Parton energy loss in dense QCD medium

张本威

(Ben-Wei Zhang)

华中师范大学

Central China Normal University

第18届全国中高能核物理大会 长沙 2019.6.21-25日

Outline

- Introduction
- Leading hadron productions
- Full jet observables
- 1) Gauge boson tagged jets
- heavy flavor jet
- 3) Jet charge
- Summary

Jet quenching

Parton energy has been proposed as an excellent probe of the hot/dense matter created at HIC.

Jet quenching at RHIC and LHC

$$R_{AA} = \frac{Yield_{AA}/\langle N_{binary} \rangle_{AA}}{Yield_{pp}}$$

Fingerprints of jet quenching

领头强子

整体喷注

Leading hadron production

Leading hadron production

Full jets

Full jets

Large p_T hadrons in HIC

Jet quenching with higher twist approach

The parton energy loss due to medium-induced gluon radiation has been calculated with higher twist approach.

$$\begin{split} \widetilde{D}_{q\to h}(z_h,\mu^2) &\equiv D_{q\to h}(z_h,\mu^2) + \int_0^{\mu^2} \frac{d\ell_T^2}{\ell_T^2} \frac{\alpha_s}{2\pi} \int_{z_h}^1 \frac{dz}{z} \left[\Delta \gamma_{q\to qg}(z,x,x_L,\ell_T^2) D_{q\to h}(z_h/z) \right] \\ &+ \Delta \gamma_{q\to gq}(z,x,x_L,\ell_T^2) D_{g\to h}(z_h/z) \right] \,, \end{split}$$

$$\begin{split} &\frac{1}{N_{\mathrm{bin}}^{AB}(b)} \frac{d\sigma_{AB}^{h}}{dy d^{2} p_{T}} = \sum_{abcd} \int dx_{a} dx_{b} f_{a/A}(x_{a}, \mu^{2}) f_{b/B}(x_{b}, \mu^{2}) \\ &\times \frac{d\sigma}{d\hat{t}} (ab \to cd) \frac{\langle \tilde{D}_{c}^{h}(z_{h}, Q^{2}, E, b) \rangle}{\pi z_{c}} + \mathcal{O}(\alpha_{s}^{3}). \end{split}$$

X Guo, X N Wang, PRL(2001); X Guo, X N Wang, NPA (2001); BWZ, X N Wang, NPA(2003); BWZ, E Wang, X N Wang, PRL (2004)

η in heavy-ion collisions at NLO

- Production of eta meson in HIC has been calculated;
- Flavor composition has very small effect on the ratio η/π^0 .

$$(dE/dx)_{\rm rad} = -C_2\hat{q}L$$

η/π^0 in HIC at NLO

- η/π^0 ratio is almost same (~0.5) for p+p, Au+Au and Pb+Pb collision.
- Prediction on η/π^0 ratio has been confirmed by ALICE.

ALICE, PRC 98(2018)044901

ρ production in A+A at NLO

- A broken SU(3) model has been utilized to get ρ FFs in p+p.
- Dominant contributions of quark fragmentations both in p+p and in A+A.

Production of ϕ in HIC at NLO

Identified meson in HIC at NLO

iEBE-VISHNU hydro

G Ma, W Dai, BWZ, E Wang, EPJC 79 (2019) 518

Global extraction of qhat

Jets in HIC

What is a jet?

