξkÞ. The contribu-

tions dσ̂ð2;1Þgl , dσ̂ð2;1Þql and dσ̂ð2;1Þq̄l denote the usual DIS
partonic channels computed to NLO in QCD with zero
lepton mass. The terms dσ̂ð1;1Þqγ , dσ̂ð2;1Þq̄γ and dσ̂ð1;1Þgγ denote
new contributions arising when Q2 ¼ −ðp2 − p4Þ2 ≈ 0.
These are associated with a virtual photon that is nearly

on shell, and a final-state lepton that travels down the beam
pipe. The transverse momentum of the leading jet is
balanced by the additional jet present in these diagrams,
and the final-state lepton is not observed. This kinematic
configuration leads to a QED collinear divergence for
vanishing lepton mass. While it is physically regulated
by the lepton mass, it is more convenient to obtain these
corrections by introducing a photon distribution function in
analogy with the usual parton distribution function. The
collinear divergences that appear in the matrix elements
computed with vanishing lepton mass can be absorbed into
this distribution function. This procedure is described for
inclusive jet production at Born level in Ref. [13], and at
higher orders in Refs. [25,27]. Representative diagrams for
the photon-initiated processes are shown in Fig. 3.
Since it is our primary calculational tool we give here a

brief description of the N-jettiness subtraction technique as
introduced in Ref. [19]. The starting point of this method is
the N-jettiness event shape variable [28], defined in the
one-jet case of current interest as

T 1 ¼
2

Q2

X

i

min fpB · qi; pJ · qig: ð5Þ

Here, pB and pJ are lightlike four-vectors along the initial-
state hadronic beam and final-state jet directions, respec-
tively. This definition of the event shape variable T 1 in
Eq. (5) is dimensionless, and corresponds to τa1 in Ref. [29].
The qi denote the four-momenta of all final-state partons.
Values of T 1 near 0 indicate a final state containing a single
narrow energy deposition, while larger values denote a final
state containing two or more well-separated energy dep-
ositions. Restricting T 1 > 0 removes all singular limits of
the quark-lepton matrix elements, e.g., when the additional
parton that appears in the real emission corrections is soft or
collinear to the beam or the final-state jet. This can be seen
from Eq. (5); if T 1 > 0 then qi must be resolved. Since all
unresolved limits are removed, the Oðα2αsÞ correction in
this phase space region can be obtained from a leading-
order calculation of two-jet production in electron-nucleon
collisions. When T 1 is smaller than any other hard scale
in the problem, it can be resummed to all orders in
perturbation theory [29–33]. Expansion of this resumma-
tion formula to Oðα2αsÞ gives the NLO correction to the
quark-lepton scattering channel for small T 1.

FIG. 1. Feynman diagram for the leading-order process
qðp1Þ þ lðp2Þ → qðp3Þ þ lðp4Þ. We have colored the photon
line red, the lepton lines green and the quark lines black.

FIG. 2. Representative Feynman diagrams contributing to the
perturbative QCD corrections at NLO: virtual corrections to the
qðp1Þ þ lðp2Þ → qðp3Þ þ lðp4Þ process (left), real emission
correction qðp1Þ þ lðp2Þ → qðp3Þ þ lðp4Þ þ gðp5Þ (middle),
and the process gðp1Þ þ lðp2Þ → qðp3Þ þ lðp4Þ þ q̄ðp5Þ (right).
We have colored the photon line red, the lepton lines green, the
gluon lines blue and the quark lines black.

FIG. 3. Representative Feynman diagrams contributing to the
qðp1Þ þ γðp2Þ → qðp3Þ þ gðp4Þ (left) and gðp1Þ þ γðp2Þ →
qðp3Þ þ q̄ðp4Þ scattering processes.

INCLUSIVE JET PRODUCTION AS A PROBE OF … PHYS. REV. D 98, 054031 (2018)

054031-3

R.	Boughezal,	F.	Petriello,	HX,	PRD	(2018)
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qNLO	unpolarized cross	section

EIC	predictions

PDF	uncertainty	is	small.	Resolved	photon	channel	is	important	in	small	pt region.

R.	Boughezal,	F.	Petriello,	HX,	PRD	(2018)

6

once the NNLO corrections are incorporated the scale dependence is reduced to the few-percent level. Since we do
not expect this to be a limiting uncertainty by the time of EIC data-taking we do not consider the scale dependence
further here.

p
s Center-of-mass energy of the proton-lepton collision

Q2 = �(p2 � p4)
2 Virtuality of the photon exchanged in the DIS process

pj
T

Tranverse momentum of the observed jet in the lab frame

⌘j Pseudorapidity of the observed jet in the lab frame

TABLE II. Definition of kinematic parameters used in our study.

For the unpolarized parton distributions in the proton we use the NNPDF 3.1 PDFs [10] extracted at next-to-
leading order in QCD perturbation theory. To describe the polarized parton content of the proton we use the NNPDF
1.1 polarized PDFs [7] unless noted otherwise. The one-sigma PDF uncertainties shown in the following sections are
obtained by evaluating the cross section for the 100 replica sets provided by NNPDF and combining their di↵erences
from the reference set according to the standard methodology [32]. For the non-perturbative unpolarized parton
distributions of the photon we use the leading-order GRV distributions from Ref. [33]. The corresponding polarized
distributions have not been determined from data and require modeling, as discussed in Ref. [34]. We study both the
minimal and maximal models from this reference, which correpsond to di↵erent choices for the boundary conditions
used when solving the evolution equations which these distributions satisfy.1 We note that all considered PDFs are
defined in the MS factorization scheme.

In order to estimate the sensitivity of inclusive jet production to the polarized structure of the proton for di↵erent
EIC realizations, we consider three di↵erent setups corresponding to di↵erent center-of-mass scattering energies [35].
These di↵erent energies, together with the associated ranges of jet transverse momenta and pseudorapidities consid-
ered, are shown in Table III. We assume 10 fb�1 of integrated luminosity for all design parameters. For simplicity
we also assume 100% polarization for both the initial-state electrons and protons. The results we obtain can be
simply rescaled to account for the polarization fractions eventually realized. To illustrate graphically what inclusive
jet production at an EIC teaches us about proton structure, we show in Fig. 5 how the di↵erent measured (pj

T
, ⌘

j)
regions map into the Bjorken-x and Q

2 ranges of the PDFs. We assume leading-order 2 ! 2 kinematics in order to
make these plots. We see that particularly at high center-of-mass energies that low Bjorken-x can be probed.

s =141.4 GeV, -3<ηj<3
s =63.2 GeV, -2.5<ηj<2.5
s =44.7 GeV, -2<ηj<2

0.001 0.005 0.010 0.050 0.100 0.500 1
5

10

15

20

25

30

x

p T
j

FIG. 5. Ranges of Bjorken-x and Q2 probed by inclusive jet measurements for each studied scattering energy.

We note that the experimental cuts considered allow for Q2
⇡ 0, where the final-state lepton goes down the beam

pipe and is not observed. This kinematic configuration allows for on-shell photons and is responsible for the parton-

1 We thank W.Vogelsang for providing numerical routines for the polarized photon distributions.
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qDouble	longitudinal	asymmetry	– pt distribution

§ Poor	understanding	of	polarized	PDF	leads	to	larger	PDF	errors	than	that	in	
unpolarized case.

§ PDF	errors	are	large	in	small	pt region,	but	the	asymmetry	is	small.
§ The	dominant	contribution	to	the	asymmetry	at	intermediate-to-high	pt comes	from	

the	ql channel.	
§ The	sensitivity	to	polarized	gluon	PDF	occurs	only	for	inclusive	jet	production.

8

FIG. 6. Total unpolarized cross section as a function of jet transverse momentum (left panel) and jet pseudorapidity (right
panel). The resolved photon contribution is shown separately in the upper panel of each plot. The lower panels normalize the
results to the central values in order to more clearly illustrate the errors.

FIG. 7. Split of the unpolarized transverse momentum and pseudorapidity distributions into partonic channels as described in
the text.

We now study the double-longitudinal spin asymmetry, defined as

ALL =
d�

++
� d�

+�
� d�

�+ + d�
��

d�++ + d�+� + d��+ + d��� , (12)

where the first superscript refers to the helicity of the lepton and the second one to the proton. The possibility
of polarized beams at an EIC makes the measurement of this observable possible, allowing access to the polarized
structure of the proton. The spin asymmetry as a function of jet transverse momentum and jet pseudorapidity is
shown in Fig. 8. We again show the PDF errors and statistical errors for each distribution. The PDF errors are
significantly larger than in the unpolarized case, indicating the poorer understanding of the polarized structure of the
proton. The asymmetry increases as a function of pj

T
, reaching nearly 20% for pj

T
= 35 GeV. It is small throughout

the studied ⌘
j range, since the event rate when integrated over pj

T
is dominated by low transverse momentum where

ALL is small. The fact that the PDF errors are much larger than the estimated statistical errors over all of phase
space shows that the EIC has the potential to greatly improve our knowledge of these distributions. The increase of
the PDF errors at low transverse momentum is due to the large uncertainty in the polarized PDFs at low Bjorken-x.

We show three additional quantities in the upper panels of each plot. First, we show the resolved photon contribution
to the asymmetry for both the minimal and maximal models of the polarized distribution functions of the photon
defined in Ref. [34]. We define these contributions by keeping only the resolved photon terms in the numerator of



15

qDouble	longitudinal	asymmetry	– rapidity	distribution

§ The	PDF	errors	are	larger	than	stat	errors	indicate	that	EIC	has	the	potential	to	improve	
our	understanding	of	polarized	PDFs.

§ The	increase	of	PDF	errors	at	forward	rapidity	is	due	to	the	large	uncertainty	in	the	
polarized	PDFs	at	low	Bjorken-x.	

§ Sensitive	to	polarized	photon	distributions.
§ Sensitive	to	polarized	gluon	PDF.
§ The	smallness	of	the	asymmetry	will	be	a	challenge	for	experimental	measurements.
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qDouble	longitudinal	asymmetry – with	Q2	cut

Indicates	the	advantage	of	inclusive	jet	measurements.

• Dihadron double	longitudinal	spin	asymmetry	in	SIDIS,	see	talk	by	杨维 on Monday.
• Jet	event	shape	in	EIC,	see	talk	by	Tanmay Maji on	Monday.
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q Single	transverse	spin	asymmetry

June 12, 2012 Zhongbo Kang, LANL

Current Sivers function from SIDIS

! Sivers and Collins can be separately extracted from SIDIS

22

June 12, 2012 Zhongbo Kang, LANL

Current Sivers function from SIDIS

! Sivers and Collins can be separately extracted from SIDIS

22

June 12, 2012 Zhongbo Kang, LANL

Sivers function from SIDIS

! Extract Sivers function from SIDIS (HERMES&COMPASS): a fit

! u and d almost equal size, different sign
! d-Sivers is slightly larger

! Still needs DY results to verify the sign change, thus fully understand 
the mechanism of the SSAs

23

u

d

⇥+ p" ! ⇥0 + �(pT ) +X : pT ⌧ Q

Anselmino, et.al., 2009

sensitive	to	parton’s transverse	motion
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q Distortion	from	Sivers effect

Unpolarized Transversely	polarized

Nucleon	structure	– 3D	imaging



18

dhPh?��(S?)i
dxBdydzh

⌘
Z

d2Ph?✏
↵�S↵

?P
�
h?

d��(S?)

dxBdydzhd2Ph?

qWeighted	cross	section

v Only	one	scale	– collinear	factorization	at	twist	3

June 12, 2012 Zhongbo Kang, LANL

Current Sivers function from SIDIS

! Sivers and Collins can be separately extracted from SIDIS

22

x1p
(x2 − x1)p+ k⊥

x2p + k⊥

pc
q

µ ν

dhPh?��(S?)i
dxBdydzh

= �zh�0

2

X

q

e2q

Z
dx

x

dz

z
Tq,F (x, x)Dq!h(z)�(1� x̂)�(1� ẑ)

q Leading	order

q Qiu-Sterman function

3

where x̂ = xB/x and ẑ = zh/z and Pqq(x) is the usual spin-averaged quark-to-quark splitting kernel

