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Introduction



Pc states in LHCb

• In 2015, Λb → J/ψpK, Pc(4380) and Pc(4450)

• Recently, Pc(4450)⇒ Pc(4440) + Pc(4457); A new state Pc(4312) with 7.3σ;

I = 1/2?

higher mass states are 9 and 12 standard deviations,
respectively.
Analysis and results.—We use data corresponding to

1 fb−1 of integrated luminosity acquired by the LHCb
experiment in pp collisions at 7 TeV center-of-mass
energy, and 2 fb−1 at 8 TeV. The LHCb detector [13]
is a single-arm forward spectrometer covering the
pseudorapidity range, 2 < η < 5. The detector includes a
high-precision tracking system consisting of a silicon-strip
vertex detector surrounding the pp interaction region [14],
a large-area silicon-strip detector located upstream of a
dipole magnet with a bending power of about 4 Tm, and
three stations of silicon-strip detectors and straw drift tubes
[15] placed downstream of the magnet. Different types of
charged hadrons are distinguished using information from
two ring-imaging Cherenkov detectors [16]. Muons are
identified by a system composed of alternating layers of
iron and multiwire proportional chambers [17].

Events are triggered by a J=ψ → μþμ− decay, requiring
two identified muons with opposite charge, each with
transverse momentum, pT , greater than 500 MeV. The
dimuon system is required to form a vertex with a fit
χ2 < 16, to be significantly displaced from the nearest pp
interaction vertex, and to have an invariant mass within
120 MeV of the J=ψ mass [12]. After applying these
requirements, there is a large J=ψ signal over a small
background [18]. Only candidates with dimuon invariant
mass between −48 and þ43 MeV relative to the observed
J=ψ mass peak are selected, the asymmetry accounting for
final-state electromagnetic radiation.
Analysis preselection requirements are imposed prior to

using a gradient boosted decision tree, BDTG [19], that
separates the Λ0

b signal from backgrounds. Each track is
required to be of good quality and multiple reconstructions
of the same track are removed. Requirements on the
individual particles include pT > 550 MeV for muons,
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FIG. 2 (color online). Invariant mass of (a) K−p and (b) J=ψp combinations from Λ0
b → J=ψK−p decays. The solid (red) curve is the

expectation from phase space. The background has been subtracted.
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FIG. 3 (color online). Fit projections for (a)mKp and (b)mJ=ψp for the reduced Λ� model with two Pþ
c states (see Table I). The data are

shown as solid (black) squares, while the solid (red) points show the results of the fit. The solid (red) histogram shows the background
distribution. The (blue) open squares with the shaded histogram represent the Pcð4450Þþ state, and the shaded histogram topped with
(purple) filled squares represents the Pcð4380Þþ state. Each Λ� component is also shown. The error bars on the points showing the fit
results are due to simulation statistics.
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Figure 6: Fit to the cos θPc-weighted mJ/ψp distribution with three BW amplitudes and a
sixth-order polynomial background. This fit is used to determine the central values of the masses
and widths of the P+

c states. The mass thresholds for the Σ+
c D

0 and Σ+
c D

∗0 final states are
superimposed.

to form bound states [29–31]. The masses of the Pc(4312)+ and Pc(4457)+ states are
approximately 5 MeV and 2 MeV below the Σ+

c D
0 and Σ+

c D
∗0 thresholds, respectively, as

illustrated in Fig. 6, making them excellent candidates for bound states of these systems.
The Pc(4440)+ could be the second ΣcD

∗ state, with about 20 MeV of binding energy, since
two states with JP = 1/2− and 3/2− are possible. In fact, several papers on hidden-charm
states created dynamically by charmed meson-baryon interactions [32–34] were published
well before the first observation of the P+

c structures [1] and some of these predictions
for Σ+

c D
0 and Σ+

c D
∗0 states [29–31] are consistent with the observed narrow P+

c states.
Such an interpretation of the Pc(4312)+ state (implies JP = 1/2−) would point to the
importance of ρ-meson exchange, since a pion cannot be exchanged in this system [10].

8
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Compact or molecular states ?

