

Study of K* spin alignment with the toy model

Shuai Zhou

Central China Normal University

Outline

Introduction

Analysis method

Results

• Summary

Large initial angular momentum in non-central heavy ion collisions.

Due to spin-orbit coupling, it may result in net polarization of produced particles along the direction of initial angular momentum.

The information of K*(892)⁰

 $K^{\boldsymbol{\ast} 0} \longrightarrow K^{\boldsymbol{+}} \boldsymbol{+} \pi^{\boldsymbol{-}}$

$$K^{*0} \longrightarrow K^{-} + \pi^{+}$$

K ^{*0} (The spin 1 vector meson)	
Mass	895.9 MeV
Quark Content	\overline{s} , d
Width	47.4 MeV
Lifetime	4.16 fm/c
Decay Chanel	K ⁺ π ⁻

The description of spin alignment

For spin-1 vector mesons, like the ϕ meson and K* meson, their spin alignment can be described by a spin density matrix ρ . The ρ_{00} can be measured by angular distribution of decay daughter using:

$$\frac{dN}{d\cos \theta^{*}} \propto (1 + \rho_{00}) + (3\rho_{00} - 1)\cos^{2}\theta^{*}$$

 θ^* is the angle between the polarization direction and the momentum direction of decay daughters in the rest frame of K* meson.

Figure: C.S. Zhou, Quark Matter 2018

中国高能核物理大会

Results of K^{*0} spin alignment from STAR

 p_T Dependence of K^{*0} p_{00}

Energy Dependence of $K^{*0} \rho_{00}$

Non-1/3 ρ_{00} is observed.

Analysis method

In the toy model, we input the p_T , η and φ information of K* from AMPT (200GeV, String Melting). Phythia is used for the decay kinematics $K^* \to K^+ + \pi^-$.

2019-6-23

中国高能核物理大会

7

The finite acceptance effect on ρ_{00} for ϕ meson (a) Input $\rho_{00} = 1/3$ Toy Model Simulation

Shaowei Lan, Zi-Wei Lin Shusu Shi, Xu Sun,Phys. Lett. B 780,319-324(2018) When the cut is below $|\eta| < 1$, a narrower η acceptance gives

a significantly larger ρ_{00} value than the input.

中国高能核物理大会

Results of K* spin alignment with toy model

p_T versus $cos(\theta^*)$ η<0.4 1 4000 0.8 $\cos(\theta^*)$ 3500 0.6 3000 0.4 0.2 2500 0 2000 -0.2 1500

1000

500

0

pt

We can clearly observe that the η cut excludes more kaons from K* decays around around cos $\theta^* \sim 0$.

 $^{-1}$ 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-0.4

-0.6

-0.8

It shows the extracted ρ_{00} of K* mesons as a function of η acceptance with toy model.

The extracted ρ_{00} deviates from the input value significantly when we cut on daughter particles in a narrow η acceptance.

With in STAR η acceptance $|\eta| < 1$, the extracted $\rho_{00} = 0.425$ is larger than 1/3.

Summary

- We used the toy model to study the effects of η cuts on the extracted polarization parameters ρ₀₀.
- We found η-cuts on daugters can lead larger value than input by using toy model.

Thank you!

Backups

The angular distribution $W(\theta, \phi) \equiv dN/d\Omega$ of the decay products is given by^[1]:

$$W(\theta, \phi) = \frac{3}{4\pi} \{ \cos^2 \theta \rho_{00} + \sin^2 \theta (\rho_{11} + \rho_{-1-1})/2 \\ - \sin 2\theta (\cos \phi \operatorname{Re} \rho_{10} - \sin \phi \operatorname{Im} \rho_{10})/\sqrt{2} \\ + \sin 2\theta (\cos \phi \operatorname{Re} \rho_{-10} + \sin \phi \operatorname{Im} \rho_{-10})/\sqrt{2} \\ - \sin^2 \theta [\cos(2\phi) \operatorname{Re} \rho_{1-1} - \sin(2\phi) \operatorname{Im} \rho_{1-1}] \}$$

Here θ is the polar angle between the direction of motion of h and the quantization axis, ϕ is the azimuthal angle. By integrating over ϕ , we obtain

$$W(\theta) = \frac{3}{4} \left[(1 - \rho_{00}) + (3\rho_{00} - 1)\cos^2 \theta \right].$$

[1]: Physics Letters B 629 (2005) 20–26 , Zuo-Tang Liang a, Xin-Nian Wang

For hadronization scenario of constituent quark recombination in which both quarks and anti-quarks are polarized.

$$\rho_{00}^{K^*(\text{rec})} = \frac{1 - P_q P_s}{3 + P_q P_s}.$$

For Fragmentation of polarized quarks

$$\rho_{00}^{K^{*0}(frag)} = \frac{f_s}{n_s + f_s} \frac{1 + \beta P_q^2}{3 - \beta P_q^2} + \frac{n_s}{n_s + f_s} \frac{1 + \beta P_s^2}{3 - \beta P_s^2}$$

 $P_q = -\frac{\pi}{4} \frac{\mu p}{E(E+m_q)}$ is the global quark polarization

 $P_{\bar{q}}^{frag} = -\beta P_q$ is the polarization of the (anti-)quark created in the fragmentation process

 n_s and f_s are the strange quark abundances relative to up or down quarks in QGP and quark fragmentation, respectively.

Results of K* spin alignment from STAR

Energy Dependence of K^{*0} p₀₀

pT Dependence of K*0 p00

Chensheng Zhou.Quark matter.2018

Non-1/3 ρ_{00} is observed.