Nucleon from Lattice QCD

Yi-Bo Yang

Jun. 23rd, 2019, Changsha
How does the mass and spin of nucleon arise?

- The Higgs boson only provide ~2-5 MeV for the u/d quark mass at 2GeV MS-bar,
- But the mass of the proton is 938.272046(21) MeV.
- Only 30% of the proton spin comes from the quark helicity, based on the experiments
- The gluon helicity and orbital angular momentum can have significant contribution to the proton spin

In order to take advantage of the full potential of the EIC, theory program to match its scope is essential, comparing both continuum and lattice QCD

— The US National Academy of Science assessment of U.S.-based Electron-Ion Collider Science

http://www.latticeaverages.org

https://www.nap.edu/read/25171/chapter/9#92
Quantum Chromodynamics

The perturbative calculation in the continuum

- **Very precise** at $Q \sim 100$ GeV, the experiment confirmed the predictions;
- Limited application for nucleon properties due to **bad** convergence at $Q \leq 2$ GeV.
- The other possibilities?
Application of the statistics in QCD

- Discretization on the 4-D integral of the space-time
- Monte Carlo sampling in the integral of the gauge phase space
- A state-of-the-art calculation requires:
 - 4-D lattice with \(\sim 5 \times \) proton size;
 - With a lattice spacing \(\sim 1/10 \) proton size;
 - \(\sim 500 \) samples with 1000 measurement each.
 - Use 4k-8k cores per sample and handle different samples in parallel.
What can Lattice QCD help on the nucleon physics?

- How does the mass of the nucleon arise?
- How does the spin of the nucleon arise?
- How does the gluon in the nucleon look like?
Two sum rules of the nucleon mass

\[M = -\langle T_{44} \rangle = \langle H_E \rangle + \langle H_m \rangle + \langle H_g \rangle + \frac{1}{4} \langle H_a \rangle, \]

\[\frac{1}{4} M = -\langle \hat{T}_{44} \rangle = \frac{1}{4} \langle H_m \rangle + \frac{1}{4} \langle H_a \rangle. \]

With

\[H_m = \sum_{u,d,s} \int d^3 x m \bar{\psi} \psi, \]

The quark mass

The QCD anomaly

\[H_\alpha = H_g^\alpha + H_m^\gamma, \]

\[H_g^\alpha = \int d^3 x \frac{-\beta(g)}{g} (E^2 + B^2), \]

\[H_m^\gamma = \sum_{u,d,s} \int d^3 x \gamma_m m \bar{\psi} \psi. \]

The glue field energy

The quark energy

The total energy

\[H_E = \sum_{u,d,s} \int d^3 x \bar{\psi} (\vec{D} \cdot \vec{\gamma}) \psi, \]

\[H_g = \int d^3 x \frac{1}{2} (B^2 - E^2), \]

Xiangdong Ji, PRL 74 (1995) 1071-1074
Proton mass decomposition

The quark mass term

Then we have

\[M = -\langle T_{44} \rangle = \langle H_q \rangle + \langle H_g \rangle + \langle H^0_g \rangle + \langle H^\gamma_m \rangle = \langle H_E \rangle + \langle H^m_\gamma \rangle + \langle H_g \rangle + \langle H^\gamma_a \rangle, \]

\[\frac{1}{4} M = -\langle \hat{T}_{44} \rangle = \frac{1}{4} \langle H^m_\gamma \rangle + \frac{1}{4} \langle H^\gamma_a \rangle, \quad \text{in the rest frame.} \]

\[H_m = \sum_{u,d,s...} \int d^3x \, m \bar{\psi} \psi, \]

- Renormalization scheme/scale independent in continuum; also in discrete case when the chiral fermion is used.

\[\sigma_{\pi N} = \langle H_m(u) + H_m(d) \rangle = 45.9(7.4)(2.8) \text{ MeV} \]

\[f_s^N M_N = \langle H_m(s) \rangle = 40.2(11.7)(3.5) \text{ MeV} \]

\[\frac{\langle H_m(u,d,s) \rangle}{M_N} = 9(2)\% \]