Pqq(x) = CF

[

1 + x2

(1 − x)+
+

3

2
δ(1 − x)

]

. (8)

Let us now concentrate on the NLO correction to the transverse spin-dependent differential cross section. This will
allow us to study the Ph⊥-weighted Sivers asymmetry, as in Eq. (6), at next-to-leading order. We will start with
the leading order calculation for the transverse spin-dependent cross section. At this order, the final-state hadron is
produced through the hadronization of the quark, which comes from the virtual-photon quark scattering. In order
to obtain a non-vanishing Ph⊥-weighted transverse spin-dependent cross section ⟨Ph⊥∆σ(S⊥)⟩, we have to include
the final-state multiple interactions, as shown in Fig. 1, to provide the required phase [8]. We work in the covariant

x1p
(x2 − x1)p+ k⊥

x2p + k⊥

pc
q

µ ν

x1p
(x2 − x1)p+ k⊥

x2p + k⊥

pc
q

µ ν

FIG. 1. Leading order Feynman diagrams. Left: gluon to the left of the cut. Right: gluon to the right of the cut.

gauge. For the gluon on the left of the t = ∞ cut, shown in Fig. 1(left), we have the Ph⊥-weighted cross section as

d⟨Ph⊥∆σ(S⊥)⟩

dxBdydzh

∣

∣

∣

∣

Fig. 1(left)
∝

∫

d2Ph⊥ϵ
αβSα

⊥P
β
h⊥

∫

dzDq→h(z)

∫

dx1dx2d
2k⊥Tq,A(x1, x2, k⊥)

× [−gµνHµν(x1, x2, k⊥)] δ
2 (Ph⊥ − zk⊥) . (9)

Here (and throughout the paper), for simplicity we only consider the so-called metric contribution [27–29]. This means
that we contract our hadronic tensor Hµν with −gµν . The twist-3 correlation function Tq,A(x1, x2, k⊥) is defined as

Tq,A(x1, x2, k⊥) =

∫

dy−1
2π

dy−2
2π

d2y⊥
(2π)2

eix1P
+y−

1 ei(x2−x1)P
+y−

2 eik⊥·y⊥
1

2
⟨PS|ψ̄q(0)γ

+A+(y−2 , y⊥)ψq(y
−
1 )|PS⟩. (10)

One can take advantage of δ2 (Ph⊥ − zk⊥) to integrate out d2Ph⊥, thus P
β
h⊥ = zkβ⊥. We then use kβ⊥ to convert A+

to the F+β field strength through integration by parts [30]. At the same time, one realizes that the Feynman diagram
with the gluon to the right of the cut (Fig. 1(right)) gives no contribution to the Ph⊥-weighted Sivers asymmetry.
This is because for this diagram the associated δ-function becomes δ2(Ph⊥), i.e. Ph⊥ = 0, and the Ph⊥-weighted
asymmetry vanishes. This conclusion also holds true in the virtual diagram calculation.
The required phase to generate a Sivers asymmetry comes from a pole in the propagator, which is represented by

a short-bar in Fig. 1,

1

(pc − (x2 − x1)P )2 + iϵ
=

1

2P · pc

1

x1 − x2 + iϵ
→

1

2P · pc
(−iπ)δ(x1 − x2). (11)

With this phase, we have

gs

∫

d2k⊥iϵ
αβSα

⊥k
β
⊥Tq,A(x1, x2, k⊥) =

1

2π
Tq,F (x1, x2), (12)

where Tq,F (x1, x2) is the well-known Qiu-Sterman function, with the following definition:

Tq,F (x1, x2) =

∫

dy−1 dy
−
2

4π
eix1P

+y−

1 +i(x2−x1)P
+y−

2
1

2
⟨PS|ψ̄q(0)γ

+ϵαβS⊥αF
+
β(y

−
2 )ψq(y

−
1 )|PS⟩. (13)

Finally, the Ph⊥-weighted Sivers asymmetry at LO has the following form [5]

d⟨Ph⊥∆σ(S⊥)⟩

dxBdydzh
= −

zhσ0
2

∑

q

e2q

∫

dx

x

dz

z
Tq,F (x, x)Dq→h(z)δ(1 − x̂)δ(1 − ẑ), (14)

Jul 16, 2010 Zhongbo Kang, RBRC/BNL

Twist-3 correlation function in polarized nucleon

 quark-gluon correlation:

 Symmetry property:

 Soft gluonic pole: 

 Soft fermionc pole: 

 Relation between               and quark Sivers
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M�(x1, x2) =
⇤

dy�1 dy�2
2⇤

eix1p+y�1 +i(x2�x1)p
+y2�p, sT |⌅̄q(0)gF�+(y�2 )⌅q(y�1 )|p, sT ⇥

=
1
2

�
/̄n ⇥�sT nn̄Tq,F (x1, x2) + �5 /̄n is�

T T�q,F (x1, x2) + · · ·
⇥

Tq,F (x1, x2) = Tq,F (x2, x1)
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�

d2k�
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Mh
f�1T (x, k2

�)
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x1 x2

x2 � x1

Boer, Mulders, Pijlman, 2003
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Relation	to	Sivers function

Transverse	momentum	weighted	SSA	in	SIDIS
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soft-pole hard-pole

Kang,		Vitev,	HX,	PRD,	2013q Virtual	correction

4

where we recall that x̂ = xB/x and ẑ = zh/z. Since we will use dimensional regularization for our NLO calculation in
the next section, we also need the LO result in n = 4− 2ϵ dimension. We find that the only change is the appearance
of 1− ϵ in the overall normalization of σ0, i.e. in n = 4− 2ϵ dimension we have σ0 in Eq. (14) defined as

σ0 =
2πα2

em

Q2

1 + (1 − y)2

y
(1− ϵ). (15)

III. TRANSVERSE MOMENTUM-WEIGHTED SIVERS ASYMMETRY AT NLO

In this section we present the NLO pQCD corrections to the transverse spin-dependent differential cross section. We
first give the result for virtual corrections, and then study the real corrections. We then combine the real and virtual
corrections to obtain the final expression. We show that all the soft divergences cancel out between real and virtual
diagrams. The remaining collinear divergence can be absorbed by the redefinition of the unpolarized fragmentation
function, and the twist-3 Qiu-Sterman function. This provides an alternative way to derive the evolution equation
for the Qiu-Sterman function.

A. Virtual corrections

FIG. 2. The generic Feynman diagrams for the virtual corrections to the Ph⊥-weighted cross section.

We first study the virtual corrections. The relevant generic Feynman diagrams are shown in Fig. 2. Here, we only
include the diagrams which have the gluon attached to the left of the cut. This is because the diagrams with the gluon
to the right of the cut, just like in the LO calculation, give no contribution to the Ph⊥-weighted Sivers asymmetry
because of the same δ-function δ2(Ph⊥). The blob in Fig. 2(left) is given by Fig. 3. These diagrams are pretty easy to
compute since they are the same as the usual virtual corrections in the unpolarized cross section. The result is given
by [27]

d⟨Ph⊥∆σ(S⊥)⟩

dxBdydzh

∣

∣

∣

∣

Fig. 2(left)
= −

zhσ0
2

αs

4π

∑

q

e2q

∫

dx

x

dz

z
Tq,F (x, x)Dq→h(z)δ(1− x̂)δ(1− ẑ)

×CF

(

4πµ2

Q2

)ϵ
1

Γ(1− ϵ)

[

−
2

ϵ2
−

3

ϵ
− 8

]

(16)

FIG. 3. One-loop virtual corrections for the Ph⊥-weighted cross section: shown here are the corrections to the quark-photon-
quark vertex, corresponding to the blob in Fig. 2(left).

On the other hand, the blob in Fig. 2(right) is much more complicated and the explicit diagrams are given in Fig. 4.
The calculation is lengthy and contains significant amount of tensor reduction and integration. The diagrams contain
three types of color factors: (a) and (e) have color factors CF ; (b), (c) and (f) have color factors −1/2Nc = CF −Nc/2;

5

(a) (b) (c) (d)

(e) (f) (g)

FIG. 4. One-loop virtual corrections for the Ph⊥-weighted cross section: shown here are the corrections to the quark-photon-
quark vertex with gluon attachment, corresponding to the blob in Fig. 2(right).

(d) and (g) have color factorsNc/2. We find that the terms associated withNc/2 cancel out and only the color structure
proportional to CF remains. The final result is

d⟨Ph⊥∆σ(S⊥)⟩

dxBdydzh

∣

∣

∣

∣

Fig. 2(right)
= −

zhσ0
2

αs

4π

∑

q

e2q

∫

dx

x

dz

z
Tq,F (x, x)Dq→h(z)δ(1− x̂)δ(1− ẑ)

×CF

(

4πµ2

Q2

)ϵ
1

Γ(1 − ϵ)

[

−
2

ϵ2
−

3

ϵ
− 8

]

(17)

Thus, the virtual correction is given by the sum of both diagrams in Fig. 2:

d⟨Ph⊥∆σ(S⊥)⟩

dxBdydzh

∣

∣

∣

∣

virtual

= −
zhσ0
2

αs

2π

∑

q

e2q

∫

dx

x

dz

z
Tq,F (x, x)Dq→h(z)δ(1− x̂)δ(1 − ẑ)

×CF

(

4πµ2

Q2

)ϵ
1

Γ(1− ϵ)

[

−
2

ϵ2
−

3

ϵ
− 8

]

(18)

B. Real corrections

Let us now study the real corrections. In this case, we need to perform the usual k⊥-expansion (also referred to
as collinear expansion). The techniques for k⊥-expansion are well established in the literature, see e.g. Refs. [8–11].
The Ph⊥-weighted cross section can be written as follows:

d⟨Ph⊥∆σ(S⊥)⟩

dxBdydzh

∣

∣

∣

∣

Real

∝

∫

d2Ph⊥ϵ
αβSα

⊥P
β
h⊥

∫

dzDq→h(z)

∫

dx1dx2d
2k⊥Tq,A(x1, x2, k⊥)

×kρ⊥
∂

∂kρ⊥
[−gµνHµν(x1, x2, k⊥)] (19)

Again, we need a phase to generate the Sivers asymmetry, which also comes from the pole in the propagators. For
the SIDIS process we can have both soft-pole and hard-pole contributions. Soft-pole contributions come from the
Feynman diagrams shown in Fig. 5, with the soft-pole marked by a short bar in the diagram. For gluon to the left of
the cut, it arises from

1

(pc − (x2 − x1)P − k⊥)
2 + iϵ

=
1

2P · pc

1

x1 − x2 − v1 · k⊥ + iϵ
→ −

x

û
(−iπ)δ(x1 − x2 + v1 · k⊥), (20)

where the Mandelstam variables are defined as

ŝ = (xP + q)2, t̂ = (pc − q)2, û = (xP − pc)
2. (21)

Here, pc is the momentum of the final-state quark which fragments into the observed hadron and vµ1 = 2xpµc /û. When
k⊥ → 0, x1 = x2, i.e. the attached gluon momentum becomes zero. This clarifies the name “soft-pole” contribution.

q Real	correction

SSA	in	SIDIS	at	NLO
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q QCD	evolution	of	Qiu-Sterman function
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Nc

2

"
ln

x̂

1� x̂
+ 2

✓
ln(1� x̂)

1� x̂

◆

+

� 2
ln x̂

1� x̂
� 1 + x̂

(1� x̂)+

#

+ Tq,F (x, xx̂, µ
2)

1 + x̂ẑ2
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✓
CF +

1

2Ncẑ
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q Fully	analytical	calculation	at	next-to-leading	order LO

NLO

All	finite,	perfect	for	numerical	calculation! Kang,		Vitev,	HX,	PRD,	2013
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COMPASS	measurement10 The COMPASS Collaboration
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Fig. 2: Left panel: Distribution of the weight w = PT/zM for positive hadrons in the bin 0.50 <
z < 0.65. Right panel: Mean value of w as function of z. No acceptance correction applied.
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Fig. 3: Full points: Aw
Siv in the nine x bins for positive (left panel) and negative (right panel)

hadrons. The open crosses are the unweighted Sivers asymmetries ASiv [11], which are slightly
shifted towards smaller x values for clarity.

the nine z bins have also similar shapes but different slopes. The distribution for 0.50 < z < 0.65
and the mean values of w as function of z are shown in Fig. 2 for positive hadrons. Again, for
negative hadrons the distributions are very much the same.