• Compact pentaquark states: tightly bounded states

• Molecular states: loosely bound states of two color singlet hadrons

• The three Pc states under the thresholds 9 MeV, 5 MeV and 22 MeV

• Three Pc states are the good candidates of molecular states

• Our work

⇒Obtain the ΣcD̄
(∗) potential in ChPT

⇒Solve the Schrödinger Eq.

arXiv:1904.03947; arXiv:1903.11013
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Chiral perturbation theory

• QCD Lagrangian

LQCD =
∑
f

q̄f (i /D −Mqf )− 1

4
GaµνG

µν,a

f = (u, d, s, c, b, t),

M = diag(mu,md,ms,mc,mb,mt) S.Weinberg

• two approximate symmetry: chiral symmetry and heavy quark symmetry

mu,md,ms � 1GeV, mc,mb � ΛQCD (1)

• Chiral perturbation theory (ChPT) and heavy quark effective theory (HQET)

• SU(3)L × SU(3)R → SU(3)V ⇒ 8 Goldstone bosons

• Quark masses break the chiral symmetry explicitly: m2
π ∼ mq

• Freedom: Goldstone bosons and matter fields, e.g. N , D and Σc

• Expansion ε/Λχ, Λχ ≈ 4πFπ ≈ mρ

ε : mπ, momentum of pion and residue momentum of matter fields

Lu Meng (孟璐) | Pc states and ΣcD̄
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Why Chiral perturbation theory (ChPT)?

• Effective theory, model independence

• Systematically expansion, controllable and

estimable error

• Loop diagrams

• Lattice QCD: chiral extrapolation

• Modern theory of nucleon force Phys. Rept. 503, 1 (2011).; Rev. Mod. Phys. 81, 1773 (2009).
2.5 The Two-Nucleon System 49
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Fig. 2.7 Chiral expansion of the np S-waves up to fifth order. The 1S0 (3S1) wave is shown in the
left (right) panel as function of the nucleon laboratory energy Elab. The various orders are given
in the legend of the right panel. The filled circles refer to the Nijmegen PWA. Figure courtesy of
Evgeny Epelbaum

follows. More precisely, the Nijmegen partial wave analysis (PWA) [57] will be
taken as a benchmark. Second, one has to realize that it is important to differentiate
between the partial waves with low angular momentum (S, P,D) and the so-called
peripheral waves (G,H, I, . . .), which are highly suppressed because of the angular
momentum barrier and are well described by chiral one- and two-pion exchanges
already at LO and NLO [44]. Therefore, let us concentrate on the lower partial
waves, especially the S-waves. At LO, there are just two LECs that are usually fitted
to the large scattering lengths in both the 1S0 and the 3S1 partial wave, respectively,
cf. Eq. (2.5). As can be seen from Fig. 2.7, while for the 3S1 wave, the description
is quite decent, one also sees that the prediction for the 1S0 is quickly deviates from
the data. This can be understood from the fact that with one LEC, one can describe
the rise due to the large scattering length ∼ 1/(8 MeV) but not the fall-off. This is
different in the triplet wave due to the deuteron pole. At NLO, the description of
the S-waves notably improves, but also some P - and D-waves are described well.
At this order, we have seven LECs that feed into the S- and P -waves as well as
the 3S1-3D1 mixing angle ε1. This is further improved at N2LO, largely due to the
subleading TPE graphs. Then at N3LO, most partial waves are well described, one
has 12 LECs that feed into the S-, P - and D-waves and the corresponding triplet
mixing angles ε1 and ε2. One also has to account for the isospin-breaking between
the np, nn and pp systems, which can be accounted for by adding two LO isospin-
breaking contact interactions. Note that formally, these terms only appear at NLO,
but for a better comparison to the Nijmegen PWA, they are already considered at LO.
Further improvements especially to higher pion momenta are obtained at N4LO, up
to the pion production threshold.

Let us now consider a few assorted results from the fifth order study of Ref. [50].
At this order in the chiral expansion, one has no new contact interactions as
compared to N3LO (odd number of derivatives), but new TPEP contributions.
These are given by graphs with one insertion from the fourth order pion-nucleon
Lagrangian of order Q4 proportional to the LECs ei as well as correlated TPE
graphs with one insertion from L (2)

πN ∼ ci and TPE graphs with one insertion

Lect.Notes Phys. 957 (2019) 1-396
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ΣcD̄
(∗) interaction in ChPT



Weinberg’s formalism

• Enhanced by pinch singularity, two nucleon on-shell, power count fails

• Time-ordered perturbation theory

Amp = 〈NN |HI |NN〉+
∑
ψ

〈NN |HI |ψ〉〈|HI |NN〉
ENN − Eψ

(2)

• Only include the two particle irreducible (2PIR) graphs in potential

• Potential as the kernel of Lippmann-Schwinger Eq. or Schrödinger Eq.