The best lattice result free of the systematic uncertainty from the explicit chiral symmetry breaking

YBY, et. al., \(\chi \)QCD collaboration, PRD 91 (2015) 074516
Proton mass decomposition

The quark/gluon energy

Then we have

\[M = -\langle T_{44} \rangle = \langle H_q \rangle + \langle H_g \rangle + \langle H^\alpha \rangle + \langle H^\gamma \rangle = \langle H_E \rangle + \langle H_m \rangle + \langle H_g \rangle + \langle H_\alpha \rangle, \]

\[\frac{1}{4}M = -\langle \hat{T}_{44} \rangle = \frac{1}{4} \langle H_m \rangle + \frac{1}{4} \langle H_\alpha \rangle. \]

• The quark/gluon energy can be deduced from the momentum fraction,

\[\langle H_E \rangle = \frac{3}{4} \langle x \rangle_q M - \frac{3}{4} \langle H_m \rangle, \]

\[\langle H_q \rangle = \frac{3}{4} \langle x \rangle_q M + \frac{1}{4} \langle H_m \rangle, \]

\[\langle H_g \rangle = \frac{3}{4} \langle x \rangle_g M. \]

• The renormalization of the quark momentum fraction is much more trivial, which is just mixed with the glue one.

• It is more straightforward to obtain the quark/glue momentum fraction first, and convert it to the quark/gluon energy.

The total energy

\[H_E = \sum_{u,d,s...} \int d^3x \ \bar{\psi} (\vec{D} \cdot \vec{\gamma}) \psi, \]

The quark energy

\[H_g = \int d^3x \ \frac{1}{2} (B^2 - E^2), \]

The glue field energy
Comparing the momentum fractions from the experiment

Proton mass decomposition

u, 31(3)(2)%
g, 48(7)(5)%
d, 16(3)(4)%
s, 5(3)(1)%

$41.6(5)\%$, $u + u\text{-bar}$
$34.8(3)\%$, $u + u\text{-bar}$
$19.0(3)\%$, $d + d\text{-bar}$
$3.5(5)\%$, $s + s\text{-bar}$

S. Dulat et al, Phys. Rev. D 93 (2016), 033006

YBY, J. Liang, et. al., χQCD collaboration, PRL121(2018) 212001, 1808.08677

ViewPoint and Editor’s suggestion
• Direct calculation of the quark/glue momentum fraction with non-perturbative renormalization and normalization.

• Trace anomaly contribution deduced by the direct calculation of the quark scalar condensate in nucleon, based on the sum rule

\[
\frac{1}{4} M = -\langle \hat{T}_{44} \rangle = \frac{1}{4} \langle H_m \rangle + \frac{1}{4} \langle H_a \rangle
\]

\textbf{Total proton mass} \hspace{0.5cm} 0.960(13) \text{ GeV}
Proton mass decomposition

Trace anomaly?

Under the dimensional regularization, the QCD EMT can be decomposed into the trace part and the traceless part:

\[
T_{\mu\nu} = \frac{1}{4} \bar{\psi} \gamma_\mu \slashed{D}_\nu \psi + F_{\mu\rho} F_{\nu}^{\rho} - \frac{1}{4} g_{\mu\nu} F^2
\]

\[
= \left(T_{\mu\nu} - \frac{g_{\mu\nu}}{d} T^\alpha_{\alpha} \right) + \frac{g_{\mu\nu}}{d} T^\alpha_{\alpha} \equiv \tilde{T}_{\mu\nu} + \hat{T}_{\mu\nu},
\]

\[
T^\alpha_{\alpha} = m \bar{\psi} \psi - 2\epsilon \frac{F^2}{4} + O(\epsilon^2) = (1 + \gamma^R_m) (m \bar{\psi} \psi)_R + \frac{\beta_R}{2g_R} F^2_R.
\]

Under the other regularizations:
- The regularization introduces some tiny trace on the traceless QCD EMT;
- Such a trace vanishes when the UV cutoff vanishes;
- But it become finite when the quantum corrections are included.
What can Lattice QCD help on the nucleon physics?