The measured weighted asymmetries are presented as a function of x in Fig. 3. The unweighted
Sivers asymmetries [11] are also shown for comparison. As expected, the trends of the weighted
and unweighted asymmetries are similar both for positive and negative hadrons. The asymmetry
for positive hadrons is clearly different from zero, in particular at large x. In this range, the ratios
Aw

Siv/ASiv are very close to the mean value of the weight. The statistical uncertainties are scaled
by about the same ratio.

Assuming u-quark dominance for positive hadrons produced on a proton target, one has

Aw
Siv ' 2

f?(1)u
1T (x,Q2)

f u
1 (x,Q

2)
, (21)

and the results on Aw
Siv represent the first direct measurement of f?(1)u

1T / f u
1 .

NLO	description	of	Sivers asymmeties,	HX,	in	preparation.

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

COMPASS

CERN-EP-2018–xxx
September 11, 2018

Measurement of PT -weighted Sivers asymmetries in leptoproduction

of hadrons

The COMPASS Collaboration

Abstract

The transverse spin asymmetries measured in semi-inclusive leptoproduction of hadrons,
when weighted with the hadron transverse momentum PT , allow for the extraction of im-
portant transverse-momentum-dependent distribution functions. In particular, the weighted
Sivers asymmetries provide direct information on the Sivers function, which is a leading-
twist distribution that arises from a correlation between the transverse momentum of an un-
polarised quark in a transversely polarised nucleon and the spin of the nucleon. Using the
high-statistics data collected by the COMPASS Collaboration in 2010 with a transversely po-
larised proton target, we have evaluated two types of PT -weighted Sivers asymmetries, which
are both proportional to the product of the first transverse moment of the Sivers function and
of the fragmentation function. The results are compared to the standard unweighted Sivers
asymmetries and used to extract the first transverse moments of the Sivers distributions for u
and d quarks.

(to be submitted to Nuclear Physics B)
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Nuclear	structure	in	small-x
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Dense	region	- gluon	saturation
The global PDF analysis

23

Hadronic scale:
Global PDF fit results

LHC scale

Perturbative 
Evolution

 Combine state-of-the-art theory calculations, the constraints from PDF-sensitive measurements from 
different processes and colliders, and a statistically robust fitting methodology

 Extract Parton Distributions at hadronic scales of a few GeV, where non-perturbative QCD sets in

Use perturbative evolution to compute PDFs at high scales as input to LHC predictions

High scales:
input to 

LHC

Juan Rojo                                                                                                                 MPP, Munich, 26/07/2017

v Gluon	density	grows	dramatically	in	small-x	region.
v Such	fast	growth	would	violate	the	fundamental	principle	of	

unitarity.
v Gluon	recombination	process	needs	to	be	taken	into	

account.

q Parton	density	in	small-x	region
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Coherent	multiple	scattering	– gluon	saturation

q Single	inclusive	hadron	production	in	proton-nucleus	collisions

§ Hybrid	(dilute-dense)	factorization	formalism

xp =
p?
z
p
s
ey

xg =
p?
z
p
s
e�y

…

xppa � kTa

xgpb ⇠ kTb

§ In	proton	beam	going	direction	

Probing	valance	quark	– DGLAP	evolution

Probing	dense	gluon	– BK	evolution

v All	multiple	scatterings	become	equally	important,	need	to	be	resummed.
v Coherent	multiple	scattering	are	encoded	in	the	so-called	unintegrated	

gluon	distribution	(UGD)	F(x,	kT)

Probing
Saturation
Physics in

pA
Collisions

Bo-Wen
XiaoñZá

Introduction

Forward
Hadron
Productions
in pA

Collisions

Sudakov
Factor

Summary

kt factorization vs Dilute-Dense factorizations

kt factorization for single inclusive gluon productions in hadron-hadron collision:

3

atic error in the comparison of theory and experiment.
Explicitly noticing such problems can be an important
motivation for topics for further research that are impor-
tant for the success of a field.

The kT -factorization formula that we discuss, Eq. (1)
below, is intended to be valid for single inclusive jet pro-
duction in hadron-hadron collisions. It is widely used
in phenomenological applications to study the particle
multiplicity observed at hadron colliders. (For some ex-
amples see [4–12] and references therein. A comparison
of some phenomenological predictions to LHC data for
the particle multiplicities in both proton-proton and lead-
lead collisions was presented by the ALICE collaboration
[13].)

The kT -factorization formula used in this area is (see,
e.g., Ref. [8, Eq. (1)]):

d�

d2pT dy
=

2�s

CF p2
T

�

�
�

d2kA,T fA(xA, kA,T ) fB(xB , pT � kA,T ). (1)

Here fA and fB are TMD densities of gluons in their
parent hadrons, and the two gluons combine to give an
outgoing gluon of transverse momentum pT which gives
rise to an observed jet in the final state. In the formula,
CF = (N2

c � 1)/2Nc with Nc = 3 for QCD, y is the
rapidity of the final-state jet, and xA,B = (pT /

�
s)e±y.

The incoming hadrons A and B can be protons or nuclei.
Questions that now naturally arise are: Where does

this formula originate from? Where can a proper deriva-
tion be found, and under what conditions and to what
accuracy is the derivation valid? What are the explicit
definitions of the unintegrated distributions fA,B, and do
these definitions overcome the subtleties that are found
in constructing definitions of TMD distributions in QCD
in the non-small-x regime [2, Chs. 13 & 14]? In an ideal
world, we could say that in order for the requirements
(T1)–(T4) to be fulfilled, it is absolutely necessary that
these questions be answered, and that a person who reads
a paper which makes use of this formula can, if needed,
go back to the original source and himself/herself repro-
duce and verify the derivations. But we must recognize
that in the real world some of these issues are very deep
and di�cult, and that therefore complete answers to the
questions do not (yet) all exist. Nevertheless, in this
subject, we should expect some kind of derivation, with
the accompanying possibility of an outsider being able
to identify, for example, possible gaps in the logic where
further work is needed.

However, as we will explain below, we tried to find any
kind of a derivation of the formula by following citations
given for it, but were unable to do so. Our findings can
be visualized in Fig. 1, which shows the chain of refer-
ences that one needs to follow to arrive at the nearest
possible source(s), starting from a selection of recent pa-
pers. Coming to those sources we find that the formula is
never derived but essentially asserted. Moreover, the ba-
sic concepts involved are never defined in a clear enough

way to make it understandable what exactly it is that
is being done. We therefore find it impossible that (1)
can be satisfactorily re-derived from sources referenced
in the literature, contrary to what should be the case if
principles (T1)–(T4) hold.

A clear symptom that these are not merely abstract
di�culties but are problems with practical impact is that
the overall normalization factor di�ers dramatically be-
tween the references. See, for example, Eq. (40) in [14]
and Eq. (4.3) in [15] — and notice that this di�erence in
normalization does not appear to be commented on, let
alone explained. The di�erence in normalization factors
demonstrates that at least one of the presented factor-
ization formulas is definitively wrong. (In the two ap-
pendices of the present paper, we will show that in fact
the normalizations of both formulas appear to be wrong.)
There are a number of di�cult physical and mathemati-
cal issues that need to be addressed if one is to provide a
fully satisfactory proof of a factorization formula. These
issues go far beyond a mere normalization factor. But
the existence of problems with the normalization factor
is a diagnostic: it provides a clear and easily verifiable
symptom that something has gone wrong. A minimum
criterion for a satisfactory derivation is that it should be
explicit enough to allow us to debug how the normaliza-
tion factor arises.

At the top of our chart of references, Fig. 1, we have
chosen some of the recent phenomenological applications
[8–11] that make use of (1). We also include some earlier
highly cited phenomenological applications [5, 6]. There
exist a very great number of papers which make use of
(1), so we include here only a representative few. As is
indicated in the top part of Fig. 1, a central source that
is given for (1) is the highly cited Ref. [14]. We thus ask
whether we then can find a derivation of (1) in [14].

That paper performs a calculation in a quasi-classical
approximation of particle production in DIS using the
dipole formalism (see the reference for the exact calcu-
lations that define this “quasi-classical” approximation).
There actually is an implicit assumption of a factorized
structure from the very start in this formalism (see Eqs.
(1) and (7) in the reference). For our purposes it is im-
portant to notice what the exact statement is regarding
(1), which can be found as Eq. (40) in [14]. (An unimpor-
tant di�erence is that in [14], the f ’s in (1) are instead
written as f/k2

T .) Prior to this equation, an equation for
the production of gluons in DIS is derived, Eq. (39) in
[14]. The exact statement just prior to stating (1) in the
form of Eq. (40) in [14] reads

The form of the cross section in Eq. (39) sug-
gests that in a certain gauge or in some gauge
invariant way it could be written in a fac-
torized form involving two unintegrated gluon
distributions merged by an e�ective Lipatov
vertex.

There is no derivation of Eq. (1). Rather, this equation is
stated as being the “usual form of the factorized inclusive

Factorization and NLO correction? Only proved for DY and Higgs !
For dijet processes in pp, AA collisions, no kt factorization[Collins, Qiu,
08],[Rogers, Mulders; 10].

Dilute-Dense factorizations

x1 � p��
s
e+y � 1

x2 � p��
s
e�y � 1

Jan 8, 2013 Zhongbo Kang, LANL

Observation at high energy

! The spin asymmetry becomes the largest at forward rapidity region, 
corresponding to
! The partons in the projectile (the polarized proton) have very large momentum 

fraction x: dominated by the valence quarks (spin effects are valence effects)
! The partons in the target (the unpolarized proton or nucleus) have very small 

momentum fraction x: dominated by the small-x gluons

! Thus spin asymmetry in the forward region could probe both
! The transverse spin effect from the valence quarks in the projectile: Sivers 

effect, Collins effect, and etc
! The small-x gluon saturation physics in the target

4

projectile:

target:

valence

gluon

�
s

Tuesday, January 8, 2013

Protons and virtual photons are dilute probes of the dense target hadrons.
For dijet productions in forward pA collisions, effective kt factorization:

d�pA!ggX

d2P?d2q?dy1dy2
=xpg(xp, µ)xAg(xA, q?)

1
⇡

d�̂

d̂t
.

4 / 16
� ⇠ xpfq/p(xp)⌦H ⌦ F(xg, k?)⌦Dh/q(z)

proton nucleus



25

0

0.5

1

1.5

2

0.5 1 1.5 2 2.5 3 3.5 4

LO
NLO

y=3.2   p⊥=2 GeV

κ=xg/xA

Un
ce

rta
in

ty

Next-to-Leading-Order Forward Hadron Production in the Small-x Regime:
The Role of Rapidity Factorization

Zhong-Bo Kang,1 Ivan Vitev,1 and Hongxi Xing1,2
1Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

2Institute of Particle Physics, Central China Normal University, Wuhan 430079, China
(Received 2 April 2014; published 7 August 2014)

Single inclusive hadron production at forward rapidity in high energy pþ A collisions is an important
probe of the high gluon density regime of QCD and the associated small-x formalism. We revisit an earlier
one-loop calculation to illustrate the significance of the “rapidity factorization” approach in this regime. Such
factorization separates the very small-x unintegrated gluon density evolution and leads to a new correction
term to the physical cross section at one-loop level. Importantly, this rapidity factorization formalism
remedies the previous unphysical negative next-to-leading-order contribution to the cross section. It is much
more stablewith respect to “rapidity” variation when compared to the leading-order calculation and provides
improved agreement between theory and experiment in the forward rapidity region.