• The tree level one-pion exchange diagrams would be iterated to generate the

2PR contributions automatically

Lu Meng (孟璐) | Pc states and ΣcD̄
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Feynman diagrams of ΣcD̄
(∗) to NLO

(X2.1) (H2.1)

(F2.1)

(B2.1) (B2.2) (B2.3) (B2.4)

(R2.1) (R2.2) (R2.3) (R2.4)

(T2.1) (T2.2) (T2.3) (T2.4)

(X1.1)

(F1.1) (T1.1) (T1.2) (T1.3)

(B1.1) (B1.2) (R1.1) (R1.2)

• The doublets (Σc,Σ
∗
c) and

(D̄, D̄∗) in heavy quark

symmetry (HQS)

• All intermediate states, keep mass splitting, HQS violation

• Unknown low energy constants (LECs): contact terms
Lu Meng (孟璐) | Pc states and ΣcD̄
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Heavy quark symmetry: violation

• ΛQCD/mc ' 0.2, the HQS violation is sizable

• HQS with guidance for compact systems, (Σ∗c ,Σc) (2518,2454) MeV

• HQS violation effect is more significant for the ΣcD̄ system than ΣcD̄
∗
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• Minimum of potential with the loosely bound state: -0.06-0.15 GeV.

It may be misleading to adopt the HQS to
calculate the molecular states.
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Heavy quark symmetry: quark model

• The heavy dof.: spectators; light dof.: interactions

Vquark−level =
[
Va + Ṽal1 · l2

]
+
[
Vc
mc
l1 · h2 + Vd

mc
l2 · h1 + Ve

m2
c
h1 · h2

]
,

VΣcD̄ = V1, VΣcD̄∗ = V2 + Ṽ2S1 · S2,

VΣ∗c D̄ = V3, VΣ∗c D̄∗ = V4 + Ṽ4S1 · S2. (3)

• Ignoring mass splittings in loops, the HQS manifests itself

M. Z. Liu, et.al arXiv:1903.11560 [hep-ph].

• In QM, the HQS violation vanishes for ΣcD̄ system

〈l1 · h2〉 = 〈l2 · h1〉 = 〈h1 · h2〉 = 0 (4)

• QM: analytical terms; Loop diagrams: nonanalytical structures
• Another eg. enhancement of isospin violation in loop diagrams

F. K. Guo, H. J. Jing, U. G. Meißner and S. Sakai, Phys. Rev. D 99, no. 9, 091501 (2019).

Loops bring novel effects.

Lu Meng (孟璐) | Pc states and ΣcD̄
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Numerical results



Contact terms

VX1.1

ΣcD̄
= −D1 − D̃1(2I1 · I2), (5)

VX2.1

ΣcD̄∗
= −

(
D1 +

1

3
D2σ · T

)
−
(
D̃1 +

1

3
D̃2σ · T

)
(2I1 · I2),

• Package heavy mesons exchanged interaction like ρ and ω

• Renormalization

⇒ absorb the divergence in the loops

⇒ remove the scale dependence.

• Contact or pion-exchange? depend on regularization schemes

Phys. Rev. D91, 034002 (2015).

• Depend on chiral truncation order; types of regulator and values of cutoff

Phys. Rept. 503, 1 (2011).

• Dimensional regularization, MS-scheme, Λχ = 1.0 GeV; Gaussian regulator

Λ=0.5 GeV

V (r) =
1

(2π)3

∫
d3q eiq·rV(q)F(q), F(q) = exp(−q2n/Λ2n) (6)

Lu Meng (孟璐) | Pc states and ΣcD̄
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Scenario II: single channel

For I = 1/2, VX1.1

ΣcD̄
= −D1, VX2.1

Σ∗cD
= −

(
D1 + 1

3
D2σ · T

)
(7)

-40 -20 0 20 40 60 80 100

-100

-50

0

50

100 • There is a very SMALL region

where three states coexist as

the molecular states

• Restricting the binding energy

in exp., it is hard to reproduce

three states as molecules si-

multaneously

〈σ · T 〉 =

2 J = 1/2

−1 J = 3/2

Spin-Spin interaction is an obstacle.
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Scenario III: couple channel