- How does the mass of the nucleon arise?
- **How does the spin of the nucleon arise?**
- How does the gluon in the nucleon look like?
How does the spin of nucleon arise?

Spin/helicity ($u, d, s \ldots, g$): the integration of the polarized parton distribution function (PDF)

\[\Delta q = \int_0^1 dx \Delta q(x) \]
\[\Delta G = \int_0^1 dx \Delta g(x) \]

- The quark model (agrees with the lattice simulation at heavy quark limit):
 \[\Delta u \rightarrow 4/3, \quad \Delta d \rightarrow -1/3, \quad \Delta s \rightarrow 0, \quad \Delta g \rightarrow 0; \]
- The phenomenology fit of quark distribution based on Exp.:
 \[\Delta u \sim 0.8, \quad \Delta d \sim -0.4, \quad \Delta s \sim -0.1, \quad \Delta g \sim 0.4; \]
- The experiments are quite different from the naive theoretical understanding, just becomes the quark masses in the real world are actually light!

As shown in the introduction of X. Zhang and B. Ma, PRD85(2012)114048

YBY, χQCD collaboration, 1904.04138

E. R. Nocera, et.al. (NNPDF), NPB887(2014)276, 1406.5539
Glue spin

Large momentum effective theory (LaMET)

When nucleon is boosted:

- The Coulomb and Temporal gauge conditions become the light-cone one.
- **Glue spin** below becomes glue helicity, the integration of the glue polarized PDF, at tree level.

\[
O_{\Delta G} = \left[\vec{E}^a(0) \times (\vec{A}^a(0) - \frac{1}{\sqrt{t}} (\vec{V}^{A^{+b}}) \mathcal{L}^{b_\alpha}(\xi^-, 0)) \right]^z = \vec{E}_{LC} \times \vec{A}_{LC}, \ A_{LC}^+ = 0
\]

Coulomb gauge

\[
O_{S_G^c} = \vec{E}^c \times \vec{A}^c, \ \partial_z A_z^c = 0
\]

or

Temporal gauge

\[
O_{S_G^t} = \vec{E}^t \times \vec{A}^t, \ A_0^t = 0
\]

X. Ji, J. Zhang, and Y. Zhao, PRL111 (2013)112002, 1304.6708
Glue spin

Results

Neglect the matching and apply an empirical form to fit the data,

\[\int_{0.001}^{0.05} dx \Delta g(x) + \int_{0.05}^{1} dx \Delta g(x) \simeq S_G \]

the glue spin at the large momentum limit for the renormalized value at \(\mu^2 = 10 \text{GeV}^2 \) will be

\[S_G = 0.251(47)(16). \]
Gluons Provide Half of the Proton’s Spin

The gluons that bind quarks together in nucleons provide a considerable chunk of the proton’s total spin. That was the conclusion reached by Yi-Bo Yang from the University of Kentucky, Lexington, and colleagues (see Viewpoint: Spinning Gluons in the Proton). By running state-of-the-art computer simulations of quark-gluon dynamics on a so-called spacetime lattice, the researchers found that 50% of the proton’s spin comes from its gluons. The result is in agreement with recent experiments and shows how such lattice simulations can now accurately predict an increasing number of particle properties. The simulations also indicate that, despite being substantial, the gluon spin contribution is too small to play a major part in “screening” the quark spin contribution—which according to experiments is only 30%—through a quantum effect called the axial anomaly. The remaining 20% of the proton spin is thought to come from the orbital angular momentum of quarks and gluons.
Quark spin: Present summary

<table>
<thead>
<tr>
<th></th>
<th>N_f</th>
<th>Disc</th>
<th>m_{tt}</th>
<th>FV</th>
<th>Ren</th>
<th>ESC</th>
</tr>
</thead>
<tbody>
<tr>
<td>χQCD 18</td>
<td>2+1</td>
<td>0</td>
<td>0</td>
<td>⭐</td>
<td>⭐</td>
<td>⭐</td>
</tr>
<tr>
<td>PNDME 18</td>
<td>2+1+1</td>
<td>0</td>
<td>⭐</td>
<td>⭐</td>
<td>⭐</td>
<td>⭐</td>
</tr>
<tr>
<td>ETMC 18</td>
<td>2+1+1</td>
<td>0</td>
<td>⭐</td>
<td>⭐</td>
<td>⭐</td>
<td>⭐</td>
</tr>
</tbody>
</table>