DOI: 10.1103/PhysRevLett.113.062002 PACS numbers: 12.38.Bx, 12.39.St, 13.88.+e

As the theory of strong interactions, quantum chromo-
dynamics (QCD) [1] has been extensively tested and
verified. In particular, QCD in the weak coupling regime
has been very successful in predicting and interpreting
high energy scattering processes in fixed target and
collider experiments. Such a success is based on the
well-established QCD collinear factorization formalism
[2], which describes the hadron as a dilute system of
partons. It was subsequently found that the parton densities
(especially the gluon density) grow dramatically when the
longitudinal momentum fraction x carried by a parton in a
proton becomes very small due to bremsstrahlung proc-
esses. Such fast growth would violate the fundamental
principle of unitarity and cannot be sustained. It is, thus,
expected that the gluon density will eventually become so
large that a nonlinear regime, called a saturation regime [3],
will be reached. Another characteristic of the small-x
regime is that external hard probes will interact with the
partons in a nucleon or a nucleus coherently rather than
independently [4,5]. In recent years, the high parton density
limit has become one of the most active research topics for
QCD theory. The quest to identify the quantum coherent
scattering regime is a critical goal for the ongoing experi-
ments at the Relativistic Heavy Ion Collider (RHIC) and the
Large Hadron Collider. It is a cornerstone of the physics
program for the planned Electron Ion Collider [6].
Single forward hadron production in high energy proton-

nucleus (pþ A) collisions constitutes one of the key
observables in searching for gluon saturation. The observed
suppression of inclusive hadrons at forward rapidity in
dþ Au collisions at RHIC [7] has provided evidence for
the significance of cold nuclear matter effects, among them
coherent multiple scattering. However, in the small-x
formalism, experimental data are still mostly interpreted
via leading-order (LO) calculations [8,9]. A significant step

forward is the first calculation of forward hadron pro-
duction at next-to-leading order (NLO) [10]. However,
the resulting one-loop correction in this approach is neg-
ative. At moderate and large transverse momenta it domi-
nates the cross sections, which become negative (and
unphysical) [11].
In this Letter, we demonstrate that besides the well-

known standard collinear factorization, which separates the
short-distance dynamics from the long-distance physics,
one has to pay close attention to the so-called “rapidity
factorization” regime. It necessitates a rapidity cutoff to
separate the very small-x unintegrated gluon density
evolution from the finite one-loop contributions. We revisit
the NLO calculation for forward hadron production in high
energy pþ A collisions to show that such a procedure leads
to a new NLO correction term. This term remedies the
unphysical negative one-loop cross section obtained in
Ref. [11]. The new formalism also leads to much less
sensitivity to the choice of “rapidity” factorization scale at
NLO in comparison to LO results and improved agreement
between data and theory.
Rapidity factorization.—The mechanism of inclusive

hadron production at forward rapidities in pþ A collisions,
pþ A → hþ X, in the small-x regime at LO can be
described as follows: an energetic parton (either quark or
gluon) from the proton scatters coherently on the gluon
field of the nucleus, as it penetrates the target, and then
fragments into the final-state hadron. Let us focus on the
situation where a quark from the proton undergoes such
scattering (qA → q) to demonstrate the formalism. The
differential cross section at forward rapidity y and trans-
verse momentum p⊥ is given by [8,9]

dσ
dyd2p⊥

¼
Z

1

τ

dz
z2

Dh=qðzÞxpfq=pðxpÞF ðxg; k⊥Þ; ð1Þ

PRL 113, 062002 (2014) P HY S I CA L R EV I EW LE T T ER S
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§ We	solved	the	negative	cross	section	puzzle!
§ Better	description	of	the	experimental	data	at	NLO.
§ More	stable	theoretical	control	at	NLO.
§ NLO:	highest	precision	in	small-x	physics.

where Gðxg; k⊥; q⊥Þ is defined as

Gðxg; k⊥; q⊥Þ ¼
Z

d2b⊥d2b0⊥d
2x⊥

ð2πÞ4
e−ik⊥⋅ðb⊥−x⊥Þ

× e−iq⊥⋅ðx⊥−b
0
⊥ÞSð4Þðb⊥; x⊥; b0⊥Þ: ð14Þ

Finally, we can write the rapidity factorization correction
term in Eq. (11) as

ΔH Y¼
αsNc

π

Z
1

τ

dz
z2
Dh=qðzÞxpfq=pðxpÞ

Z
Y

Y0

dyA

×
!Z

d2b⊥d2b0⊥
ð2πÞ2

e−iq⊥⋅ðb⊥−b
0
⊥ÞSð2Þðb⊥;b0⊥Þln

c20
ðb⊥−b0⊥Þ2

−
1

2

Z
d2q⊥ lnðk⊥−q⊥Þ2½Gðxg;q⊥;k⊥Þþ Gðxg;k⊥;q⊥Þ&

−
1

π

Z
d2l⊥d2q⊥

ðq⊥−k⊥Þ⋅ðl⊥−k⊥Þ
ðq⊥−k⊥Þ2ðl⊥−k⊥Þ2

Gðxg;q⊥;l⊥Þ
"
:

ð15Þ

In other words, the 1=ϵ̂ þ ln μ2 term cancels between
Eqs. (12) and (13). This indicates that the rapidity diver-
gence and collinear divergence are well separated and thus
can be factorized independently.
Numerical results.—To illustrate our NLO calculation,

we use the Golec-Biernat–Wusthoff model [25] to para-
metrize the dipole scattering amplitude: Sð2Þðb⊥; b0⊥Þ ¼
exp ½−ðb⊥ − b0⊥Þ2Q 2

sðxÞ=4&. The saturation scale in a
nucleus with atomic number A is given by Q 2

sðxÞ ¼
cA1=3Q 2

s0ðx0=xÞλ, with Qs0 ¼ 1 GeV, x0 ¼ 3.04× 10−4,
and λ ¼ 0.288. We use c ¼ 0.56[26] for minimum bias
p þ A collisions.
We first show that, within our rapidity factorization

scheme, the full NLO results with ΔH Y in Eq. (15)
remedies the negative cross section from the calculation
in Ref. [11]. In Fig. 1, we present comparison to the

BRAHMS h− data at y ¼ 3.2 in d þ Au collisions at RHIC
[7]. For consistency with Ref. [11], we choose the collinear
factorization scale μ2 ¼ 10 GeV2. The red dashed curve is
the LO result, and the blue solid curve is our NLO
calculation (including the new rapidity correction term
ΔH Y), while the black dotted curve is the previous NLO
result that becomes negative for p⊥ ≳ 2.5 GeV [11]. We
have checked that the formalism presented here yields
positive-definite cross sections for variety of rapidities and
center of mass energies in the physical kinematic p⊥
region.
Of course, one should choose the collinear factorization

scale μ to be related to the typical momentum scale in the
hard process (e.g., p⊥ of the hadron). In Fig. 2 we plot a
new comparison to the BRAHMS data with μ ¼ p⊥. The
red dashed curve shows the LO result, and the blue solid
curve shows our NLO calculation (with ΔH Y included). At
one loop we find a good description of the experimental
data. At higher p⊥ our NLO corrections enhances the cross
section as expected, since it includes the gluon radiation
processes.
As we emphasized earlier, the factorization scale μ

dependence should be largely reduced in the NLO cross
section when compared to the LO results. We have verified
that this is indeed the case, consistent with previous
findings [11]. What is much more important is to demon-
strate the reduction in sensitivity to the rapidity factoriza-
tion scale Y0 ¼ ln 1=xg. We plot in Fig. 3 the ratio
R ¼ ðdN=dyd2p⊥Þjxg¼κxA=ðdN=dyd2p⊥Þjxg¼xA as a func-
tion of κ ¼ xg=xA, with xA being the typical gluon
momentum fraction at LO. It can be seen that for κ ∈
ð0.25; 2Þ the LO result has a variation of ' 50%, while our
NLO result with the new rapidity correction ΔH Y shows
only ' 10% variation. On the other hand, the previous result
from Ref. [11] shows more than a factor of 2 variation. In
other words, the full NLO calculations provide predictions
that are much more stable with respect to variation of both
collinear factorization and rapidity factorization scales.
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FIG. 1 (color online). Comparison of h− spectra obtained
in the small-x formalism with fixed μ2 ¼ 10 GeV2 to BRAHMS
data [7].
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FIG. 2 (color online). Comparison of the LO and NLO
results to BRAHMS data [7]. We choose the collinear factori-
zation scale μ ¼ p⊥.
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qMedium	induced	gluon	radiation	– twist	4	contribution

qMedium	modified	fragmentation	functions

renormalized quark fragmentation function Dq→h(zh, µ2)
satisfies the QCD evolution equation [10].

FIG. 1. Diagrams for rescattering with gluons (a) and
quarks (b) without and with gluon radiation (c) in deeply in-
elastic eA scattering. Possible cuts are shown by the dashed
lines

In this paper we will consider contributions of quark
rescattering with partons from another nucleon inside the
nucleus. Such contributions are proportional to the nu-
clear size A1/3 [9]. For large enough A, we can neglect
other A-independent HT effects. For large Q2 in DIS,
it may suffice to only consider one rescattering. The
contributions of one rescattering can be treated as HT
corrections to the LT results. We work in a frame-
work [12] in which the twist-four contributions can be
expressed as the convolution of the partonic hard parts
and four-parton matrix elements [9]. At the lowest order,
rescattering without gluon radiation as shown in Fig. 1(a)
broadens the transverse momentum of the leading jet [11]
but contribute little to parton energy loss. One can also
neglect rescattering with another quark in Fig. 1(b).
The dominant HT contributions to the QCD evolu-

tion of the fragmentation functions come from radiative
processes involving rescattering with a gluon from an-
other nucleon as illustrated by the central-cut diagram in
Fig. 1(c). Kinematics only allows two poles, one at each
side of the central-cut, out of the four propagators in the
diagram. This leads to four possible combinations each
give different momentum fractions to the initial partons.
In one case, the initial gluon has x2 = xL + xD which is
finite when kT → 0, where

xL =
ℓ2T

2p+q−z(1− z)
; xD =

k2T − 2k⃗T · ℓ⃗T
2p+q−z

, (4)

ℓT is the transverse momentum of the radiated gluon, kT
is the initial gluon’s intrinsic transverse momentum, and
z = ℓ−q /q

− is the momentum fraction carried by the final
quark. This corresponds to gluon radiation induced by
the rescattering and is referred to as a double-hard pro-
cess. In another combination, x2 = xD which vanishes
when kT → 0. In this case the rescattering is soft and
the gluon radiation is induced by the initial hard photon-
quark scattering. Such a process is called hard-soft. The
four contributions from Fig. 1(c) correspond to these two
distinct processes and their interferences. Their sum has
the form,

HD(1)
µν ∝ (1 − e−ixLp+y−

2 )(1 − e−ixLp+(y−

−y−

1
))

× eixDp+(y−

1
−y−

2
). (5)

This clearly manifests the LPM interference pattern
caused by the destructive interferences between hard-soft
and double-hard processes. The interference pattern is
dictated by the gluon’s formation time, τf ≡ 1/xLp+, rel-
ative to the nuclear size. The two processes completely
cancel each other in the collinear limit when ℓT → 0.
Diagrams involving three-gluon vertices have exactly the
same structure as Fig. 1(c), except that they have differ-
ent momentum dependence and color factor in the hard
part.
We have considered all together 23 possible cut dia-

grams, 14 of them are interferences between no and dou-
ble rescattering (shown as the left and right-cut diagrams
in Fig. 1(c)) which cancel some of the contributions from
central-cut diagrams. Including virtual corrections, we
obtain [13] the leading HT contribution from rescatter-
ing processes,

dWD
µν

dzh
=

∑

q

e2q

∫
dxH(0)

µν (x, p, q)
2παs

Nc

∫
dℓ2T
ℓ4T

∫ 1

zh

dz

z

× Dq→h(zh/z)
αs

2π
CA

[
1 + z2

(1− z)+
TA
qg(x, xL)

+ δ(z − 1)∆TA
qg(x, ℓ

2
T )

]
, (6)

where

TA
qg(x, xL) =

∫
dy−

2π
dy−1 dy

−

2 e
i(x+xL)p+y−+ixT p+(y−

1
−y−

2
)

1
2 ⟨A|ψ̄q(0) γ

+ F +
σ (y−2 )F

+σ(y−1 )ψq(y
−)|A⟩

× (1− e−ixLp+y−

2 )(1− e−ixLp+(y−

−y−

1
))

× θ(−y−2 )θ(y
−

2 − y−1 ) ,

(7)

is quark-gluon correlation function which essentially con-
tains four independent four-parton matrix elements in a
nucleus and xT = ⟨k2T ⟩/2p

+q− = xB⟨k2T ⟩/Q
2. With the

definition of the + functions [14], the term proportional
to the δ-function accounts for virtual corrections and

2

nuclear correction to the fragmentation function here is then proportional to σgρgRA. This is exactly

the same as the expansion parameter in the opacity expansion approach in Refs. [8,9].