9

model, we can get the values of the LECs for the ΣcD̄
(∗)

systems,

D1 = − 2
9CS = 22.1 GeV−2, D2 = 4CT = 27.8 GeV−2,

D̃1 = D̃2 = 0. (50)

With these LECs, we can solve the Schrödinger equa-
tion to obtain some bound states. We vary the cutoff
Λ from 0.4 GeV to 0.8 GeV. The binding solutions are
given in Fig. 8. For the I = 1

2 system, we got binding so-

lutions for the [ΣcD̄]J=1/2 and [ΣcD̄
∗]J=1/2 systems. We

reproduce the masses of Pc(4312) and Pc(4440) when the
cutoff is 0.5 GeV. We present the potentials in Fig. 9. The
binding energy and the root mean square radius (RMS)
for the [ΣcD̄]J=1/2 are −9.21 MeV and 1.36 fm, respec-

tively. For the [ΣcD̄
∗]J=1/2, the binding energy and the

RMS are −18.93 GeV and 1.16 fm, respectively.
However, in this scenario, we can not reproduce the

Pc(4457). In fact, the potential of [ΣcD̄
∗]I=1/2
J=3/2 is repul-

sive as shown in Fig. 9. The scheme we used to determine
the LECs is rather rough. Therefore, we can not rule out
the possibility of the Pc(4457) as a molecular state be-
cause of the uncertainty of the LECs. For all three I = 3

2
systems, there exist loosely bound states when we vary
the cutoff Λ from 0.4 GeV to 0.8 GeV. We give the results
in Fig. 8.

B. Scenario II

One can use other phenomenological methods to evalu-
ate the LECs, such as heavy meson exchange model. But
they also bring large uncertainties. Meanwhile, we drop
out the finite contributions from O(ε2) contact terms,
which may also influence our final results. In scenario II,
we will adopt the general form of contact terms and vary
the LECs to search for the bound solutions.

In this scenario, we will focus on the I = 1/2 systems
since the three Pc states were all observed in the J/ψp
invariant mass spectrum. Thus, there are only two in-
dependent contact terms. We parameterize the contact
interaction of [ΣcD̄

(∗)]I=1/2 as,

VX1.1

ΣcD̄
= −D1, VX2.1

Σ∗
cD

= −
Å
D1 +

1

3
D2σ · T

ã
(51)

The isospin-isospin interaction and the O(ε2) contact
terms are absorbed into D1 and D2.

We vary D1 and D2 in the range from −100 GeV−2 to
100 GeV−2, respectively. We show the parameter regions

in which there exist loosely bound states for [ΣcD̄]
I=1/2
J=1/2,

[ΣcD̄
∗]I=1/2
J=1/2 and [ΣcD̄

∗]I=1/2
J=3/2 in Fig. 10, where we choose

Λ = 0.5 GeV. Since the molecules are loosely bound
states, we adopt the binding energy E = −30 MeV as
the lower limit. In Fig. 10, there is a small region, in
which three bound states can coexist. In this region, the

binding energy ranges for [ΣcD̄]
I=1/2
J=1/2, [ΣcD̄

∗]I=1/2
J=1/2 and

TABLE II. The channels we considered in the coupled-channel
calculations. The bold ones are our channels of interest.

Channel 1 2 3 4

J = 1
2

ΣcD̄ ΣcD̄
∗ Σ∗cD̄

∗ Σ∗cD̄

J = 3
2

ΣcD̄
∗ Σ∗cD̄ Σ∗cD̄

∗

[ΣcD̄
∗]I=1/2
J=3/2 are [−30,−25], [−11, 0] and [−8,−4] MeV,

respectively.
We choose one set of parameters in the overlap re-

gion of three bands in Fig. 10, D1 = 42 GeV−2 and
D2 = −25 GeV−2. The potentials are displayed in
Fig. 11, where the potentials for all three channels are at-

tractive. For the [ΣcD̄]
I=1/2
J=1/2 system, the potential from

the contact terms and two-pion exchange are both at-
tractive. The binding energy is also deeper than that of

Pc(4312) as a ΣcD̄ bound state. For the [ΣcD̄
∗]I=1/2
J=1/2

system, the interaction of the two-pion exchange are
very weak. The attractive one-pion exchange and con-
tact interactions generate a loosely bound state. For the

[ΣcD̄
∗]I=1/2
J=3/2 system, both one-pion exchange and two-

pion exchange are repulsive. The loosely bound state
arises from the very attractive contact interaction. The

bound state of [ΣcD̄
∗]I=1/2
J=3/2 we got is dominated by the

short-distance contact interaction, which may arise from
the vector meson ρ and ω exchange in the OBE mode.