- A jet is a spray of final-state particles roughly moving in the same direction and defined by jet finding algorithms.
- At LO pQCD, jet ≈parton.
- In pQCD local-parton-hadron duality (LPHD) is used
- Jet: more precise and powerful

$$E_T = \sum_{i \in jet} E_{T,i}$$
$$y = \sum_{i \in jet} y_i E_{T,i} / E_T$$

$$\phi = \sum_{i \in i \text{ of}} \phi_i E_{T,i} / E_T$$

$$R_{ij} = \sqrt{(y_i - y_j)^2 + (\phi_i - \phi_j)^2}$$

Tagged jet production in HIC

"golden channel"

Zo + jet in A+A: Iaa

 A sharp transition from tagged jet suppression above ~pT of Z to tagged jet enhancement below ~pT of Z

$$I_{AA}^{
m jet}(R,\omega_{
m min}) = rac{1}{\langle N_{
m bin}
angle} rac{d\sigma_{AA}}{dp_{T\,(Z)}dp_{T\,(Q)}} \Bigg/ rac{d\sigma_{pp}}{dp_{T\,(Z)}dp_{T\,(
m jet)}}$$

NLO

 $p_T \in (92.5 \mathrm{GeV}, 112.5 \mathrm{GeV})$

Zo + jet in A+A: asymmetry

LO +PS (parton shower)

$$\mathbf{x}_{\mathrm{JV}} = p_T^J/p_T^V$$

	$\Delta \langle { m x_{JZ}} \rangle$				
$p_T^Z \text{ (GeV)}$	40 - 50	50 - 60	60 - 80	80 - 120	
CMS [24]	0.061 ± 0.059	0.123 ± 0.051	0.124 ± 0.052	0.068 ± 0.042	
Rad. + Coll. $g = 2.0$	0.022	0.050	0.075	0.086	
Rad. + Coll. $g = 2.2$	0.024	0.058	0.093	0.119	

Angular correlation in Z+jet

- NLO calculations fail at angular difference $\sim \pi$;
- LO+PS calculations fail at small angular difference.
- Z+jet in A+A: NLO+PS+Eloss

CMS, PLB 722 (2013) 238

NLO +PS +ELoss

Sherpa: NLO+PS

- Initial state parton shower(PS)
- Final state PS
- NLO matrix elements (ME)
- Signal process
- Fragmentation
- Hadron decays
- Underlying event
- QED radiation

Angular Correlation of Z+jet (I)

Angular Correlation of Z+jet (II)

- Suppression to Z+1jet processes is rather small;
- Considerable suppression to Z+ (>2)jets is observed due to jet quenching effect; kinematical cut: pT>30 GeV

Averaged number of tagged jets

$$R_{\rm jZ} = N_{\rm jZ}/N_Z$$

Momentum imbalance

$$\Delta \langle x_{jZ} \rangle = \langle x_{jZ} \rangle_{p+p} - \langle x_{jZ} \rangle_{Pb+Pb}$$

$p_T^Z(\text{GeV})$	40-50	50-60	60-80	> 80
CMS data	0.07 ± 0.106	0.12±0.148	0.13±0.158	0.06±0.088
$\Delta \langle x_{jZ} \rangle$	0.075	0.106	0.128	0.143

W+jet in HIC

S Zhang's talk

0.2

0.4

0.6

8.0

1.0

 $X_{jW} = p_T^{jet}/p_T^W$

1.2

1.6

1.4

1.8

30

40

50

60

70

80

p_T^{Jet}(GeV)

90

100 110 120 130

double b-jet production

flavor creation (FCR)

gluon splitting (GSP)

flavor excitation (FEX)

p+p baseline for double b-jet

 Simulations with NLP+PS by Sherpa chould give very nice descrptions on inclusive jets, dijets as well as double b-jet.

Mean values of momentum imbalance

Angle correlation of double b-jet

W Dai's talk

Do-jet in p+p

 D-jet denotes a jet with D meson, and CMS has measured radial distributions of D-jet in p+p and A+A.

S Wang, W Dai, BWZ, E Wang, 1906.01499

Do-jet in A+A

 D-jet denotes a jet with D meson, and CMS has measured radial distributions of D-jet in p+p and A+A.