We should emphasize here that the factorized form of the semi-inclusive tensor in Eq.(80) only

serves to define the effective quark fragmentation function D̃q→h(zh, µ2). Such a modified fragmen-

tation function for final state particle production has an explicit dependence on the initial parton

distribution through the high-twist double scattering processes. Therefore, the factorization for

semi-inclusive processes in DIS is broken explicitly at twist-four correction. This is a natural conse-

quence of the non-vanishing parton energy loss at twist-four when the leading quark suffers multiple

scattering through the nuclear medium.

Taking the derivative with respect to the collinear factorization scale µ2, we obtain the modified

DGLAP evolution equation in leading order of αs for the modified quark fragmentation function,

∂D̃q→h(zh, µ2)

∂ lnµ2
=
αs

2π

∫ 1

zh

dz

z

[
γ̃q→qg(z, x, xL, µ

2)D̃q→h(zh/z, µ
2)

+ γ̃q→gq(z, x, xL, µ
2)Dg→h(zh/z, µ

2)
]
. (84)

The modified splitting functions are defined as

γ̃q→qg(z, x, xL, µ
2) = γq→qg(z) +∆γq→qg(z, x, xL, µ

2) (85)

γ̃g→gq(z, x, xL, µ
2) = γ̃q→qg(1 − z, x, xL, µ

2), (86)

where γq→qg(z) given in Eq. (69) is the splitting function in single scattering processes. If one

only considers single-jet events in DIS, the gluon fragmentation function does not contribute in the

leading order. Before we carry out similar calculations for the higher-twist correction to the DGLAP

evolution of the gluon fragmentation functions, we may assume that the gluon fragmentation function

which enters into the above equation follows the normal DGLAP evolution,

∂Dg→h(zh, µ2)

∂ lnµ2
=
αs

2π

∫ 1

zh

dz

z

⎡

⎣
2nf∑

q=1

γg→qq̄(z)D̃q→h(zh/z, µ
2) + γg→gg(z)Dg→h(zh/z, µ

2)

⎤

⎦ , (87)

where the normal splitting functions are

γg→qq̄ =
1

2
[z2 + (1 − z)2] , (88)

γg→gg = 2CA

[
z

(1 − z)+
+

1− z

z
+ z(1− z)

1

12
(11−

2

3
nf )δ(z − 1)

]
, (89)

and nf is the number of quark flavors. All the fragmentation functions obey the momentum sum

rule,

∫ 1

0
dz

∑

h

z Da→h(z, µ
2) = 1 . (90)

One can check that the modified quark fragmentation function D̃q→h(z, µ2) in Eq. (81) still satisfies

the momentum sum rule. Such a momentum sum rule might seem count-intuitive since there is

momentum transfer of xLp+ to the fragmentating quark from the second partons in the nucleus in

the double-hard processes. However, one should note that the initial quark from the nucleus carries

27

§ Phenomenological	extension	to	study	jet	quenching	in	heavy	ion	collisions.
See	talk	by	Ben-Wei	Zhang.	

Guo,	Wang,	2002
Zhang,	Wang,	Wang,	2004
Du,	Wang,	HX,	Zong,	2018
…
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qMedium	effect	in	HERMES

0 0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1
+π

z

Mh
R

/fm2=0.030 GeVq

/fm2=0.026 GeVq

/fm2=0.022 GeVq

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1

-π

z

Ne

Kr
(-0.05)

Xe
(-0.2)

<E>=10.742~18.358 GeV
2>=2.252~2.655 GeV2<Q

0 0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1
+K

z

Mh
R

/fm2=0.030 GeVq

/fm2=0.026 GeVq

/fm2=0.022 GeVq

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1

-
K

z

Ne

Kr
(-0.05)

Xe
(-0.2)

<E>=10.742~18.358 GeV
2>=2.252~2.655 GeV2<Q

Figure 4: The z dependence of calculated Rh
A for pions and kaons with

different values of q̂0 compared with HERMES data [7] for Ne, Kr, and Xe
targets.
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A for pions and kaons with

different values of q̂0 compared with HERMES data [7] for Ne, Kr, and Xe
targets.
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NLO	ep	baseline	+	medium	effect
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q Predictions	for	EicC
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Medium	induced	flavor	conversion	leads	to	
enhancement	of	K- production	yield.
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Transverse	momentum	
broadening	in	CNM



A	good	observable	to	probe	nuclear	medium

q Transverse	momentum	braodening Guo,	1998;	Guo,	Qiu 2000

§ Sensitive	to	nuclear	quark-gluon	quantum	correlation
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Figure 2. Schematic representation of partonic subprocesses in QCD “embedded” within the experimentally
measured semi-inclusive deep inelastic lepton (l) scattering l + p �! l0 + h + X, where p is the incoming proton
and h represents the detected hadron in the final state (left panel). The right panel shows the analogous situation
for the Drell-Yan process h1+h2 �! �⇤+X �! l+ l0+X, where h1(2) represent incoming hadrons. The thick lines
in both panels denote “eikonalized”, i.e., Wilson-line extended quarks to account for initial (DY) or final (SIDIS)
state interactions. Examples of single gluon exchanges emanating from these lines are also shown. Additional
hard-gluon exchanges have been omitted. In both panels the symbol X represents an inclusive sum over all final
states.

the same as in DIS — left panel of the same figure. Moreover, the momentum-scale dependence of
these PDFs is governed by the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) [12–14] evolu-
tion equation, so that once determined at an initial scale, they can be evolved in perturbative QCD
to any desired reference momentum to confront theoretical predictions with the experimental data
using the appropriate anomalous dimensions (i.e., splitting functions). A large set of PDFs has been
extracted from global analysis of the existing data, from the low-momentum to the Large Hadron
Collider (LHC) regime, but this procedure depends on the accuracy of the process-dependent pertur-
batively calculated short-distance part Hµ⌫a , see [5] for a recent review.

Thus, the factorization formalism [15] of the µ dependence contains a strong predictive power for
scattering o↵ a nucleon (hadron). However, its validity on the partonic level, beyond the collinear
approximation, faces challenges which are related to the appearance of so-called rapidity divergences
ensuing from Wilson lines and their renormalization (see Sec. 3). Theoretically, these e↵ects originate
from the Wilson-line-extended structure of the operator definition of quark (gluon) correlators, as it
becomes obvious from the following TMD field correlator [16–18]

�
q[C]
i j (x, kT ; n) =

Z
d(y · P)d2yT

(2⇡)3 eik·y Dp| ̄ j(y)W(0, y|C) i(0)|p
E
y·n=0

. (8)

One notices the path dependence of this expression encoded in the contour C in the exponential line
integral. It can be resolved by adopting that particular contour which ensures the continuous color
flow in the considered partonic process. As a result, the DY process, shown in the right panel of Fig.
2, contains a sign reversal relative to the SIDIS situation (left panel in Fig. 2), which originates from
the change of a future-pointing Wilson line to one with the opposite orientation as a consequence of
CP invariance and CPT conservation in QCD. This entails the breakdown of universality, because the
factored out nonperturbative part of the SIDIS setup cannot be used without readjustment (sign flip) in
the DY process:

h
f?1Tq

i
DY
= �
h
f?1Tq

i
SIDIS

[19]. This intriguing behavior constitutes in fact the litmus
test of the TMD approach to single spin asymmetries [20] which require that the rescattering of the
struck quark in the field of the remnant hadron generates an interaction phase. This phase would be
forced to vanish by the time-reversal invariance in the absence of the directional dependence of the
Wilson line. Additional phases appear for time-reversal-odd TMD PDFs even at the leading-twist
level when includes into the Wilson lines the Pauli tensor term to account for a correct treatment of
the spin degrees of freedom [21, 22].

v A	direct	probe	of	the	nuclear	quark-gluon	quantum	correlation
v Characterize	the	fundamental	nuclear	QCD	structure
v Phenomenological	applications	to	investigate	properties	of	quark-gluon	plasma

�h`2hT i = h`2hT ieA � h`2hT iep =

✓
4⇡2↵s

Nc
z2h

◆ P
q e

2
qTqg(xB , 0, 0)Dh/q(zh)P

q e
2
qfq/A(xB)Dh/q(zh)



dh`2
hT

�i
dzh

/ Dq/h(z, µ
2)⌦H

LO(x, z)⌦ Tqg(x, 0, 0, µ
2)

+
↵s

2⇡
Dq/h(z, µ

2)⌦H
NLO(x, z, µ2)⌦ Tqg(gg)(x, 0, 0, µ

2)

Multiple	scattering	hard	probe	and	medium	properties can	be	factorized!!!
32

Next-to-Leading Order QCD Factorization for Semi-Inclusive Deep Inelastic
Scattering at Twist 4
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Within the framework of a high-twist approach, we calculate the next-to-leading order (NLO)
perturbative QCD corrections to the transverse momentum broadening in semi-inclusive hadron production
in deeply inelastic eþ A collisions, as well as lepton pair production in pþ A collisions. With explicit
calculations of both real and virtual contributions, we verify, for the first time, the factorization theorem at
twist 4 in NLO for the nuclear-enhanced transverse momentum weighted differential cross section and
demonstrate the universality of the associated twist-4 quark-gluon correlation function. We also identify the
QCD evolution equation for the twist-4 quark-gluon correlation function in a large nucleus, which can be
solved to determine the scale dependence of the jet transport parameter in the study of jet quenching.