We draw the binding energies of threes Pc states as
three solid lines in Fig. 10 if we assume they are molecular
states. There are three cross points in which two of three
states can coexist. The three cross points are not very
close. In other words, if we restrict the binding energies
to the experimental values, it is hard to reproduce the
three states simultaneously.

C. Scenario III

In the above two scenarios, we only consider the poten-
tials of the elastic channels as shown in the upper panel of
Fig. 7. We include the HQS partner states of the external
lines as intermediate states. Only part of the coupled-
channel effects is taken into account. For example, the
contributions from the ladder diagrams generated by the
inelastic tree diagrams are dropped. In scenario III, we
improve our results by including the inelastic channels
and solving the coupled-channel Schrödinger equation.

For the J = 1
2 and J = 3

2 systems, four and three
channels can couple to one another, respectively, which
are shown in Table II. The [ΣcD̄]J=1/2, [ΣcD̄

∗]J=1/2 and

[ΣcD̄
∗]J=3/2 are the channels we are interested in. For

the other channels, we only include their leading order
potentials. We can get these potentials either from the
tree diagram calculations or the HQS analysis as illus-

Lu Meng (孟璐) | Pc states and ΣcD̄
(∗) interaction in ChPT 14/18



Scenario III: couple channel
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TABLE III. The numerical results in the coupled-channel calculations in scenario III. The Pi is the proportion of the specific
channel.

S-III Exp.(MeV) Mass(MeV) RMS(fm) P1(%) P2(%) P3(%)

Pc(4312) 4311.9± 0.7+6.8
−0.6 4305 1.21 99.4 0.5 0.1

Pc(4440) 4440.3± 1.3+4.1
−4.7 4446 1.22 1.0 98.0 0.9

Pc(4457) 4457.3± 1.3+0.6
−4.1 4458 1.28 96.8 2.5 0.7
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FIG. 12. The potentials for the [ΣcD̄
(∗)]I=1/2 systems in coupled-channel calculation in scenario III. We neglect the mass

splittings in the box diagrams and remove the 2PIR contribution. The cutoff parameter Λ = 0.5 GeV. The LECs of contact
terms are D1 = 55 GeV−2 and D2 = −10 GeV−2.

tact terms in nuclear force to those in the ΣcD̄
(∗) systems.

With the LECs, we reproduce the Pc(4312) and Pc(4440)
and predict three loosely bound states in the I = 3

2 chan-
nels. We are unable to reproduce Pc(4457) due to the
large uncertainty of LECs in the first scenario. In the
second scenario, we focus on the I = 1

2 channels. There
are only two unknown independent LECs. We vary the
two LECs and search for the region that three Pc states
can coexist as the loosely bound states. We do find a pa-
rameter region in which we can reproduce three Pc states
simultaneously. The region is very small. The solution
corresponding to the Pc(4457) seems slightly less natu-
ral, since the attractions all arise from the short-range
contact interactions. In the third scenario, we consider
the coupled-channel effect in the leading order on the
basis of scenario II. To avoid the double counting, we ne-
glect the mass splittings in the box diagrams and remove
their 2PR contributions. Through the coupled-channel
calculations in scenario III, we obtain a large parameter
region in which three Pc states can coexist as molecular
states. The attraction mainly comes from the contact
interactions.

We have reproduced the three Pc states in our calcula-
tions. The uncertainties come from either the framework
or the LECs. In this work, we only take the S-wave into
consideration. However, the S-D wave mixing plays an
important role in reproducing the binding energy of the
deutron. We do not consider the HQS violation effect
in the LECs. In order to reduce the number of LECs,
we relate them to each other through HQS. The approx-
imation will introduce errors, especially for the contact
terms. The physical information at the high energy scale

is packaged into the contact terms, in which the HQSS
tends to be broken. Finally, the coupled-channel effect
can be considered more carefully. In this framework, we
calculate the potentials of the interested channels to the
next-to-leading order. However, for the other inelastic
channels, we only calculate their leading order potentials.
The numerical results could be improved if one calculates
all potentials to the next-to-leading or even higher order.