Δu

Δd

Δs

D. Florian, et.al, PRL113 (2014) 012001, 1404.4293

E. Nocera, et.al, NNPDF Collaboration, NPB887 (2014) 276, 1406.5539

C. Adoph, et.al, COMPASS Collaboration, PLB753 (2016) 18, 1503.08935

J. Liang, YBY, et.al, χQCD Collaboration, PRD98 (2018) 074505, 1806.08366

C. Alexandrou, et.al, ETMC collaboration, PRL119 (2017) 142002, 1706.02973, with 2018 updates
Proton spin

Lattice result of Ji AM

\[\vec{J} = \int d^3x \left(\frac{1}{2} \bar{\psi} \gamma^5 \gamma^\mu \psi + \int d^3x \psi^\dagger \{ \vec{x} \times (i\vec{D}) \} \psi + \int d^3x 2\{ \vec{x} \times \text{Tr}[\vec{E} \times \vec{B}] \} \right) \]

Quark AM

Quenched result

2-flavor result
(neglecting the difference between the glue momentum and AM fractions)

Preliminary 2+1 flavors result

M. Deka, T. Doi, YBY, et. al., \(\chi\text{QCD} \) collaboration, PRD91(2015)014505, 1312.4816

EMTC 17: PRL119(2017), 1706.02973

Perturbatively renormalized

Non-Perturbatively renormalized
What can Lattice QCD help on the nucleon physics?

• How does the mass of the nucleon arise?
• How does the spin of the nucleon arise?
• How does the gluon in the nucleon look like?
Less known part
of the parton distribution function

- If we consider the first-moment of the unpolarized PDF and the zeroth-moment of the polarized one, the values of the gluon case are comparable with the quark case.
- But their x-dependence are very different.
- **The gluon PDF is much less unknown from the experiment.**
From quasi-PDF

The original polarized quark PDF defined in the light front frame is,

\[q(x, \mu) = \int \frac{d\xi^-}{4\pi} e^{-ixP^+\xi^-} \langle P | \bar{\psi}(\xi^-) \gamma^+ \rangle \]
\[\times \exp\left(-ig \int_0^{\xi^-} d\eta A^+(\eta^-) \right) \psi(0) | P \rangle \]

And the quasi-PDF is defined by

\[\tilde{q}(x, P_z, \mu) = \int \frac{dz}{2\pi} e^{-ixP_z z} \langle P | O(z) | P \rangle \]

With \[O(z) = \langle P | \bar{\psi}(z) \exp\left(-ig \int_0^z d\eta A^z(\eta') \right) \psi(0) | P \rangle \]

Their IR behaviors (or non-perturbative properties) are the same and the difference in UV can be matched with Large Momentum Effective Theory.
Gluon PDF and its moments

The gluon PDF is defined by:

\[
g(x, \mu) = \int \frac{d\xi^-}{\pi x} e^{-ix\xi^- P^+} \langle P | F^+_{\mu}(\xi^-) U(\xi^-, 0) F^{\mu+}(0) | P \rangle,
\]

And its odd moments can be defined through local operators, like the first moment:

\[
\langle x \rangle_g \equiv \int_0^1 x \, g(x)\, dx = \frac{1}{P_+} \langle P | F^+_{\mu}(0) F^{\mu+}(0) | P \rangle
\]
\[
= \frac{1}{P_z} \langle P | T^{tz}(0) | P \rangle
\]
\[
= \frac{P_0 \langle P | T^{zz}(0) | P \rangle}{\frac{1}{4} P_0^2 + \frac{3}{4} P_z^2} = \frac{P_0 \langle P | T^{tt}(0) | P \rangle}{\frac{3}{4} P_0^2 + \frac{1}{4} P_z^2},
\]