DOI: 10.1103/PhysRevLett.112.102001 PACS numbers: 12.38.Bx, 12.39.St, 24.85.+p

Multiple scatterings of energetic partons inside cold or
hot nuclear matter play an important role in the study of the
QCD medium in high-energy lepton-nucleus, hadron-
nucleus, and nucleus-nucleus collisions. They lead to
parton energy loss and transverse momentum broadening
[1–4] that are responsible for the observed jet quenching
phenomena in semi-inclusive deeply inelastic scattering
(SIDIS) [5] and high-energy heavy-ion collisions [6].
Though there has been significant progress in the study
of parton energy loss [7,8], radiative correction to trans-
verse momentum broadening [9], and efforts to include the
effect of multiple gluon emission [10–12], the main
theoretical uncertainty in current jet quenching studies
arises from the logarithmic dependence on the kinematic
cutoff in the leading-order (LO) calculation of parton
energy loss [13] and the lack of a proof of factorization
of hard scattering and the medium properties. A complete
next-to-leading order (NLO) calculation of parton energy
loss and an analysis of factorization at NLO are essential for
future quantitative understanding of ever more precise data
on jet quenching from high-energy SIDIS and heavy-ion
collision experiments.
One of the approaches to parton energy loss [14,15] and

transverse momentum broadening [16–22] is based on
high-twist formalism that assumes collinear factorization
[23–25]. Within such an approach, one carries out collinear
expansion of hard parts of multiple scattering amplitudes
and reorganizes the final results in terms of power correc-
tions. Dominant contributions often depend on high-twist
matrix elements of the nuclear state that are enhanced by
the nuclear size. So far, most studies have focused on

double parton scattering and proofs of factorization are
only limited to LO analyses [24].
In this Letter, we will carry out, for the first time, a

complete NLO analysis of the twist-4 contributions to the
transverse momentum weighted cross section of SIDIS. In
particular, we consider contributions of quark rescattering
with partons from another nucleon inside the nucleus. Such
contributions are proportional to the nuclear size A1=3. For
large nucleus A ≫ 1, we neglect other A-independent
higher-twist contributions, for example, any twist-4 frag-
mentation correlation contributions that have no A1=3

enhancement [26]. We will calculate explicitly the real
and virtual corrections up to one-loop order to the twist-4
contributions. We verify the factorization theorem at twist 4
in NLO by demonstrating the cancellation of infrared
divergences and renormalization of the twist-4 parton
correlation functions. Our results not only provide a
complete NLO calculation of the transverse momentum
weighted cross section and, therefore, transverse momen-
tum broadening at twist 4, but also pave the way to the
proof of QCD factorization for higher-twist hard processes
and complete NLO calculation of jet quenching in medium.
In SIDIS of the hadron production off a large nucleus,

eðL1Þ þ AðpÞ → eðL2Þ þ hðlhÞ þ X; (1)

we consider the invariant mass of the virtual photon Q2 ¼
−q2 ¼ −ðL2 − L1Þ2 is large, where p is the average
momentum per nucleon in the nucleus with the atomic
number A and lh is the momentum of a final-state hadron
h. Higher-twist contributions to the cross section from
multiple scatterings are normally suppressed by powers of
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Figure 2. Schematic representation of partonic subprocesses in QCD “embedded” within the experimentally
measured semi-inclusive deep inelastic lepton (l) scattering l + p �! l0 + h + X, where p is the incoming proton
and h represents the detected hadron in the final state (left panel). The right panel shows the analogous situation
for the Drell-Yan process h1+h2 �! �⇤+X �! l+ l0+X, where h1(2) represent incoming hadrons. The thick lines
in both panels denote “eikonalized”, i.e., Wilson-line extended quarks to account for initial (DY) or final (SIDIS)
state interactions. Examples of single gluon exchanges emanating from these lines are also shown. Additional
hard-gluon exchanges have been omitted. In both panels the symbol X represents an inclusive sum over all final
states.

the same as in DIS — left panel of the same figure. Moreover, the momentum-scale dependence of
these PDFs is governed by the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) [12–14] evolu-
tion equation, so that once determined at an initial scale, they can be evolved in perturbative QCD
to any desired reference momentum to confront theoretical predictions with the experimental data
using the appropriate anomalous dimensions (i.e., splitting functions). A large set of PDFs has been
extracted from global analysis of the existing data, from the low-momentum to the Large Hadron
Collider (LHC) regime, but this procedure depends on the accuracy of the process-dependent pertur-
batively calculated short-distance part Hµ⌫a , see [5] for a recent review.

Thus, the factorization formalism [15] of the µ dependence contains a strong predictive power for
scattering o↵ a nucleon (hadron). However, its validity on the partonic level, beyond the collinear
approximation, faces challenges which are related to the appearance of so-called rapidity divergences
ensuing from Wilson lines and their renormalization (see Sec. 3). Theoretically, these e↵ects originate
from the Wilson-line-extended structure of the operator definition of quark (gluon) correlators, as it
becomes obvious from the following TMD field correlator [16–18]

�
q[C]
i j (x, kT ; n) =

Z
d(y · P)d2yT

(2⇡)3 eik·y Dp| ̄ j(y)W(0, y|C) i(0)|p
E
y·n=0

. (8)

One notices the path dependence of this expression encoded in the contour C in the exponential line
integral. It can be resolved by adopting that particular contour which ensures the continuous color
flow in the considered partonic process. As a result, the DY process, shown in the right panel of Fig.
2, contains a sign reversal relative to the SIDIS situation (left panel in Fig. 2), which originates from
the change of a future-pointing Wilson line to one with the opposite orientation as a consequence of
CP invariance and CPT conservation in QCD. This entails the breakdown of universality, because the
factored out nonperturbative part of the SIDIS setup cannot be used without readjustment (sign flip) in
the DY process:

h
f?1Tq

i
DY
= �
h
f?1Tq

i
SIDIS

[19]. This intriguing behavior constitutes in fact the litmus
test of the TMD approach to single spin asymmetries [20] which require that the rescattering of the
struck quark in the field of the remnant hadron generates an interaction phase. This phase would be
forced to vanish by the time-reversal invariance in the absence of the directional dependence of the
Wilson line. Additional phases appear for time-reversal-odd TMD PDFs even at the leading-twist
level when includes into the Wilson lines the Pauli tensor term to account for a correct treatment of
the spin degrees of freedom [21, 22].
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Figure 2. Schematic representation of partonic subprocesses in QCD “embedded” within the experimentally
measured semi-inclusive deep inelastic lepton (l) scattering l + p �! l0 + h + X, where p is the incoming proton
and h represents the detected hadron in the final state (left panel). The right panel shows the analogous situation
for the Drell-Yan process h1+h2 �! �⇤+X �! l+ l0+X, where h1(2) represent incoming hadrons. The thick lines
in both panels denote “eikonalized”, i.e., Wilson-line extended quarks to account for initial (DY) or final (SIDIS)
state interactions. Examples of single gluon exchanges emanating from these lines are also shown. Additional
hard-gluon exchanges have been omitted. In both panels the symbol X represents an inclusive sum over all final
states.

the same as in DIS — left panel of the same figure. Moreover, the momentum-scale dependence of
these PDFs is governed by the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) [12–14] evolu-
tion equation, so that once determined at an initial scale, they can be evolved in perturbative QCD
to any desired reference momentum to confront theoretical predictions with the experimental data
using the appropriate anomalous dimensions (i.e., splitting functions). A large set of PDFs has been
extracted from global analysis of the existing data, from the low-momentum to the Large Hadron
Collider (LHC) regime, but this procedure depends on the accuracy of the process-dependent pertur-
batively calculated short-distance part Hµ⌫a , see [5] for a recent review.

Thus, the factorization formalism [15] of the µ dependence contains a strong predictive power for
scattering o↵ a nucleon (hadron). However, its validity on the partonic level, beyond the collinear
approximation, faces challenges which are related to the appearance of so-called rapidity divergences
ensuing from Wilson lines and their renormalization (see Sec. 3). Theoretically, these e↵ects originate
from the Wilson-line-extended structure of the operator definition of quark (gluon) correlators, as it
becomes obvious from the following TMD field correlator [16–18]

�
q[C]
i j (x, kT ; n) =

Z
d(y · P)d2yT

(2⇡)3 eik·y Dp| ̄ j(y)W(0, y|C) i(0)|p
E
y·n=0

. (8)

One notices the path dependence of this expression encoded in the contour C in the exponential line
integral. It can be resolved by adopting that particular contour which ensures the continuous color
flow in the considered partonic process. As a result, the DY process, shown in the right panel of Fig.
2, contains a sign reversal relative to the SIDIS situation (left panel in Fig. 2), which originates from
the change of a future-pointing Wilson line to one with the opposite orientation as a consequence of
CP invariance and CPT conservation in QCD. This entails the breakdown of universality, because the
factored out nonperturbative part of the SIDIS setup cannot be used without readjustment (sign flip) in
the DY process:

h
f?1Tq

i
DY
= �
h
f?1Tq

i
SIDIS

[19]. This intriguing behavior constitutes in fact the litmus
test of the TMD approach to single spin asymmetries [20] which require that the rescattering of the
struck quark in the field of the remnant hadron generates an interaction phase. This phase would be
forced to vanish by the time-reversal invariance in the absence of the directional dependence of the
Wilson line. Additional phases appear for time-reversal-odd TMD PDFs even at the leading-twist
level when includes into the Wilson lines the Pauli tensor term to account for a correct treatment of
the spin degrees of freedom [21, 22].

ü First	time	proof	of	QCD	factorization	theorem	for	double	scattering	at	NLO	



Transverse	momentum	broadening	in	CNM	

33

q Transverse	momentum	broadening	in	eA and	pA collisions

Furthermore, the potential interference between the rescat-
tering and the parton shower, which is responsible for the
large contribution of Sudakov logarithms at low qT , could
complicate the resummation of the logarithms and lead to
even less control on the low qT spectrum. On the other
hand, the averaged transverse momentum square, hq2Ti
defined in Eq. (1), is much more inclusive. If we integrate
over all kinematically allowed qT , the hq2Ti depends on
only one single hard scale, Q , the mass of the vector boson,
and is perturbatively calculable. The large logarithmic
contribution to the q2T distribution from the power of
ln ðQ 2=q2TÞ is suppressed by the q2T weight.

The transverse momentum broadening, !hq2Ti #
hq2TijAB $ hq2Tijhh, which sums over the accumulative ef-
fect of many soft rescattering, is expressed in terms of the
difference of two inclusive and perturbatively calculable
quantities, and is therefore calculable in perturbative QCD
[7,9]. The broadening of the Drell-Yan production of lep-
ton pairs in hadron-nucleus collisions was first studied in
terms of a nonrelativisitic QED model in Ref. [12]. It was
shown that initial-state interactions lead to an increase in
the average of the Drell-Yan dilepton’s transverse momen-
tum square and the increase is proportional to the length of
the nuclear target. The Drell-Yan transverse momentum
broadening was also systematically studied in terms of a
perturbative QCD collinear factorization approach in a
covariant gauge [13] and was further studied in Ref. [14]
in a light-cone gauge. Since we calculate the transverse
momentum broadening of the heavy quarkonium produc-
tion in a covariant gauge in this paper, we briefly review the
perturbative QCD collinear factorization approach and the
covariant gauge derivation of the Drell-Yan broadening in
the rest of this section.