The main uncertainty comes from the LECs of the
contact interactions. Thus the lattice QCD simulation

on the Σ
(∗)
c D̄(∗) scattering is called for. Our analytical

results can be used to do chiral extrapolation for lattice
QCD. With the lattice QCD results in the coming future,
the LECs for the contact interaction can be determined
more precisely. Then the nature of the Pc states in ex-
periment can be identified and more reliable predictions
for the other systems can be given.
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Scenario III: couple channel

Total

2-π

Contact

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-0.10

-0.08

-0.06

-0.04

-0.02

0.00

Total

2-π

Contact

1-π

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-0.10

-0.08

-0.06

-0.04

-0.02

0.00

0.02

Total

2-π

Contact

1-π

0.0 0.5 1.0 1.5 2.0 2.5 3.0
-0.12

-0.10

-0.08

-0.06

-0.04

-0.02

0.00

0.02 • Reproduce the three Pc states as

molecular states simultaneously

• Attraction mainly stems from the

contact interaction

• The couple channel effect is impor-

tant

• Minimum of potential
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Summary and Outlook



Summary and Outlook

• ΣcD̄
(∗) potential in ChPT to NLO

⇒ contact, 1− π, 2− π
⇒ HQS breaking effect, IMPORTANT !

⇒ Couple channel effect

⇒ Reproduce three Pc states simultaneously as molecular states

• Outlook

⇒ Lattice QCD simulation on ΣcD̄
(∗) potential is called for

⇒ Chiral extrapolation

⇒ Three Pc states are HQSS partner states, more HQSS and HQFS partner

states in molecular scheme? 1903.11560; 1904.01296...

⇒ HQS breaking effect? Σ∗cD̄
(∗) and Σ

(∗)
c D(∗) system (on-going)

⇒ Test the ChPT in the charm sector

for chiral dynamics, c(qq)I=1
s=1 = Σc + Σ∗c
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Scenario I: model

Lquark = − 1
2
csq̄qq̄q − 1

2
ct(q̄σq) · (q̄σq), (8)

For I = 1/2, VX1.1

ΣcD̄
= −D1, VX2.1

Σ∗cD
= −

(
D1 + 1

3
D2σ · T

)
(9)

Total

2-π

Contact

0.0 0.5 1.0 1.5 2.0 2.5 3.0
-0.15

-0.10

-0.05

0.00

Total

2-π

Contact

1-π

0.0 0.5 1.0 1.5 2.0 2.5 3.0
-0.15

-0.10

-0.05

0.00

Total

2-π

Contact

1-π

0.0 0.5 1.0 1.5 2.0 2.5 3.0
-0.04

-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

[ΣcD̄]
I=1/2

J=1/2 : E = −9.21 MeV

[ΣcD̄
∗]I=1/2

J=1/2 : E = −18.93 MeV

[ΣcD̄
∗]I=1/2

J=3/2 : No bound states
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Physics at the different scales never talk to each other

Galaxy clusters 
Galaxies 

The Quantum Ladder 

Molecules 
Atoms 

Superstrings ? 

Cells,  
Materials 

Living Organisms, 
Man-made Structures 

??? 

Baryons and mesons Quarks and  
Leptons 
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Planets 

Atomic 
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Effective field theory

• An effective field theory (EFT) is a low-energy approximation to some underly-

ing, more fundamental theory.

⇒ Large energy scale Λ

• The EFT Lagrangian: the most general Lagrangian with SYMMETRIES of the

underlying theory.

⇒ Low-energy constants (LECs)

• Expand the theory in powers of p/Λ

⇒ Power counting law

M =
∑
ν

(
Q

Λ

)ν
f(Q/µ, gi) (10)

• Calculate and renormalize order-by-order

• Controllable and estimable error

• Prediction: experiment data as input

S.Weinberg

Go for the messes - that’s where

the action is. Physica A96 (1979) 327-340
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Contact terms of NN

L(0)
NN = − 1

2
CSN̄NN̄N − 1

2
CT N̄σN · N̄σN, (11)

VNN = CS + CTσ · σ. (12)
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XY Z states

D0D+

D0D∗+

D∗0D∗+

ΛcD0

ΛcD∗0
Σ+
c D

0

Σ∗+
c D0

Σ+
c D

∗0

Zc(3900)

Zc(4020)

Zc(4200)

Z1(4050)
Zc(4055)