S Wang's talk

Z tagged b-jet production (I)

 B-jet production in association with Z boson in HIC could be calculated in the same formalism (NLO+PS+Eloss)

$$\Delta \Phi_{Zb} = |\Phi_Z - \Phi_{bjet}|$$

Z tagged b-jet production (II)

 B-jet production in association with Z boson in HIC could be calculated in the same formalism (NLO+PS+Eloss)

$$\Delta R_{zb} = \sqrt{(\Delta \Phi_{zb})^2 + (\Delta \eta_{zb})^2} \qquad A_{zbb} = \frac{\Delta R_{zb}^{max} - \Delta R_{zb}^{min}}{\Delta R_{zb}^{max} + \Delta R_{zb}^{min}}$$

Jet charge in p+p

- Proposed by Feynman & Field (1978)
- Very useful to discriminate q/g

$$Q_{\kappa}^{i} = \sum_{h \in jet} z_{h}^{\kappa} Q_{h}$$

Krohn, Schwartz, T. Lin, Waalewijn, PRL (2013)

Jet charge in A+A

- Rcp of jet charge in A+A is larger than unity.
- Very useful to discriminate q/g

$$R_{CP} = rac{\left\langle Q_{\mathrm{j}} \right\rangle_{PbPb_0-10\%}}{\left\langle Q_{j} \right\rangle_{PbPb_60-80\%}}$$

S Chen, BWZ, E Wang (2019)

Summary

- A systematic study of identified mesons at NLO in HIC has been made.
- A framework of combining NLO+PS for initial hard production with parton energy loss in the QGP has been developed.
- Our calculations provide nice descriptions of experimental data on full jet observables.
- Calculations of pQCD with final-state jet quenching and initial-state CNM can explain a huge amount of data on hard probes with a unified picture.

Quark Matter 2019 at Wuhan

- 国际高能核物理领域规模最大、最重要的学术会议
- 预计~800人参加
- 华中师范大学和华南师范大学主办
- 清华大学、北京大学、复旦大学、中国科技大学、山东大学、 中国科学院大学、湖州大学、中科院近代物理所等协办
- 会议报告 (abstract) 提交截止时间2019年7月1日
- 会议网站:http://qm2019.ccnu.edu.cn/

Backup

Jet charge in p+p

Z+jet in p+p: NLO+PS

 Results with NLO+PS by Sherpa give good descriptions on angular correlation and momentum imbalance of in p+p

Linear Boltzmann Transport Model

• Elastic scattering:

$$p_{1} \cdot \partial f_{1}(p_{1}) = -\int dp_{2}dp_{3}dp_{4}(f_{1}f_{2} - f_{3}f_{4})|M_{12\to34}|^{2}$$

$$\times (2\pi)^{4}\delta^{4}(P_{1} + P_{2} - P_{3} - P_{4})$$

$$dp_{i} \equiv \frac{d^{3}p_{i}}{2E_{i}(2\pi)^{3}}, |M_{12\to34}|^{2} = Cg^{2}(s^{2} + u^{2})/(t + \underline{\mu}^{2})^{2}$$

$$f_{i} = 1/(e_{i}^{p.u/T} \pm 1)(i = 2, 4), f_{i} = (2\pi)^{3}\delta^{3}(\vec{p} - \vec{p}_{i})\delta^{3}(\vec{x} - \vec{x}_{i})(i = 1, 3)$$

X N Wang, Y Zhu, PRL(2013); He, Luo, Wang, Zhu, PRC (2015)

• Inelastic scattering by the higher twist approach:

$$\frac{dN_g}{dxdk_{\perp}^2dt} = \frac{6\alpha_s C_A P(x)\hat{q}}{\pi k_{\perp}^4} \left(\frac{k_{\perp}^2}{k_{\perp}^2 + x^2 M^2}\right)^2 \sin^2\left(\frac{t - t_i}{2\tau_f}\right)$$

Guo, X N Wang, PRL(2002); BWZ, X Wang, NPA(2003);

BWZ, E Wang, X N Wang, PRL (2004); Majumder, PRD(2012)

Inclusive jet and b-jet in HIC