The cross section for the Drell-Yan process in hadron-
nucleus collisions, hðp0Þ þ AðpÞ ! !&ðqÞ½! lþ l$ ( þ X,
where q, p0, p are the four momentum of the virtual
photon, the incoming hadron, and the nucleus (per nu-
cleon) with atomic weight A, respectively, can be expanded
in terms of contributions with a different number of re-
scattering,

"hA ¼ "S
hA þ "D

hA þ . . . (2)

with superscript S for single scattering, D for double
scattering, etc. A single hard scattering is localized in
space and time, and is unlikely to provide the target length
(or the A1=3-type nuclear size) enhancement to the cross
section, although it can get a weaker nuclear dependence to
the cross section from nuclear parton distributions [7]. The
leading contribution to the broadening of the dilepton’s
transverse momentum square comes from the double scat-
tering [13],

!hq2TiDY *
Z
dq2Tq

2
T

d"D
hA

dQ 2dq2T

!
d"hA

dQ 2 ; (3)

with the inclusive Drell-Yan cross section given by

d"hA

dQ 2 * d"S
hA

dQ 2 * A
X

q

Z
dx0# "q=hðx0Þ

Z
dx#q=AðxÞ

d"̂q "q

dQ 2 ;

(4)

where A is the atomic weight of the nucleus,
P
q runs over

all quark and antiquark flavors, # "q=h and #q=A represent
the hadron and nuclear partonic distribution functions,
respectively, and d"̂q "q=dQ

2 is the lowest partonic q "q
annihilation cross section to a lepton pair of invariant
mass Q . In Eq. (4) and the rest of this paper, we suppress
all dependence on the factorization and renormalization
scales. In Fig. 1, we sketch the leading order Feynman
diagram that contributes to the double scattering cross
section, d"D

hA. As shown in Fig. 1, an antiquark of momen-
tum x0p0 from the incoming hadron scatters off a gluon
from the nucleus (indicated by the bottom blob) before it
annihilates with a quark from the nucleus to form a vector
boson of large invariant mass, Q , which then decays into a
lepton pair. The interference diagrams, that have both
gluons in the same side of the final-state cut (the dashed
line), do not contribute to the broadening in a covariant
gauge calculation [13], while they are very important in the
light-cone gauge calculation [14]. It is clear from the
diagram that the momentum of the observed vector boson
is only sensitive to the total momentum from the nucleus,
which is equal to a sum of the gluon and quark momentum.
Therefore, the gluon (or quark) momentum in the scatter-
ing amplitude (the left of the dashed line) is not necessary
to be equal to the gluon (or quark) momentum on the right
of the final-state cut. This is a consequence of the fact that
there could be an arbitrary momentum flow from the
nucleus through the quark line, the internal antiquark
line, and back to the nucleus from the gluon line without
changing both initial and final state. To drive the double
scattering contribution to the cross section, we need to
integrate over this loop momentum for both the amplitude
and complex conjugate of the amplitude, or equivalently,
the momentum flows through those two gluons in Fig. 1.
The internal antiquark propagator following the gluon
rescattering can be very large if the gluon momentum is
very soft, and it can actually diverge if the gluon momen-

x'p'x'p'

(x-x )p+k

x p x p2

2 T1 T

x p

(x-x )p+k

1

FIG. 1. Lowest order double scattering Feynman diagram that
contributes to the broadening of Drell-Yan transverse momentum
distribution, which shows an antiquark of momentum x0p0 of
incoming hadron scatters off a gluon of a nucleus (the bottom
blob) before it annihilates a quark to produce a vector boson.
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Similar to Fig. 2, the leading order double scattering
diagrams for producing a heavy quark pair are sketched in
Fig. 4 for quark-antiquark annihilation subprocesses, and
in Fig. 5 for gluon-gluon fusion subprocesses, respectively.
The blob in the quark-antiquark annihilation subprocess in
Fig. 4 is given by the diagram in Fig. 3(a), and the blob in
the gluon-gluon fusion subprocess in Fig. 5 is given by a
sum of the three diagrams in Fig. 3(b).

In CEM, the transverse momentum broadening of a
heavy quarkonium is equal to the transverse momentum
broadening of the parent heavy quark pair, since the tran-
sition probability from a heavy quark pair to a bound
quarkonium is given by a constant, FQ !Q!H . We use the

same method reviewed in the last section to calculate the
transverse momentum broadening of the heavy quark pairs.
Similar to Eq. (7) in the Drell-Yan case, we have

Z
dq2Tq

2
T

d!D
hA!Q !Q

dQ2dq2T
¼

X

q

Z
dx0" !q=hðx0Þ

Z
dxdx1dx2½TðIÞ

Fqðx; x1; x2; pÞH ðIÞ
q !q!Q !Q

ðx; x1; x2; p; q; x0p0Þ

þ TðFÞ
Fq ðx; x1; x2; pÞH ðFÞ

q !q!Q !Q
ðx; x1; x2; p; q; x0p0Þ&

þ
Z
dx0"g=hðx0Þ

Z
dxdx1dx2½TðIÞ

FFðx; x1; x2; pÞH ðIÞ
gg!Q !Q

ðx; x1; x2; p; q; x0p0Þ

þ TðFÞ
FF ðx; x1; x2; pÞH ðFÞ

gg!Q !Q
ðx; x1; x2; p; q; x0p0Þ&; (17)

where the superscripts, ðIÞ and ðFÞ indicate the initial- and final-state rescattering, respectively, and the matrix element TðIÞ
Fq

is given in Eq. (8). TðIÞ
FF is given by

TðIÞ
FFðx; x1; x2; pÞ ¼

Z dy'

2#

dy'1
2#

dy'2
2#

eix1p
þ y'1 eiðx' x1Þp

þ y' e' iðx' x2Þp
þ y'2 hpAjF$

þ ðy'2 ÞF!þ ð0ÞFþ
!ðy'1 ÞFþ $ðy' ÞjpAi: (18)

The matrix elements with final-state rescattering, TðFÞ
Fq and

TðFÞ
FF , have the same expressions as corresponding matrix

elements with initial-state rescattering, since the field op-
erators in the definition of the multiparton matrix elements
in the collinear factorization approach commute on the
light-cone [31].

The partonic parts, H ðI;FÞ
q !q!Q !Q

, are given by the Feynman

diagrams in Fig. 4 with the quark line from hadron (top)
traced with ð% ( p0Þ=2, the quark line from nucleus (bot-
tom) traced with ð% ( pÞ=2, and gluon lines contracted with

p$p&. The diagram with initial-state rescattering in Fig. 4

(a) contributes to H ðIÞ
q !q!Q !Q

as

H ðIÞ
q !q!Q !Q

¼ H ð4aÞ
q !q!Q !Q

¼ 8#2$s
N2
c ' 1

CF

!
1

2#

1

x1 ' x ' i'

1

x2 ' x þ i'

"

)
d!̂q !q!Q !Q

dQ2 ; (19)

where the lowest order partonic cross section from q !q

(a) (b)

FIG. 3. Lowest order Feynman diagram for light quark-antiquark annihilation (a) and for gluon-gluon fusion to a pair of heavy quark.

(a)

(b) (c) (d) (e)

FIG. 4. Leading order double scattering diagrams for q !q! Q !Q: initial-state double scattering (a), and final-state double
scattering (b), (c), (d), and (e).
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superscript ~I! represents the initial state interaction, in order
to distinguish from the similar four-parton correlation func-
tion defined in Eq. ~1a!. More discussion on the relation
between Tq/A(x) and Tq/A

(I) (x) will be given in Sec. IV.
Combining Eqs. ~6!, ~11!, and ~28!, we obtain the nuclear

enhancement of average Drell-Yan transverse momentum at
leading order in as :

D^qT
2&5S 4p2as

3 D(q eq
2E dx8f q̄/h~x8!Tq/A

~I ! ~t/x8!/x8

(
q
eq
2E dx8 f q̄/h~x8!fq/A~t/x !/x8

.

~31!

III. JET BROADENING IN DEEPLY INELASTIC
SCATTERING

Consider the jet production in the deeply inelastic lepton-
nucleus scattering, e(k1)1A(p)!e(k2)1jet(l)1X . k1
and k2 are the four momenta of the incoming and the outgo-
ing leptons, respectively, and p is the momentum per nucleon
for the nucleus with the atomic number A . With l being the
observed jet momentum, we define the averaged jet trans-
verse momentum square as

^lT
2&eA5E dlT

2 lT
2 dseA

dxBdQ2dlT
2Y dseA

dxBdQ2 , ~32!

where xB5Q2/(2p•q), q5k12k2 is the momentum of the
virtual photon, and Q252q2. The jet transverse momentum
lT depends on our choice of the frame. We choose the Breit
frame in the following calculation. Similar to the Drell-Yan

transverse momentum spectrum, ds/dQ2dqT
2 , the jet trans-

verse momentum spectrum, ds/dxBdQ2dlT
2 , is sensitive to

the A1/3 type nuclear size effect due to the multiple scatter-
ing. On the other hand, the inclusive DIS cross section
ds/dxBdQ25*dlT

2 ds/dxBdQ2dlT
2 does not have the A1/3

power enhancement. Instead, it has a much weaker A depen-
dence, such as the EMC effect and the nuclear shadowing.
To separate the multiple scattering contribution from the
single scattering, we define the jet broadening as

D^lT
2&[^lT

2&eA2^lT
2&eN. ~33!

Keeping only the contribution from the double scattering,
similar to Eq. ~6!, we have

FIG. 2. Diagrams for DIS: ~a! diagram representing Lmn ; ~b!
diagram representing Wmn.

FIG. 3. Lowest order double scattering contribution to jet broad-
ening: ~a! symmetric diagram; ~b! and ~c!: interference diagrams.
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SIDIS Drell-Yan

Heavy	quarkonium
Initial	state	multiple	scattering

Similar to Fig. 2, the leading order double scattering
diagrams for producing a heavy quark pair are sketched in
Fig. 4 for quark-antiquark annihilation subprocesses, and
in Fig. 5 for gluon-gluon fusion subprocesses, respectively.
The blob in the quark-antiquark annihilation subprocess in
Fig. 4 is given by the diagram in Fig. 3(a), and the blob in
the gluon-gluon fusion subprocess in Fig. 5 is given by a
sum of the three diagrams in Fig. 3(b).

In CEM, the transverse momentum broadening of a
heavy quarkonium is equal to the transverse momentum
broadening of the parent heavy quark pair, since the tran-
sition probability from a heavy quark pair to a bound
quarkonium is given by a constant, FQ !Q!H . We use the

same method reviewed in the last section to calculate the
transverse momentum broadening of the heavy quark pairs.
Similar to Eq. (7) in the Drell-Yan case, we have

Z
dq2Tq

2
T

d!D
hA!Q !Q

dQ2dq2T
¼

X

q

Z
dx0" !q=hðx0Þ

Z
dxdx1dx2½TðIÞ

Fqðx; x1; x2; pÞH ðIÞ
q !q!Q !Q

ðx; x1; x2; p; q; x0p0Þ

þ TðFÞ
Fq ðx; x1; x2; pÞH ðFÞ

q !q!Q !Q
ðx; x1; x2; p; q; x0p0Þ&

þ
Z
dx0"g=hðx0Þ

Z
dxdx1dx2½TðIÞ

FFðx; x1; x2; pÞH ðIÞ
gg!Q !Q

ðx; x1; x2; p; q; x0p0Þ

þ TðFÞ
FF ðx; x1; x2; pÞH ðFÞ

gg!Q !Q
ðx; x1; x2; p; q; x0p0Þ&; (17)

where the superscripts, ðIÞ and ðFÞ indicate the initial- and final-state rescattering, respectively, and the matrix element TðIÞ
Fq

is given in Eq. (8). TðIÞ
FF is given by

TðIÞ
FFðx; x1; x2; pÞ ¼

Z dy'

2#

dy'1
2#

dy'2
2#

eix1p
þ y'1 eiðx' x1Þp

þ y' e' iðx' x2Þp
þ y'2 hpAjF$

þ ðy'2 ÞF!þ ð0ÞFþ
!ðy'1 ÞFþ $ðy' ÞjpAi: (18)

The matrix elements with final-state rescattering, TðFÞ
Fq and

TðFÞ
FF , have the same expressions as corresponding matrix

elements with initial-state rescattering, since the field op-
erators in the definition of the multiparton matrix elements
in the collinear factorization approach commute on the
light-cone [31].

The partonic parts, H ðI;FÞ
q !q!Q !Q

, are given by the Feynman

diagrams in Fig. 4 with the quark line from hadron (top)
traced with ð% ( p0Þ=2, the quark line from nucleus (bot-
tom) traced with ð% ( pÞ=2, and gluon lines contracted with

p$p&. The diagram with initial-state rescattering in Fig. 4

(a) contributes to H ðIÞ
q !q!Q !Q

as

H ðIÞ
q !q!Q !Q

¼ H ð4aÞ
q !q!Q !Q

¼ 8#2$s
N2
c ' 1

CF

!
1

2#

1

x1 ' x ' i'

1

x2 ' x þ i'

"

)
d!̂q !q!Q !Q

dQ2 ; (19)

where the lowest order partonic cross section from q !q

(a) (b)

FIG. 3. Lowest order Feynman diagram for light quark-antiquark annihilation (a) and for gluon-gluon fusion to a pair of heavy quark.