Zc(4240)

Z2(4250)

Zc(4430)

Pc(4380)

Pc(4450)

0−+ 1++ ??+ ??− 3
2

±
, 5
2

∓

3800

4000

4200

4400

4600

JP (G)

M
a
ss

(M
eV

)

Lu Meng (孟璐) | Pc states and ΣcD̄
(∗) interaction in ChPT 24/18



Spontaneous symmetry breaking

• Chiral symmetry: Conservation charge QaA

H0
QCD|i,+〉 = Ei|i,+〉, P |i,+〉 = +|i,+〉, |φ〉 = QaA|i,+〉 (13)

H0
QCD|φ〉 = Ei|φ〉, P |φ〉 = −|φ〉 (14)

• Degenerate states with different parity? → SSB

• Goldstone’s theorem: spontaneous breaking of continuous global symmetries

implies the existence of massless particles.

• NO. of Goldstone boson = nG − nH
G: symmetry group of Lagrangian;

H: the subgroup leaves the groud state invariant after SSB

• SU(3)L × SU(3)R → SU(3)V ⇒ 8 Goldstone bosons

• Quark masses break the chiral symmetry explicitly: m2
π ∼ mq
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pinch singularities

V ∼
∫
ddλ4−d

(2π)d
1

−v · l + iε

1

v · l + iε

1

l2 −m2
1 + iε

1

(l + q)2 −m2
2 + iε

(15)

∼
∫
ddλ4−d

(2π)d
1

−l0 + iε

1

l0 + iε

1

l02 − ω2
1 + iε

1

l02 − ω2
2 + iε

(16)

1

−v · l + iε

1

v · l + iε
→ 1

−v · l − l2

2M1
+ iε

1

v · l − l2

2M2
+ iε

(17)

∫
dl0

f(l0)

−l0 − l2

2M1
+ iε

1

l0 − l2

2M2
+ iε

(18)

∼
f( l2

2M2
)

− l2

2M2
− l2

2M1

∼ f M
l2

(19)

power counting: 1
l
, our calculation M

l2
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The Lagrangians

Σc =

 Σ++
c

Σ+
c√
2

Σ+
c√
2

Σ0
c

 , Σ∗µc =

 Σ∗++
c

Σ∗+c√
2

Σ∗+c√
2

Σ∗0c

µ

, (20)

P̃ =

(
D̄0

D̄−

)
, P̃ ∗µ =

(
D̄∗0

D̄∗−

)
, (21)

ψµ = B∗µ −
√

1
3
(γµ + vµ)γ5B,

H̃ = (P̃ ∗µγ
µ + iP̃ γ5)

1−/v
2

(22)

L(0)
Σcφ

= −Tr[ψ̄µiv ·Dψµ] + igaεµνρσTr[ψ̄µuρvσψν ] + i
δa
2

Tr[ψ̄µσµνψν ].

L(0)

D̄φ
= −i〈 ¯̃Hv ·DH̃〉+ gb〈 ¯̃Huµγ

µγ5H̃〉 − δb
8
〈 ¯̃HσµνH̃σµν〉, (23)
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Building Block

• building block

Dµψ ψ ψ̄ χ± f±µν uµ Γµ

CH KDµψ Kψ ψ̄K† Kχ±K† Kf±µνK
† KuµK

† KΓµK† − ∂µKK†

P γ0Dµψ γ0ψ ψ̄γ0 ±χ± ±f±µν −uµ Γµ

C CD′Tµ ψ̄T Cψ̄T ψTC χT± ∓(f±µν) (uµ)T −(Γµ)T

F±µν = u†FRµνu± uFLµνu†,
FRµν = ∂µrν − ∂νrµ − i[rµ, rν ], (24)

FLµν = ∂µlν − ∂ν lµ − i[lµ, lν ]. (25)

Γµ =
1

2

[
u†(∂µ − irµ)u+ u(∂µ − ilµ)u†

]
, (26)

uµ ≡ 1

2
i
[
u†(∂µ − irµ)u− u(∂µ − ilµ)u†

]
, (27)

χ = 2B0(s+ ip), χ± = u†χu† ± uχ†u (28)
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Effective field theory

• An effective field theory (EFT) is a low-energy approximation to some underly-

ing, more fundamental theory.

⇒ Large energy scale Λ

• The EFT Lagrangian: the most general Lagrangian with the symmetries of the

underlying theory.