All the operators belong to the traceless part of the gauge EMT.
Gluon quasi-PDF

So the gluon quasi-PDF can be defined through the quasi-PDF matrix elements \tilde{H}_0:

$$\tilde{g}(x, P_z^2, \mu) = \int \frac{dz}{\pi x} e^{-ixzP_z} \tilde{H}_0^R(z, P_z, \mu),$$

where $\tilde{H}_0(z, P_z) = \langle P|\mathcal{O}_0(z)|P\rangle$ and \mathcal{O}_0 is defined by

$$\mathcal{O}_0 \equiv \frac{P_0}{3} \left(\mathcal{O}(F_{t\mu}, F_{\mu t}; z) - \frac{1}{4} g^{tt} \mathcal{O}(F_{\nu\nu}, F_{\nu\nu}; z) \right).$$

or the other alternative choice:

$$\mathcal{O}_1(z) \equiv \frac{1}{P_z} \mathcal{O}(F_{t\mu}, F_{z\mu}; z),$$

$$\mathcal{O}_2(z) \equiv \frac{P_0}{4} \left(\mathcal{O}(F_{z\mu}, F_{\mu z}; z) - \frac{1}{4} g^{zz} \mathcal{O}(F_{\nu\nu}, F_{\nu\nu}; z) \right).$$

all of them provide the same first moment of the gluon PDF, while only \mathcal{O}_1 can be multiplicative renormalizable.

Z. Fan, YBY, et.al, PRL121, 242001 (2018), 1808.02077
Jian-Hui Zhang, et.al, PRL122, 142001 (2019), 1808.10824
Zheng-Yang Li, et.al, PRL122, 062002 (2019), 1809.01836
The gluon quasi-PDF still suffer from the large statistical uncertainty.

The coverage of the zP_z region should be enlarged significantly to constraint gluon PDF.

The major challenge is reaching a large P_z with good signal.
Attempts to reach large P_z

$E_{\text{eff}}(P_z, t) \xrightarrow{t \to \infty} E_N = \sqrt{m_N^2 + P_z^2}$

Based on the momentum smearing technique introduced by
G. S. Bali, et.al, PRD93, 094515 (2016), 1602.05525

- The momentum smearing technique provides the possibility to reach a large P_z with good signal.
- The same technique can be used for the gluon case.

$\Delta u(x) - \Delta d(x)$, based on the quasi PDF calculation at $P_z = 3.0$ GeV

G. S. Bali, et.al, PRD93, 094515 (2016), 1602.05525
Gluon spin under the Coulomb gauge

- Sizable contribution to the proton spin;
- Convergence of the LaMET matching is poor at 1-loop level;
- Gauge dependence should be checked with the calculation under the other gauge conditions.

Gluon spin can also be obtained through the following gauge invariant definition:

\[
\Delta \tilde{g} = \int_0^\infty dz \Delta \tilde{H}_g(z) \bigg|_{P_z \to \infty} = \int_0^\infty dz \Delta H_g(z) + \mathcal{O}(\alpha_s) = \Delta g + \mathcal{O}(\alpha_s).
\]

\[
\Delta \tilde{H}_g(z) = \sum_{i=x,y} \langle PS | F_{iz,a}(z)(e^{\int_{0}^{z} i g A_\mu(z') d\xi}^{\mu}_{ab}) F_{iz,b}(0) | PS \rangle
\]

\[
\Delta H_g(z) = \sum_{i=x,y} \langle PS | F_{+\mu,a}(\xi^-)(e^{\int_{\xi}^{\infty} i g A^+(\eta^-) d\eta^-}_{ab}) F_{+\mu,b}(0) | PS \rangle = \int dx P^+ e^{i x^\perp P^+} g(x)
\]
Summary

• Lattice QCD can provide a systematic way to predict the non-perturbative characters of nucleon and many results have come out recently;

• Gluon provide significant contribution to nucleon mass and spin;

• We are on the way to determine the distribution of gluon in the nucleon, from Lattice QCD.