(a)

(b) (c) (d) (e)

FIG. 4. Leading order double scattering diagrams for q !q! Q !Q: initial-state double scattering (a), and final-state double
scattering (b), (c), (d), and (e).
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q Non-universality	of	medium	property	(jet	transport	parameter)	?
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QCD Evolution of Jet transport parameter q̂

Hongxi Xing1, ∗

1Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
(Dated: May 6, 2014)

This is a note on the global fitting of transverse momentum broadening for SIDIS, DY, J/Ψ and
Y (upsilon). Here we emphasis the QCD evolution effect and scaling violation behavior of twist-4
matrix element, or jet transport parameter q̂.

I. TRANSVERSE MOMENTUM BROADENING AND QCD EVOLUTION OF TWIST-4 MATRIX
ELEMENT

Within high twist factorization formalism, we already derived the nuclear enhancement of transverse momentum
broadening in SIDIS at LO [1],

∆⟨ℓ2hT ⟩ =

(

4π2αsz2h
Nc

)

∑

q e
2
qTqg(xB , 0, 0, µ2)Dh/q(zh, µ

2)
∑

q e
2
qfq(xB , µ2)Dh/q(zh, µ2)

. (1)

Where µ is the factorization scale, and the twist-4 quark-gluon correlation function satisfies the following QCD
evolution equation:

µ2 ∂

∂µ2
Tqg(xB , 0, 0, µ

2
f) =

αs

2π

∫ 1

xB

dx

x

[

Pqq(x̂)Tqg(x, 0, 0, µ
2) +∆P qg→qg(x̂)⊗ Tqg + Pqg(x̂)Tgg(x, 0, 0, µ

2)

]

, (2)

with Pqq(x̂) and Pqg(x̂) the normal splitting functions, and the new splitting kernel (medium part) is

∫ 1

xB

dx

x
∆P qg→qg(x̂)⊗ Tqg ≡

CA

2

∫ 1

xB

dx

x

{

4

(1− x̂)+
Tqg(xB , x− xB, 0)−

1 + x̂

(1 − x̂)+
×
[

Tqg(x, 0, xB − x)

+Tqg(xB, x− xB , x− xB)
]

}

. (3)

where x̂ is defined as x̂ = xB/x. In a loosely bounded nuclear medium, we can ”factorize” the nuclear quark-gluon
correlation function in terms of quark and gluon density in the nuclear medium, where the gluon density can be in
turn converted to the jet transport parameter q̂,

Tqg(xB , 0, 0, µ
2) ≈

Nc

4π2αs
fq/A(xB , µ

2)

∫

dy−q̂(µ2, y−). (4)

II. LARGE-x REGIME - SCALING BEHAVIOR OF q̂

In the limit of of x̂ → 1 (x → xB), we can expand the splitting function and the twist-4 matrix element in the
medium modified part around x̂ = 1, then we immediately realize

∫ 1

xB

dx

x
∆P qg→qg(x̂)⊗ Tqg

x̂→1
= 0. (5)

This is also explained as LPM effect. Thus we are left with the following evolution equation,

µ2 ∂

∂µ2
Tqg(xB , 0, 0, µ

2
f)

x̂→1
=

αs

2π

∫ 1

xB

dx

x

[

Pqq(x̂)Tqg(x, 0, 0, µ
2) + Pqg(x̂)Tgg(x, 0, 0, µ

2)

]

, (6)

∗Electronic address: hxing@lanl.gov

jet	transport	parameter:	jet	transverse	momentum	broadening	per	unit	length,	
characterizes	the	fundamental	property	of	nuclear	medium.
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2019,	1907.xxxxx



35

Global	analysis	of	the	world	data
q Universality	of	medium	property

Global extraction of q̂ in cold nuclear matter
(Dated: June 18, 2019)

In the following fitting procedure, the parametrization of jet transport parameter q̂ has been assumed to be

q̂(Q, x) = q̂0 αs(Q
2)

(

ln(Q2)
)c

xa(1− x)b, (1)

The included experimental data are from SIDIS, Drell-Yan, J/ψ, Υ, and F2(A)/F2(B), and the set of parameters
which are corresponding to the minimal χ2/d.o.f (1.264) are

q̂0 = 0.0232 GeV2/fm

a = −0.1666

b = −2.33

c = 0.2525 (2)

The proton PDFs (CT14) with isospin effect is used.
The RHIC forward J/ψ data and CERN NMC F2(A)/F2(B) data are NOT included in the fitting.

0

0.01

0.02

0.03

0.04

0.05

0.06

8 10 12 14 16 18 20

Xe

∆
⟨p

2 T
⟩
(G

eV
2
)

ν

HERMES π+

Theory

0

0.01

0.02

0.03

0.04

0.05

0.06

0 0.1 0.2 0.3 0.4 0.5

Xe

∆
⟨p

2 T
⟩
(G

eV
2
)

xB

HERMES π+

Theory

0

0.01

0.02

0.03

0.04

0.05

0.06

1 2 3 4 5 6 7

Xe

∆
⟨p

2 T
⟩
(G

eV
2
)

Q2

HERMES π+

Theory

−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

10 100

∆
⟨p

2 T
⟩
(G

eV
2
)

A

HERMES π+

Theory

FIG. 1. The comparison with the HERMES SIDIS data.
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FIG. 2. The comparison with the Drell-Yan data.

§ Parametrization	of	qhat

Global extraction of q̂ in cold nuclear matter
(Dated: June 18, 2019)

In the following fitting procedure, the parametrization of jet transport parameter q̂ has been assumed to be

q̂(Q, x) = q̂0 αs(Q
2)

(

ln(Q2)
)c

xa(1− x)b, (1)

The included experimental data are from SIDIS, Drell-Yan, J/ψ, Υ, and F2(A)/F2(B), and the set of parameters
which are corresponding to the minimal χ2/d.o.f (1.264) are

q̂0 = 0.0232 GeV2/fm

a = −0.1666

b = −2.33

c = 0.2525 (2)

The proton PDFs (CT14) with isospin effect is used.
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Global extraction of q̂ in cold nuclear matter
(Dated: June 18, 2019)

In the following fitting procedure, the parametrization of jet transport parameter q̂ has been assumed to be

q̂(Q, x) = q̂0 αs(Q
2)

(
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xa(1− x)b, (1)

The included experimental data are from SIDIS, Drell-Yan, J/ψ, Υ, and F2(A)/F2(B), and the set of parameters
which are corresponding to the minimal χ2/d.o.f (1.264) are

q̂0 = 0.0232 GeV2/fm

a = −0.1666

b = −2.33

c = 0.2525 (2)

The proton PDFs (CT14) with isospin effect is used.
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which are corresponding to the minimal χ2/d.o.f (1.264) are
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b = −2.33

c = 0.2525 (2)

The proton PDFs (CT14) with isospin effect is used.
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§ Semi-inclusive	deep	inelastic	scattering
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§ Vector	boson	production	in	pA collisions
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§ Dynamical	shadowing	– small	x

3

of the product of operators to be a product of expectation
values of the basic operator units in a nucleon state of
momentum p = PA/A:

⟨PA| Ô0

n
∏

i=1

Ôi |PA⟩ = A ⟨p | Ô0 | p⟩
n
∏

i=1

[

Np ⟨p | Ôi | p⟩
]

,

with the normalization Np = 3/(8πr30mN ). The integrals
∫

dλiθ(λi) = (3r0mN/4)(A1/3 − 1) are taken such that
the nuclear effect vanishes for A = 1. Resumming the
A1/3-enhanced power corrections Eqs. (8), (9) we find:

FA
T (x,Q2) ≈

N
∑

n=0

A

n!

[

ξ2(A1/3 − 1)

Q2

]n

xn dnF (LT)
T (x,Q2)

dnx

≈ AF (LT)
T

(

x+
xξ2(A1/3 − 1)

Q2
, Q2

)

, (10)

FA
L (x,Q2) ≈ AF (LT)

L (x,Q2) +
N
∑

n=0

A

n!

(

4 ξ2

Q2

)

×

[

ξ2(A1/3 − 1)

Q2

]n

xn dnF (LT)
T (x,Q2)

dnx

≈ AF (LT)
L (x,Q2) +

4 ξ2

Q2
FA
T (x,Q2) , (11)

where N is the upper limit on the number of quark-
nucleon interactions and ξ2 represents the characteristic
scale of quark-initiated power corrections to the leading
order in αs

ξ2 =
3παs(Q2)

8 r20
⟨p| F̂ 2(λi) |p⟩ .

In deriving Eqs. (10), (11) we have taken ⟨p| F̂ 2
λ0

|p⟩ ≈

(3r0mN/4)⟨p| F̂ 2(λi) |p⟩ and N ≈ ∞ because the effec-
tive value of ξ2 is relatively small, as shown below.
Eqs. (10), (11) are the main result of this Letter. Im-

portant applications to other QCD processes and ob-
servables that naturally follow from this new approach
are given in [11]. The overall factor A takes into ac-
count the leading dependence on the atomic weight and
the isospin average over the protons and neutrons in the
nucleus is implicit. We emphasize the simplicity of the
end result, which amounts to a shift of the Bjorken x
by ∆x = x ξ2(A1/3 − 1)/Q2 with only one parameter
ξ2 ∝ limx→0 xG(x,Q2). In the following numerical eval-
uation we use the lowest order CTEQ6 PDFs [12].
Fig. 2 shows a point by point in (x,Q2) calculation

of the process dependent modification to F2(A)/F2(D)
(per nucleon) in the shadowing x < 0.1 region compared
to NA37 and E665 data [13, 14]. We find that a value
of ξ2 = 0.09 − 0.12 GeV2, which is compatible with the
range from previous analysis [15] of Drell-Yan transverse
momentum broadening (ξ2 ∼ 0.04 GeV2) and momen-
tum imbalance in dijet photoproduction (ξ2 ∼ 0.2 GeV2),
makes our calculations consistent with the both x- and
A-dependence of the data. Our calculations might have
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FIG. 2: All-twist resummed F2(A)/F2(D) calculation from
Eqs. (10), (11) versus CERN-NA37 [14] and FNAL-E665 [13]
data on DIS on nuclei. The band corresponds to the choice
ξ2 = 0.09 − 0.12 GeV2. Data-Theory, where ∆D−T is com-
puted for the set presented by circles, also shows comparison
to the EKS98 scale-dependent shadowing parametrization [2].

overestimated the shift in the region x close to xN where
the N ≈ ∞ should fail [11]. In Fig. 2, we impose
Q2 = m2

N for virtualities smaller than the nucleon mass,
below which high order corrections in αs(Q) need to
be included and the conventional factorization approach
might not be valid. Our result is comparable to the
EKS98 scale-dependent parametrization [2] of existing
data on the nuclear modification to FA

2 (x,Q2), as seen in
the ∆D−T = Data−Theory panels of Fig. 2. We empha-
size, however, that the physical interpretation is different:
in [2] the effect is attributed to the modification of the
input parton distributions at µ0 = 1.5 GeV in a nucleus
and its subsequent leading twist scale dependence. In
contrast, our resummed QCD power corrections to the
structure functions systematically cover higher twist for
all values of Q ≥ µ0.

With ξ2 fixed, Fig. 3 shows the predicted Q2 depen-
dence of F2(Sn)/F2(C). The Q2 behavior of our result,

Coherent multiple	scattering Summing	nuclear	enhanced	multiple	scattering
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Phenomenological	extension	to	QGP
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q Jet	transport	in	hot	dense	medium
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Summary
q Nucleon	spin	structure	

v Inclusive	jet	production	at	NLO	in	EIC	– 1D	nucleon	helicity	distribution.
vWeighted	Sivers asymmetry	at	NLO	- 3D	nucleon	structure.	

q Nuclear	structure
v Small	x	at	NLO.
v Parton	energy	loss	and	flavor	conversion	in	cold	nuclear	matter.
v Global	extraction	of	medium	property	by	considering	world	data	

on	transverse	momentum	broadening	and	dynamical	shadowing.

q outlook
v Comprehensive	Monte	Carlo	program	to	simulate	electron	ion	

collision	at	NNLO,	provides	the	highest	precision	for	EIC	and	EicC.
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Thanks	for	your	attention!