⇒ Low-energy constants (LECs)

• Expand the theory in powers of p/Λ

⇒ Power counting law

• Calculate and renormalize order-by-order

• Prediction: experiment data as input
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Chiral Symmetry

• mu,md,ms � 1GeV ≤ mc,mb,mt; Chiral limit: mu,md,ms = 0

• The QCD Lagrangian in the chiral limit can then be written as

L0
QCD =

∑
l=u,d,s

(q̄R,liD/ qR,l + q̄L,liD/ qL,l)− 1

4
Gµν,aGµνa . (29)

where PR,L = 1
2
(1± γ5)

• Chiral symmetry SU(3)L × SU(3)R × U(1)L × U(1)R
uL

dL

sL

 7→ UL


uL

dL

sL

 = exp

(
−i

8∑
a=1

ΘL
a
λa
2

)
e−iΘ

L


uL

dL

sL

 ,


uR

dR

sR

 7→ UR


uR

dR

sR

 = exp

(
−i

8∑
a=1

ΘR
a
λa
2

)
e−iΘ

R


uR

dR

sR

 , (30)
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Spontaneous symmetry breaking

• Goldstone’s theorem: spontaneous breaking of continuous global symmetries

implies the existence of massless particles.

• NO. of Goldstone boson = nG − nH
G: symmetry group of Lagrangian;

H: the subgroup leaves the groud state invariant after SSB

• SU(3)L × SU(3)R → SU(3)V ⇒ 8 Goldstone bosons

• nonlinear realization of chiral symmetry

U(x) = exp

(
i
φ(x)

F0

)
, U → RUL†, (31)

φ(x) =
8∑
a=1

λaφa(x) ≡


π0 + 1√

3
η

√
2π+

√
2K+

√
2π− −π0 + 1√

3
η
√

2K0

√
2K−

√
2K̄0 − 2√

3
η

 . (32)

• Quark masses break the chiral symmetry explicitly: m2
π ∼ mq
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Effective Lagrangian and Power-Counting Scheme

• The Lagrangian is organized as the NO. of derivatives of Goldstone bosons

• The chiral dimension D of given diagrams

M(tpi, t
2mq) = tDM(pi,mq), (33)

D = 2 + 2NL +
∞∑
n=1

N2n(2n− 2), (34)

• ΛCSB scale: either 4πF0 or mρ

• The leading order Lagrangian

L2 =
F 2

0

4
Tr[∇µU(∇µU)†] +

F 2
0

4
Tr(χU† + Uχ†). (35)

S. Weinberg, Physica A 96, 327 (1979).

J. Gasser and H. Leutwyler, Annals Phys. 158, 142 (1984).

J. Gasser and H. Leutwyler, Nucl. Phys. B 250, 465 (1985).
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Heavy baryon formalism

• the baryon mass does not vanish in the chiral limit

⇒ mess up the power counting

• the heavy and light freedom

pµ = Mvµ + lµ (36)

Ψ = e−iMv·x(H + h),with /vH = H, /vh = −h (37)

L = Ψ̄(i/∂ −M)Ψ

= H̄(iv · ∂)H − h̄(iv · ∂ + 2M)h+ H̄i/∂
⊥
h+ h̄i/∂

⊥
H (38)

• Integrate the heavy field h,

L = H̄(iv · ∂)H +O
(

1

2M

)
(39)

E. E. Jenkins and A. V. Manohar, Phys. Lett. B 255, 558 (1991),

V. Bernard, N. Kaiser, J. Kambor and U. G. Meissner, Nucl. Phys. B 388, 315 (1992).
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Heavy baryon formalism

• Power counting for diagrams with only one baryon line

D = 2L+ 1 +
∑∞
n=2(n− 2)NM

n +
∑∞
n=1(n− 1)NB

n

• The leading order Lagrangian

L(1) = Ψ̄(iD/−MH)Ψ +
g̃A
2

Ψ̄γµγ5uµΨ (40)

L(1) = H̄(iv ·D)H + g̃A TrH̄SµuµH, (41)

where Sµ = i
2
γ5σµνv

ν is the covariant spin-operator.

• In this work,

QB = diag(2, 1, 1) and QM = diag(2/3,−1/3,−1/3)

rµ = lµ = −eQAµ; F+
µν = −2eQFµν + ...

• Traceless part and trace part: Â and Tr(A)
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